Counting equivalence classes of words in F_{2}

Bobbe Cooper and Eric Rowland

LaCIM
Université du Québec à Montréal

February 20, 2012

Outline

(1) Whitehead's theorem
(2) Minimal words
(3) Root words
4) Enumerating equivalence classes

Notation

- $L_{2}=\{a, b, \bar{a}, \bar{b}\}$, where $\bar{a}=a^{-1}$ and $\bar{b}=b^{-1}$.
- $F_{2}=\langle a, b\rangle=\left\{w_{1} \cdots w_{\ell} \in L_{2}^{*}: w_{i} \neq w_{i+1}^{-1}\right.$ for $\left.1 \leq i \leq \ell-1\right\}$.
- $C_{2}=\left\{w_{1} \cdots w_{\ell} \in F_{2}: w_{\ell} \neq w_{1}^{-1}\right\}$.

We are interested in equivalence classes of words in F_{2} under Aut F_{2}.

Definition

A word $w \in F_{2}$ is minimal if $|w| \leq|\phi(w)|$ for all $\phi \in$ Aut F_{2}.

A Type I automorphism is an automorphism ϕ that permutes L_{2}.

Whitehead's theorem

We write $w \sim v$ if $\phi(w)=v$ for some automorphism ϕ.

Theorem (Whitehead, 1936)

If $w, v \in F_{n}$ such that $w \sim v$ and v is minimal, then there exists a sequence $\phi_{1}, \phi_{2}, \ldots, \phi_{m}$ of Type I and Type II automorphisms such that

- $\phi_{m} \cdots \phi_{2} \phi_{1}(w)=v$ and
- for $0 \leq k \leq m-1,\left|\phi_{k+1} \phi_{k} \cdots \phi_{2} \phi_{1}(w)\right| \leq\left|\phi_{k} \cdots \phi_{2} \phi_{1}(w)\right|$, with strict inequality unless $\phi_{k} \cdots \phi_{2} \phi_{1}(w)$ is minimal.

The set of Whitehead automorphisms is finite.

Corollary

There is an algorithm for determining whether $w \in F_{2}$ is minimal.
There is an algorithm for determining whether $w, v \in F_{2}$ are equivalent.

Running times

- Myasnikov and Shpilrain (2003) showed that the number of minimal words equivalent to minimal $w \in F_{2}$ is bounded by a polynomial in $|w|$.
- Lee (2006) showed that the same is true for minimal $w \in F_{n}$ under a local condition on w and determined the polynomial degree.

These results imply upper bounds on the time required to determine whether $w, v \in F_{n}$ are equivalent.

- Khan (2004) showed that the running time in F_{2} is at most quadratic in $\max (|w|,|v|)$.

All these results make use of counting subwords of w.

Computing equivalence classes

Corollary

There is an algorithm for computing all equivalence classes of F_{2} containing a word of length $\leq n$.

It is easy to recognize equivalence under a Type I automorphism.
It is also easy to recognize equivalence under conjugation. For example, $a b a \bar{b}, b a \bar{b} a, a \bar{b} a b$, and $\bar{b} a b a$.

So we choose a representative from each "cyclic permutation" class.

Equivalence classes

0.1	ϵ	\star
1.1	a	
2.1	aa	
3.1	aaa	
4.1	aaaa	
4.2	$a b \bar{a} \bar{b}$	\star
4.3	aabb \star abab \star	
5.1	aaaaa	
5.2	aaba \bar{b}	
5.3	aab \bar{b}	
5.4	aaabb	
	aababb	

6.1	aaaaaa
6.2	aaaba \bar{b}
6.3	aaabbb
6.4	aaab $\bar{a} \bar{b}$
6.5	aabaab
6.6	aababb
6.7	aabba $\bar{b} \overline{1}$
6.8	aabb \bar{a}
6.9	aab $\overline{a a} \bar{b}$
6.10	aaaabb aaab $\bar{a} b$ aabaab
7.1	aaaaaaa
7.2	aaaaba \bar{b}
7.3	aaaabbb

7.4	aaaabā̄b
7.5	aaabaab
7.6	aaababb
7.7	aaabbab
7.8	aaabbāb
7.9	aaabb $\bar{a} \bar{b}$
7.10	aaabābb
7.11	aaabā̄ \bar{b}
7.12	aaabā̄b
7.13	aabaabb
7.14	aabbabb
7.15	aabb $\bar{a} \bar{b} \bar{b}$
7.16	aaaaabb aaaabāb $a a a b \overline{a a b} b$

Outline

(1) Whitehead's theorem

(2) Minimal words

(3) Root words

4 Enumerating equivalence classes

Type II automorphisms

Definition

Fix $x \in L_{2}$ and $A \subset L_{2} \backslash\{x, \bar{x}\}$.
Define $\phi: L_{2} \rightarrow F_{2}$ by

$$
\phi(y)=\bar{x}^{\chi(\bar{y} \in A)} y x^{\chi(y \in A)}
$$

where $\chi($ true $)=1$ and $\chi($ false $)=0$.
We write $\phi=(A, x)$ and call ϕ a Type II automorphism.
The automorphism $(\{y\}, x)$ maps $x \mapsto x, \bar{x} \mapsto \bar{x}, y \mapsto y x$, and $\bar{y} \mapsto \overline{x y}$.

Example

Let $\phi=(\{b\}, a)$; then $\phi(a \bar{b})=a \bar{a} \bar{b}=\bar{b}$, so $a \bar{b}$ is not minimal.
An automorphism $(\{y\}, x)$ is called a one-letter automorphism.

Type II automorphisms

Definition

Fix $x \in L_{2}$ and $A \subset L_{2} \backslash\{x, \bar{x}\}$.
Define $\phi: L_{2} \rightarrow F_{2}$ by

$$
\phi(y)=\bar{x}^{\chi(\bar{y} \in A)} y x^{\chi(y \in A)},
$$

where $\chi($ true $)=1$ and $\chi($ false $)=0$.
We write $\phi=(A, x)$ and call ϕ a Type II automorphism.
The automorphism $(\{y\}, x)$ maps $x \mapsto x, \bar{x} \mapsto \bar{x}, y \mapsto y x$, and $\bar{y} \mapsto \overline{x y}$.
The automorphism $(\{y, \bar{y}\}, x)$ conjugates both x and y by x. Therefore, on C_{2} it suffices to consider one-letter automorphisms.

Length-2 subwords track the effects of one-letter automorphisms.

Subword counts

Definition

Let $(v)_{w}$ denote the number of (possibly overlapping) occurrences of v and v^{-1} in the cyclic word w.

Example

Let $w=a a \overline{b b} \bar{a} b a \bar{b} a$. The length-2 subword counts are $(a a)_{w}=2$, $(b b)_{w}=1,(a b)_{w}=1,(b a)_{w}=1,(a \bar{b})_{w}=2$, and $(\bar{b} a)_{w}=2$.

```
Lemma
If w}\in\mp@subsup{C}{2}{}\mathrm{ and }x,y\in\mp@subsup{L}{2}{2}\mathrm{ , then (xy (w) = (yx)w.
```


Characterization of minimal words

Theorem

$w \in C_{2}$ is minimal if and only if $\left|(a b)_{w}-(a \bar{b})_{w}\right| \leq \min \left((a a)_{w},(b b)_{w}\right)$.

Corollary

If w, v are minimal words with the same first letter, then $w v$ is minimal.

The converse is not true in general:
If $w=a$ and $v=a b b$, then $w v$ is minimal but v is not.

Outline

(1) Whitehead's theorem

(2) Minimal words

(3) Root words

(4) Enumerating equivalence classes

Equivalence classes

0.1	ϵ	\star
1.1	a	
2.1	aa	
3.1	aaa	
4.1	aaaa	
4.2	$a b \bar{a} \bar{b}$	\star
4.3	aabb \star abab \star	
5.1	aaaaa	
5.2	aaba \bar{b}	
5.3	aab \bar{b}	
5.4	aaabb	
	aababb	

6.1	aaaaaa
6.2	aaaba \bar{b}
6.3	aaabbb
6.4	aaab $\bar{a} \bar{b}$
6.5	aabaab
6.6	aababb
6.7	aabba $\bar{b} \overline{1}$
6.8	aabb \bar{a}
6.9	aab $\overline{a a} \bar{b}$
6.10	aaaabb aaab $\bar{a} b$ aabaab
7.1	aaaaaaa
7.2	aaaaba \bar{b}
7.3	aaaabbb

7.4	aaaab $\bar{a} \bar{b}$
7.5	aaabaa \bar{b}
7.6	aaababb
7.7	aaabba \bar{b}
7.8	aaabb $\bar{a} \bar{b}$
7.9	aaabb \bar{a}
7.10	aaabābb
7.11	aaab $\bar{a} \bar{b}$
7.12	aaabābb
7.13	aabaa $\overline{b \bar{b}}$
7.14	aabbabb
7.15	aabb $\overline{a a} \bar{b}$
7.16	aaaaabb aaaab $\bar{a} b$ aaab $\overline{a a b}$

Growing words from other words

Definition

A child of $w \neq \epsilon$ is a word obtained by duplicating a letter in w. Define each letter $x \in L_{2}$ to be a child of ϵ.

Example

The children of $a a b b$ are $a a a b b$ and $a a b b b$.

A child of a minimal word is necessarily minimal.

Root words

Definition

A root word is a minimal word that is not a child of any minimal word.
Root words are new minimal words with respect to duplicating a letter.

Example

The minimal word $a a b b$ is a root word, since neither of its parents $a b b$ and $a a b$ is minimal.

Example

The minimal words $a b a \bar{b}$ and $a b \bar{a} \bar{b}$ are root words. They are not children of any minimal word; in particular they have no subword $x x$.

Characterization of root words

Recall:

Theorem

$w \in C_{2}$ is minimal if and only if $\left|(a b)_{w}-(a \bar{b})_{w}\right| \leq \min \left((a a)_{w},(b b)_{w}\right)$.

Root words are "maximally minimal".

$$
\begin{aligned}
& \text { Theorem } \\
& w \in C_{2} \text { is a root word if and only if }\left|(a b)_{w}-(a \bar{b})_{w}\right|=(a a)_{w}=(b b)_{w} .
\end{aligned}
$$

Proof.

A minimal word w is a root word if and only if replacing any $x x$ by x in w causes the word to lose minimality.
Shortening a subword $x x$ decrements $(a a)_{w}$ or $(b b)_{w}$, so w is a root word precisely when both inequalities hold for equality.

Corollaries

Corollary

Let $n \geq 1$. Then $w \in C_{2}$ is a root word if and only if w^{n} is a root word.

Corollary

If w is a root word, then $(a)_{w}=(b)_{w}=|w| / 2$.

Proof.

The only length-2 subwords with unequal generator weights are $a a, \overline{a a}, b b$, and $\overline{b b}$, but $(a a)_{w}=(b b)_{w}$.

Equivalence classes

$\left.\begin{array}{|l|ll|}\hline 0.1 & \epsilon & \star \\ \hline \hline 1.1 & a & \\ \hline \hline 2.1 & \text { aa } & \\ \hline \hline 3.1 & \text { aaa } & \\ \hline \hline 4.1 & \text { aaaa } & \\ \hline 4.2 & a b \bar{a} \bar{b} & \star \\ \hline 4.3 & \text { aabb } & \star \\ \text { abab } & \star\end{array}\right]$

6.1	aaaaaa
6.2	aaaba \bar{b}
6.3	aaabbb
6.4	aaab $\bar{a} \bar{b}$
6.5	aabaab
6.6	aababb
6.7	aabba $\bar{b} \overline{1}$
6.8	aabb \bar{a}
6.9	aab $\overline{a a} \bar{b}$
6.10	aaaabb aaab $\bar{a} b$ aabaab
7.1	aaaaaaa
7.2	aaaaba \bar{b}
7.3	aaaabbb

7.4	aaaab $\bar{a} \bar{b}$
7.5	aaabaa \bar{b}
7.6	aaabab̄b
7.7	aaabba \bar{b}
7.8	aaabb $\bar{a} \bar{b}$
7.9	aaabb $\bar{a} \bar{b}$
7.10	aaab $\bar{a} b$
7.11	aaab $\bar{a} \bar{b}$
7.12	aaab $\bar{a} \bar{b} \bar{b}$
7.13	aabaa $\overline{b \bar{b}}$
7.14	aabba $\bar{b} \bar{b} \bar{b}$
7.15	aabb $\bar{a} \bar{b}$
7.16	aaaabb aaaab $\bar{a} b$ aaab $\bar{a} b$

Equivalence classes

8.1	aaaaaaaa
8.2	aaaaabab
8.3	aaaaabbb
8.4	aaaaab $\bar{a} \bar{b}$
8.5	aaaabaab
8.6	aaaaba $\bar{b} \bar{b}$
8.7	aaaabbab
8.8	aaaabbbb
8.9	aaaabb $\bar{a} b$
8.10	aaaabb $\bar{a} \bar{b}$
8.11	aaaaba$b b$
8.12	aaaab $\bar{a} \bar{b} \bar{b}$
8.13	aaaabābb
8.14	aaabaaab

8.15	aaabaabb
：	：
8.37	$\begin{aligned} & \text { aaababbb } \star \\ & \text { aababa } \overline{b \bar{b}} \star \\ & \text { aabbab} a \bar{b} \end{aligned}$
8.38	aaabbabb＊ aababbab＊ $a b a b a \bar{b} a \bar{b}$＊
8.39	aababbā̄̄ 夫 aababā̄b ＊ $a a b b \bar{a} \bar{b} a \bar{b} \star$
8.40	$\begin{aligned} & \text { aababbab} \star \\ & \text { aababb } \bar{a} b \star \\ & \text { aaba } \bar{b} \bar{b} \bar{b}{ }^{\star} \star \end{aligned}$

8.41	aaaaaabb aaaaabāb aaaab $\overline{a a b} b$ aaabaaab
8.42	aabababb 夫 aabbā̄ab＊ aabba $\bar{b} \bar{a} \bar{b} \star$ $a a b b \bar{a} \bar{b} \bar{a} b$＊ $a b a b \bar{a} b a \bar{b} \star$
8.43	$a a b a \bar{b} \bar{a} b b$＊ aaba $\bar{b} \bar{b} \bar{a} b$＊ $a a b \bar{a} b b \bar{a} \bar{b}$＊ $a a b b \bar{a} \bar{a} a b$ 夫 $a b a b \bar{a} b \bar{a} \bar{b} \star$

Length of a root word

Theorem

If w is a root word, then $|w|$ is divisible by 4.

Proof.

We have

$$
\begin{aligned}
|w| & =(a a)_{w}+(b b)_{w}+(a b)_{w}+(b a)_{w}+(a \bar{b})_{w}+(\bar{b} a)_{w} \\
& =2(a a)_{w}+2(a b)_{w}+2(a \bar{b})_{w} \\
& =2\left|(a b)_{w}-(a \bar{b})_{w}\right|+2(a b)_{w}+2(a \bar{b})_{w}
\end{aligned}
$$

If $(a b)_{w} \geq(a \bar{b})_{w}$ then $|w|=4(a b)_{w}$; if $(a b)_{w}<(a \bar{b})_{w}$ then $|w|=4(a \bar{b})_{w}$.

Run-lengths in a root word

Let $\lambda(w)$ be the length of the longest subword of w of the form x^{ℓ}. For example, $\lambda(a a \overline{b b} \bar{a} b a \bar{b} a)=3$.

Theorem
 If w is a root word, then $\lambda(w) \leq \frac{|w|}{4}+1$.

Furthermore, the root word $a^{n+1}(b a)^{n-1} b^{n+1}$ achieves this bound.

Root classes

The property of being a root word is respected by equivalence classes.

Theorem

If w is a root word, $w \sim v$, and $|w|=|v|$, then v is a root word.

We refer to an equivalence class containing a root word as a root class.

Outline

(1) Whitehead's theorem

(2) Minimal words

(3) Root words

4 Enumerating equivalence classes

Number of equivalence classes of each size

$\|w\|$	1	2	3	4	5	6	7	8	9	10	11
0	1										
1	1										
2	1										
3	1										
4	2	1									
5	3	1									
6	9	0	1								
7	15	0	1								
8	31	5	4	1	2						
9	52	28	15	6							
10	257	41	24	12	6						
11	792	46	35	20	13	5					
12	2076	78	293	31	48	13	5				
13	4711	1970	403	78	27	18	12	5			
14	17387	3796	1062	238	74	24	18	12	5		
15	55675	6445	2285	635	207	70	25	17	12	5	
16	159686	10303	15129	1448	859	203	67	25	17	12	5
17	417137	110815	12926	3047	1045	448	199	68	24	17	12
18	1357294	250913	35119	6728	2256	890	444	196	68	24	17
19	4204439	513498	89426	16208	5001	1864	859	440	197	67	24
20	12316599	969362	678470	40127	15681	4232	1709	855	437	197	67

Growing classes from other classes

length 12:
aaaaaaba $\bar{b} a b b$ aaaaaabb̄̄̄̄̄ab aaaaabab$a b \bar{a} b$ aaaaab $\bar{a} b \bar{a} \bar{b} \bar{a} b$ aaaaba $\bar{b} a b \bar{a} \bar{b} b$ aaaabāab̄̄̄̄ab aaabā$a b \bar{a} \bar{a} b$
length 13:
aaaaaaabababb aaaaaaabb $\bar{a} \bar{b} \bar{a} b$ aaaaaabā̄abāb aaaaaabābā̄̄̄ab aaaaabab$a b \bar{a} \bar{b} b$ aaaaab $\bar{a} \bar{b} \bar{a} \bar{b} \bar{a} b$ aaaabababaaab aaaab $\bar{a} a \bar{a} b \bar{a} \bar{b} \bar{a} b$
length 14:
aaaaaaaabababb aaaaaaaabb̄̄̄̄̄̄̄ aaaaaaabā̄abāb aaaaaaab $\bar{a} b \bar{a} \bar{b} \bar{a} b$ aaaaaabab$a b \overline{a a} b$ aaaaaab $\bar{a} b \bar{a} \bar{b} \bar{a} b$ aaaaabab̄abaaab aaaaab $\overline{a a a} b \bar{a} \bar{b} \bar{a} b$ aaaaba $\bar{b} a b \overline{a a a a} b$

Main goal

Enumerate equivalence classes containing a minimal word of length n.

Number of root classes of each size

$\mid \boldsymbol{\| c \|}$	1	2	3	4	5	6	7	8	9	10	11	\cdots
0	1											
4	1	1										
8	2	5	4	0	2							
12	5	19	249	0	31							
16	12	89	10914	0	380							
20	36	455	473406	0	4547							

Theorem

The size of a root word class is $1,2,3$, or 5 .

To the extent that equivalence classes grow regularly in size, this perhaps explains the stabilization.

Conjecture by size

The weight $\min \left((a)_{w},(b)_{w}\right)$ is invariant on equivalence classes.
The number of size- k classes of words of length 20 and weight 4: $990,131,118,107,92,79,66,55,41,36,29,24,17,12,5,0,0,0, \ldots$

Difference sequence: $859,13,11,15,13,13,11,14,5,7,5,7,5,7,5,0,0, \ldots$

Conjectures by length

The number of size-1 classes of words of length n and weight 2 :

$$
0,0,0,0,1,2,4,4,6,6,8,8,10,10,12,12,14,14,16,16,18, \ldots
$$

is an eventual linear quasi-polynomial modulo 2.

The number of size-1 classes of words of length n and weight 4:

$$
\begin{aligned}
& 0,0,0,0,0,0,0,0,11,29,49,70 \\
& 110,151,217,288,390,497,641,794,990, \ldots
\end{aligned}
$$

appears to be an eventual cubic quasi-polynomial modulo 4 .

