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Newtonian symmetric N-body problem

Configuration space (without collisions)

X := {q ∈ R3N | qi 6= qj ,∀i 6= j ,q1 + . . .+ qN = 0}

Newtonian gravitational potential

U(q) :=
∑

1≤i<j≤N

Gm2

||qi − qj ||

Set p := m(Id)q̇, then

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

, i = 1, . . . ,N

where H is the Hamiltonian:

H(q,p) =
N∑

i=1

||pi ||2

2m
− U(q).
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Symmetric Hamiltonian systems

Consider a smooth G-reversible equivariant (convex and
superlinear) Hamiltonian ODE

ẋ = J∇H(x); H : R2n → R, J =
( 0 I
−I 0

)
.

Let x = (q,p), q =configuration, p =momentum and define

XH(x) := J∇H(x).

There exists a representation χ : G→ {±1} such that

XH(g.x) = χ(g)g.XH(x).

• Γ = kerχ consists of spatial symmetries
• G \ Γ are the time-reversing symmetries and

G/Γ ' Z2.
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Lagrangian formulation of Hamiltonian dynamics

Lagrangian: L(q, q̇) =
∑N

i=1
||q̇i ||2

2
+ U(q).

Action functional

A(c(t)) :=

∫ T

0
L(c(t), ċ(t)) dt .

with c(t) ∈ H1([0,T ],X ) with boundary conditions

(c(0), c(T )) ∈ V ⊂ Rn × Rn; e.g. c(T ) = Sc(0).

1 ĉ(t) is a critical point of A if δA(ĉ(t))[h] = 0.
2 Critical points of A are solution trajectories of ẋ = XH(x);

H(q,p) = pT q̇ − L(q, q̇).
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Collisionless Symmetric Periodic Orbits: Hip-Hop

Chenciner-Venturelli (1999): 4-body
Terracini-Venturelli (2007): 2n-bodies
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Collisionless Symmetric Periodic Orbits: Figure-eight

Chenciner-Montgomery (2000): Planar 3-body.
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Collisionless Symmetric Periodic Orbits

Marchal (2003), Ferrario and Terracini (2004): General criteria
for collisionless periodic orbits using symmetry condition.
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Symmetries of periodic orbits

1 x(t) is a T -periodic orbit.
2 By unicity of solutions of ODEs

∀g ∈ G : g.{x(t)}∩{x(t)} = ∅ or g.{x(t)}∩{x(t)} = {x(t)}.

x(t)

g

g.x(t)

3 Symmetry group Σx(t): let G̃ = G × R/[0,T )

Σx(t) := {(g, θ) ∈ G̃ | g.x(t) = x(χ(g)t + θ(g))}.
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Symmetries of periodic orbits
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Stability of Periodic Orbits

1 Offin (1994, 2000): Time-reversing T -periodic orbits.
2 Offin and Cabral (2009): Isosceles three-body problem:

spatio-temporal symmetry.
3 G. Roberts (2007): combination of analytic and numerics.
4 Hu and Sun (2009): Maslov index methods: criteria for

instability. Figure-eight orbit argument for stability.
5 B. and Offin, in revision.
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4-body problem: the Hip-Hop orbit

Configuration space: X ' R12.

Thm (Chenciner-Venturelli (1999)): There exists a
collisionless 4T -periodic orbit ĉ(t) minimizing

A[−T ,T ](c(t)) =

∫ T

−T
L(c(t), ċ(t)) dt ,

given Λ = {c ∈ H1([−T ,T ),X ) | c(t − T ) = −c(t + T )}.
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The Hip-Hop orbit

The Hip-Hop orbit is obtained as a special realization of the
above minimizer as follows.

Let A(x , y , z) = (−y , x ,−z) and

ρ.(q1,q2, . . . ,q2n) = (Aq2n,Aq1, . . . ,Aq2n−1)

Z2n := 〈(A, ρ)〉 and set C := Fix(Z2n).
Lift symplectically (A, ρ) to T ∗X .
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Reduced Hip-Hop orbit

Thm (CV (1999), Terracini-Venturelli (2007)): There exists a
collisionless 4T -periodic orbit q̂(t) minimizing

minA(q(t)), over

ΛZ2n = {q ∈ H1(R/4TZ, C) | q(t − T ) = q(t + T )}.

The orbit q̂(t) is not a relative equilibrium, has nonzero angular
momentum µ and is not planar.

1 On C, the dynamics of all bodies follows the first one.
2 XH restricted to T ∗C is a 3-degrees of freedom system.
3 Conjecture: It is a brake orbit.
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Symmetry and Reduction

XH(q,p) has reversing-symmetry G = O(3)× S2n × Z2(S2).

W (Z2n) ' (SO(2) o Z2)× Z2(k)× Z2(S2) acts on T ∗C.

Momentum map: J : T ∗C → T ∗
1 SO(2)

J−1(µ)/SO(2) is 4-D with amended potential: Uµ(x)

D2(S1,S2) acts on J−1(µ)/SO(2) where

S1 = diag(σ,−σ) σ = diag(1,−1) and S2 = diag(I,−I).
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X → X/SO(2) (r(t), θ(t),d(t)) 7→ (r(t),d(t)).

Numerical algorithm:

Truncated Fourier series for qi (t), i = 1,2,3,4.

Minimisation of a function (discretized integral) depending on
Fourier coefficients α, β:

G(α, β) :=
k∑

j=1

L(qf (ti , α, β), q̇f (ti , α, β)).

Stability Analysis and Bifurcations of the Hip-Hop orbit



Introduction Brake orbit Instability Bifurcations

Brake orbit

Consider H−1(h), the Hill’s region is

Nh = {x ∈ S/S1 | Uµ(x) ≤ h}.

A brake orbit is an orbit of XH |H−1(h) which projects to a
trajectory of X in Nh which intersects ∂Nh in two distinct points
only.

Theorem (Lewis et al. online DCDS-A (2013))

If q̂(t), −T ≤ t ≤ T , minimizes the action A[−T ,T ] on the
function space H1([−T ,T ], C), then the corresponding loop x(t)
in reduced configuration space with −2T ≤ t ≤ 2T , is a brake
orbit in the Hill’s region
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Idea of the proof

Figure: Symmetric across the horizontal r -axis
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Symplectic matrices

Consider the linearisation of XH near x(t):

ξ̇ = dXH(x(t))ξ, ξ(0) = Id (1)

and let γ(t) be the fundamental matrix solution of (1).
γ(t) is symplectic for all t ∈ R.

Eigenvalues of symplectic matrices come in quadruplets:
{λ, λ−1, λ, λ

−1}.

unstable
(elliptic)

linearly stable
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Lagrangian subspaces

Consider, (R2n, ω) a symplectic space with ω(u, v) := u∗Jv
A subspace W ⊂ V is Lagrangian

ω|W 2 = 0 and dim W = n.

Lagrangian Grassmanian Λ(n): manifold of all Lagrangian
subspaces in R2n.

A symplectic matrix, W Lagrangian subspace
⇒ AW Lagrangian subspace.
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Maslov index and focal points

Let γ : [a,b]→ Λ(n) be a continuous path.
Maslov index: for 0 < ε << 1

µ(α, γ(t)) := [e−εJγ(t),Λ1(α)].

Let W be a Lagrangian subspace, a point τ ∈ (a,b) is a
focal point if

dφτW ∩ Ver 6= {0}, where Ver = {(0, v)∗ | v ∈ Rn}.

Ver is a Lagrangian subspace.
If α = Ver := {(0, v)∗ | v ∈ Rn},

µ(dφtW , α) = # focal points.
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General Idea

• Offin (1994,2000), Offin and Cabral (2009), B and Offin.

1 Choice of W is crucial.
2 dφtW ∩ V = {0}, t ∈ [0,T/m]: Tool - Comp. Thm (Arnol’d 1985)
3 Comp Thm (Offin 2000) + δ2A(ĉ(t)) ≥ 0:

dφtW ∩ V = {0} =⇒ dφt (SdφT/mW ) ∩ V = {0} on [0,T/m]
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Result of Hu and Sun does not apply

Theorems (Hu and Sun (2009))

1 For a critical point ĉ(t) of a variational problem with BC
Sc(t) = c(t + T/m)

Morse index(ĉ(t)) + ker(S − I) = µ(Gr(ST ),Gr(γ(t)))

2 Let z(t) be a periodic solution with spatio-temporal symmetry
Sz(t) = z(t + T/m), S = diag(S,S). If

µ(Gr(S),Gr(γ(t)))

is odd then z(t) is unstable.

Hip-Hop orbit: Morse index= 0, S = −I ⇒ µ(Gr(S),Gr(γ(t))) = 0.
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Instability Theorem

Theorem (Lewis et al. online DCDS-A (2013))

The reduced hip hop orbit z(t) is hyperbolic in the energy
surface H−1(h) when it is dynamically non-degenerate. If the
unreduced variational problem is non-degenerate then the
reduced hip hop orbit is (linearly) unstable.
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Focal points of Hip-Hop orbit

1 Choice of Lag. subspace: W = XH(z(0))⊕ u, where
u ∈ Fix(S1). W ∈ TH−1(h).

2 The only focal points of W on [−T ,T ] are the brake point

XH(−T ) = XH(T ).

3 Y = Tz(t)H−1(h)/XH(z) is a symplectic space and W ′ projection
of W to Y is a 1D Lagrangian subspace of Y with no focal points
on [0,2T ]. v

4 Consecutive (Sdφ2T )nW ′ are transverse and have no focal
points in [0,2T ]

⇒ dφtW ′ ∩ V = {0} 0 ≤ t <∞.
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Numerical Poincaré map

Stability Analysis and Bifurcations of the Hip-Hop orbit



Introduction Brake orbit Instability Bifurcations

Numerical Poincaré map
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Bifurcations of the Hip-Hop orbit: Buono et al. (in prep)

Y

SY
Q (x) = S t(x) (x)

Q : Y Y

P = Q 2

P : Y Y Application de Poincare

H  (h)
-1

H  (h)
-1

f

Y is a S2-invariant Poincaré section.
(dP) = (dQ)2 implies suppression of period doubling.
Q is S2-reversible: Q ◦ S2 = S2 ◦Q−1

2

dQ(0) =

(
a b
c a

)
,

(
±1 b
0 ±1

)
or
(
±1 0
c ±1

)
.
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1 Classification of symmetry-breaking bifurcations of periodic
orbits with D2-reversing symmetry group (Lamb et al (2003)):

Rev L0 K ∆bif Σbif σbif ρbif

Y +1 D2(S2, L0) 1 D2(S2, S) S S2

N +1 Z2(L0) 1 Z2(S) S 1

Y −1 Z2(S2) 1 Z2(S2) 1 S2

Y −1 Z2(S2L0) 1 Z2(S1) 1 S1

2 Bifurcation diagrams: +1 eigenvalue (left), −1 eigenvalue (right).
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r

d

r

d

Figure: Left: Z2(S1)-symmetric orbit. Right: Z2(S2)-symmetric orbit
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