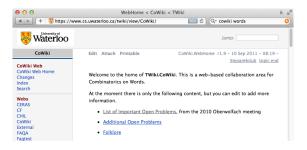
Avoidability under Permutations

Florin Manea Mike Müller Dirk Nowotka

Department of Computer Science Christian-Albrechts-Universität zu Kiel Germany

BIRS 2012

Combinatorics on Words Wiki



https://www.cs.uwaterloo.ca/twiki/view/CoWiki/

or google **cowiki words**

or go to link on **Jeff Shallit's home page**

Avoidability under Permutations

Florin Manea Mike Müller Dirk Nowotka

Department of Computer Science Christian-Albrechts-Universität zu Kiel Germany

BIRS 2012

Pattern p: word over $\{x, y, \ldots\}$

xxy

 ${\bf w}$ avoids p if $\sigma(p)$ does not occur in ${\bf w}$ for all non-erasing morphisms σ

Pattern p: word over $\{x, y, \ldots\}$

xxy

 ${f w}$ avoids p if $\sigma(p)$ does not occur in ${f w}$ for all non-erasing morphisms σ

Generalization: functional dependencies between variables

Pattern p: word over $\{x, y, \dots, f(x), g(x), f(y), \dots\}$

x f(x) y

Pattern p: word over $\{x, y, \ldots\}$

xxy

 ${f w}$ avoids p if $\sigma(p)$ does not occur in ${f w}$ for all non-erasing morphisms σ

Generalization: functional dependencies between variables

Pattern p: word over $\{x, y, \dots, f(x), g(x), f(y), \dots\}$

x f(x) y

We consider permutations here.

Pattern p: word over $\{x, y, \ldots\}$

xxy

 ${f w}$ avoids p if $\sigma(p)$ does not occur in ${f w}$ for all non-erasing morphisms σ

Generalization: functional dependencies between variables

Pattern p: word over $\{x, y, \dots, f(x), g(x), f(y), \dots\}$

x f(x) y

We consider permutations here.

 ${\bf w}$ avoids p if u does not occur in ${\bf w}$, where u results from p after

- $\bullet\,$ all variables x are replaced by $\sigma(x)$ and
- $\bullet \,$ all f(x) are replaced by $f'(\sigma(x))$
- for all non-erasing morphisms σ and permutations f' on the alphabet.

An Example

xf(x)x

xf(x)x

```
is avoidable in \Sigma_3 (but not in \Sigma_2).
```

xf(x)x

is avoidable in Σ_3 (but not in Σ_2). Consider

 $\mathbf{v} = \delta(\mathbf{t}) = 02110022100221002110\dots$

where

 $\delta(0) = 02110$ $\delta(1) = 02210$

and t is the Thue-Morse word.

xf(x)x

is avoidable in Σ_3 (but not in Σ_2). Consider

 $\mathbf{v} = \delta(\mathbf{t}) = 02110022100221002110\dots$

where

 $\delta(0) = 02110$ $\delta(1) = 02210$

and \mathbf{t} is the Thue-Morse word.

Lemma (*)

v avoids the pattern xf(x)x.

Another Example

 $xf^5(x)f^{12}(x)$

 $xf^5(x)f^{12}(x)$

 ${\ensuremath{\,\circ\,}}$ unavoidable in Σ_2

$$xf^5(x)f^{12}(x)$$

- ${\ensuremath{\,\circ\,}}$ unavoidable in Σ_2
- avoidable in Σ_4 (witness on next slide)

$$xf^5(x)f^{12}(x)$$

- ${\ensuremath{\,\circ\,}}$ unavoidable in Σ_2
- avoidable in Σ_4 (witness on next slide)
- ${\ensuremath{\, \circ \,}}$ unavoidable in Σ_8

$$xf^5(x)f^{12}(x)$$

- ${\ensuremath{\,\circ\,}}$ unavoidable in Σ_2
- avoidable in Σ_4 (witness on next slide)
- unavoidable in Σ_8
- ...in fact, avoidable in Σ_m iff $m \in \{3, \ldots, 7\}$

Another Interesting Word

Consider

 $\mathbf{u} = \delta(\mathbf{t}) = 012013213012031023012013213\dots$

where

$$\begin{split} \delta(0) &= 012013213\\ \delta(1) &= 012031023 \end{split}$$

and \boldsymbol{t} is the Thue-Morse word.

Claim **u** avoids $xf^5(x)f^{12}(x)$

Another Interesting Word

Consider

 $\mathbf{u} = \delta(\mathbf{t}) = 012013213012031023012013213\dots$

where

$$\begin{split} \delta(0) &= 012013213\\ \delta(1) &= 012031023 \end{split}$$

and \boldsymbol{t} is the Thue-Morse word.

Claim **u** avoids $xf^5(x)f^{12}(x)$

Lemma (**)

- **u** contains no vf(v)g(v) for all $|v| \ge 7$
- **u** contains no $wf^i(w)f^j(w)$ with

 $|\{w_{[\ell]}, f^i(w)_{[\ell]}, f^j(w)_{[\ell]}\}| \le 2$

for all $\ell \leq |w| \leq 6.$

Theorem

Let $p = xf^i(x)f^j(x)$ with $i \neq j$. We can effectively determine the values m such that p is avoidable over Σ_m .

$$k_{1} = \min\{t \text{ with } t \nmid |i - j| \text{ and } t \nmid i \text{ and } t \nmid j\}$$

$$k_{2} = \min\{t \text{ with } t \mid |i - j| \text{ and } t \nmid i \text{ and } t \nmid j\}$$

$$k_{3} = \min\{t \text{ with } t \mid i \text{ and } t \nmid j\}$$

$$k_{4} = \min\{t \text{ with } t \nmid i \text{ and } t \mid j\}$$

(minimum of empty set equals $+\infty$ here)

$$k_{1} = \min\{t \text{ with } t \nmid |i - j| \text{ and } t \nmid i \text{ and } t \nmid j\}$$

$$k_{2} = \min\{t \text{ with } t \mid |i - j| \text{ and } t \nmid i \text{ and } t \nmid j\}$$

$$k_{3} = \min\{t \text{ with } t \mid i \text{ and } t \nmid j\}$$

$$k_{4} = \min\{t \text{ with } t \nmid i \text{ and } t \mid j\}$$

(minimum of empty set equals $+\infty$ here)

Note that $k_1 < +\infty$ and $\min\{k_3, k_4\} < +\infty$ (since $i \neq j$).

$$k_{1} = \min\{t \text{ with } t \nmid |i - j| \text{ and } t \nmid i \text{ and } t \nmid j\}$$

$$k_{2} = \min\{t \text{ with } t \mid |i - j| \text{ and } t \nmid i \text{ and } t \nmid j\}$$

$$k_{3} = \min\{t \text{ with } t \mid i \text{ and } t \nmid j\}$$

$$k_{4} = \min\{t \text{ with } t \nmid i \text{ and } t \mid j\}$$

(minimum of empty set equals $+\infty$ here)

Note that $k_1 < +\infty$ and $\min\{k_3, k_4\} < +\infty$ (since $i \neq j$).

 $k = \min\{\max\{k_1, k_2\}, \max\{k_1, k_3\}, \max\{k_1, k_4\}\}$

$$k_{1} = \min\{t \text{ with } t \nmid |i - j| \text{ and } t \nmid i \text{ and } t \nmid j\}$$

$$k_{2} = \min\{t \text{ with } t \mid |i - j| \text{ and } t \nmid i \text{ and } t \nmid j\}$$

$$k_{3} = \min\{t \text{ with } t \mid i \text{ and } t \nmid j\}$$

$$k_{4} = \min\{t \text{ with } t \nmid i \text{ and } t \mid j\}$$

(minimum of empty set equals $+\infty$ here)

Note that $k_1 < +\infty$ and $\min\{k_3, k_4\} < +\infty$ (since $i \neq j$).

 $k = \min\{\max\{k_1, k_2\}, \max\{k_1, k_3\}, \max\{k_1, k_4\}\}$

Example

pattern $xf^5(x)f^{12}(x)$

 $k = k_1 = 8, \quad k_2 = 7, \quad k_3 = 5, \quad k_4 = 2$

Lemma

The pattern $xf^i(x)f^j(x)$, with $i \neq j$, is

- $\ \, {\rm Oly} \ \, {\rm avoidable \ over} \ \, \Sigma_m \ \, {\rm if} \ 4 \leq m < k \ \, {\rm and} \ \,$
- 2 unavoidable over Σ_m if $k \leq m$.

$\text{Cases}\ 4\leq m$

Lemma

The pattern $xf^i(x)f^j(x)$, with $i \neq j$, is

- $\ \, {\rm Oly} \ \, {\rm avoidable \ over} \ \, \Sigma_m \ \, {\rm if} \ 4 \leq m < k \ \, {\rm and} \ \,$
- 2 unavoidable over Σ_m if $k \leq m$.

Example

pattern $xf^5(x)f^{12}(x)$

- $\bullet \,$ avoidable over Σ_m if $4 \leq m < 8$ and
- unavoidable over Σ_m if $8 \leq m$.

$$\begin{aligned} &k_1 = \min\{t \mid t \nmid |i-j|, t \nmid i, t \nmid j\}, \quad k_3 = \min\{t \mid t \mid i, t \nmid j\}, \\ &k_2 = \min\{t \mid t \mid |i-j|, t \nmid i, t \nmid j\}, \quad k_4 = \min\{t \mid t \nmid i, t \mid j\}, \\ &k = \min\{\max\{k_1, k_2\}, \max\{k_1, k_3\}, \max\{k_1, k_4\}\} \end{aligned}$$

Case study on $\min\{k_1, k_2, k_3, k_4\}$.

$$k_{1} = \min\{t \mid t \nmid |i - j|, t \nmid i, t \nmid j\}, \quad k_{3} = \min\{t \mid t \mid i, t \nmid j\}, \\ k_{2} = \min\{t \mid t \mid |i - j|, t \nmid i, t \nmid j\}, \quad k_{4} = \min\{t \mid t \nmid i, t \mid j\}, \\ k = \min\{\max\{k_{1}, k_{2}\}, \max\{k_{1}, k_{3}\}, \max\{k_{1}, k_{4}\}\}$$

Case study on $\min\{k_1, k_2, k_3, k_4\}$.

For example, let $k_4 = \min\{k_1, k_2, k_3, k_4\}$. $4 \le m < k = k_1$ and $k_4 \le k$ implies

- $\operatorname{ord}_f(a)|i \text{ or } \operatorname{ord}_f(a)|j$ and
- for every factor $uf^i(u)f^j(u)$ and every position ℓ in u we have $u_{[\ell]}=f^i(u)_{[\ell]}$ or $u_{[\ell]}=f^j(u)_{[\ell]}$

Avoidable by Lemma (**).

$\text{Case }k\leq m$

$$k_{1} = \min\{t \mid t \nmid |i - j|, t \nmid i, t \nmid j\}, \quad k_{3} = \min\{t \mid t \mid i, t \nmid j\}, \\ k_{2} = \min\{t \mid t \mid |i - j|, t \nmid i, t \nmid j\}, \quad k_{4} = \min\{t \mid t \nmid i, t \mid j\}, \\ k = \min\{\max\{k_{1}, k_{2}\}, \max\{k_{1}, k_{3}\}, \max\{k_{1}, k_{4}\}\}$$

$\text{Case }k\leq m$

$$k_{1} = \min\{t \mid t \nmid |i - j|, t \nmid i, t \nmid j\}, \quad k_{3} = \min\{t \mid t \mid i, t \nmid j\}, \\ k_{2} = \min\{t \mid t \mid |i - j|, t \nmid i, t \nmid j\}, \quad k_{4} = \min\{t \mid t \nmid i, t \mid j\}, \\ k = \min\{\max\{k_{1}, k_{2}\}, \max\{k_{1}, k_{3}\}, \max\{k_{1}, k_{4}\}\}$$

• $m \ge k_1$ implies $a \ne f^i(a) \ne f^j(a)$ for some permutation f

Case $k \leq m$

$$k_{1} = \min\{t \mid t \nmid |i - j|, t \nmid i, t \nmid j\}, \quad k_{3} = \min\{t \mid t \mid i, t \nmid j\}, \\ k_{2} = \min\{t \mid t \mid |i - j|, t \nmid i, t \nmid j\}, \quad k_{4} = \min\{t \mid t \nmid i, t \mid j\}, \\ k = \min\{\max\{k_{1}, k_{2}\}, \max\{k_{1}, k_{3}\}, \max\{k_{1}, k_{4}\}\}$$

• $m \ge k_1$ implies $a \ne f^i(a) \ne f^j(a)$ for some permutation f• $m \ge k_2$ implies $a \ne f^i(a) = f^j(a)$ for some permutation f

Case $k \leq m$

$$k_{1} = \min\{t \mid t \nmid |i - j|, t \nmid i, t \nmid j\}, \quad k_{3} = \min\{t \mid t \mid i, t \nmid j\}, \\ k_{2} = \min\{t \mid t \mid |i - j|, t \nmid i, t \nmid j\}, \quad k_{4} = \min\{t \mid t \nmid i, t \mid j\}, \\ k = \min\{\max\{k_{1}, k_{2}\}, \max\{k_{1}, k_{3}\}, \max\{k_{1}, k_{4}\}\}$$

- $m \ge k_1$ implies $a \ne f^i(a) \ne f^j(a)$ for some permutation f• $m \ge k_2$ implies $a \ne f^i(a) = f^j(a)$ for some permutation f
- $m \geq k_3$ implies $f^i(a) = a \neq f^j(a)$ for some permutation f

Case $k \leq m$

$$k_{1} = \min\{t \mid t \nmid |i - j|, t \nmid i, t \nmid j\}, \quad k_{3} = \min\{t \mid t \mid i, t \nmid j\}, \\ k_{2} = \min\{t \mid t \mid |i - j|, t \nmid i, t \nmid j\}, \quad k_{4} = \min\{t \mid t \nmid i, t \mid j\}, \\ k = \min\{\max\{k_{1}, k_{2}\}, \max\{k_{1}, k_{3}\}, \max\{k_{1}, k_{4}\}\}$$

- $m \ge k_1$ implies $a \ne f^i(a) \ne f^j(a)$ for some permutation f• $m \ge k_2$ implies $a \ne f^i(a) = f^j(a)$ for some permutation f
- $m \geq k_3$ implies $f^i(a) = a \neq f^j(a)$ for some permutation f
- $m \geq k_4$ implies $f^i(a) \neq a = f^j(a)$ for some permutation f

$\text{Case }k\leq m$

$$k_{1} = \min\{t \mid t \nmid |i - j|, t \nmid i, t \nmid j\}, \quad k_{3} = \min\{t \mid t \mid i, t \nmid j\}, \\ k_{2} = \min\{t \mid t \mid |i - j|, t \nmid i, t \nmid j\}, \quad k_{4} = \min\{t \mid t \nmid i, t \mid j\}, \\ k = \min\{\max\{k_{1}, k_{2}\}, \max\{k_{1}, k_{3}\}, \max\{k_{1}, k_{4}\}\}$$

•
$$m \ge k_1$$
 implies $a \ne f^i(a) \ne f^j(a)$ for some permutation f
• $m \ge k_2$ implies $a \ne f^i(a) = f^j(a)$ for some permutation f
• $m \ge k_3$ implies $f^i(a) = a \ne f^j(a)$ for some permutation f
• $m \ge k_4$ implies $f^i(a) \ne a = f^j(a)$ for some permutation f

Suppose $k = \max\{k_1, k_2\} \le m$.

A word avoiding p must avoid cubes and abc and abb (a, b, c different).

 \dots and the cases m = 2 and $m = 3 \dots$

	j(mod 6)							
		0	1	2	3	4	5	
i(mod 6)	0	Y	N	Y	Ν	Y	Ν	2 letters
		Y	Y	Y	Y	Y	Y	3 letters
	1	Ν	N	Ν	Ν	Ν	Ν	2 letters
		Y	Y	Ν	Ν	Ν	Y	3 letters
	2	Y	N	Y	Ν	Y	Ν	2 letters
		Y	N	Y	Ν	Y	Y	3 letters
	3	Ν	Ν	Ν	Ν	Ν	Ν	2 letters
		Y	Y	Ν	Y	Ν	Y	3 letters
	4	Y	Ν	Y	Ν	Y	Ν	2 letters
		Y	Y	Y	Ν	Y	Ν	3 letters
	5	Ν	Ν	Ν	Ν	N	Ν	2 letters
		Y	N	N	N	Ν	Y	3 letters

2 letters: avoidance iff $i \equiv j \equiv 0 \pmod{2}$

3 letters: avoidance by some cube-free ternary word or word v from Lemma (*).

Theorem

Let $p = f^i(x)f^j(x)f^k(x)$. We can effectively determine the values m such that p is avoidable over Σ_m .

Theorem

Let $p = f^i(x)f^j(x)f^k(x)$. We can effectively determine the values m such that p is avoidable over Σ_m .

Remark

All results hold for both morphic and antimorphic extensions of the permutations.

Example for Antimorphic Case

Consider

$$\mathbf{w} = \delta(\mathbf{t}) = 0011022110012211001220011022\dots$$

where

 $\delta(0) = 0011022 \\ \delta(1) = 1100122$

and \boldsymbol{t} is the Thue-Morse word.

Example for Antimorphic Case

Consider

 $\mathbf{w} = \delta(\mathbf{t}) = 0011022110012211001220011022\dots$

where

 $\delta(0) = 0011022 \\ \delta(1) = 1100122$

and \mathbf{t} is the Thue-Morse word.

Lemma

w avoids the pattern xf(x)x for antimorphic permutations.

Example for Antimorphic Case

Consider

 $\mathbf{w} = \delta(\mathbf{t}) = 0011022110012211001220011022\dots$

where

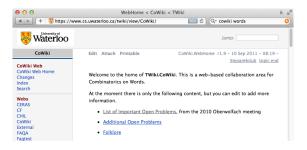
 $\delta(0) = 0011022$ $\delta(1) = 1100122$

and \mathbf{t} is the Thue-Morse word.

Lemma

w avoids the pattern xf(x)x for antimorphic permutations.

Combinatorics on Words Wiki



https://www.cs.uwaterloo.ca/twiki/view/CoWiki/

or google **cowiki words**

or go to link on **Jeff Shallit's home page**