Avoidability under Permutations

Florin Manea Mike Müller Dirk Nowotka

Department of Computer Science
Christian-Albrechts-Universität zu Kiel
Germany

BIRS 2012

Combinatorics on Words Wiki

https://www.cs.uwaterloo.ca/twiki/view/CoWiki/
or
google cowiki words
or
go to link on Jeff Shallit's home page

Avoidability under Permutations

Florin Manea Mike Müller Dirk Nowotka

Department of Computer Science
Christian-Albrechts-Universität zu Kiel
Germany

BIRS 2012

Avoidability

Pattern p : word over $\{x, y, \ldots\}$
$x x y$
\mathbf{w} avoids p if $\sigma(p)$ does not occur in \mathbf{w} for all non-erasing morphisms σ

Avoidability

Pattern p : word over $\{x, y, \ldots\}$

$$
x x y
$$

\mathbf{w} avoids p if $\sigma(p)$ does not occur in \mathbf{w} for all non-erasing morphisms σ
Generalization: functional dependencies between variables
Pattern p : word over $\{x, y, \ldots, f(x), g(x), f(y), \ldots\}$

$$
x f(x) y
$$

Avoidability

Pattern p : word over $\{x, y, \ldots\}$

$$
x x y
$$

\mathbf{w} avoids p if $\sigma(p)$ does not occur in \mathbf{w} for all non-erasing morphisms σ
Generalization: functional dependencies between variables
Pattern p : word over $\{x, y, \ldots, f(x), g(x), f(y), \ldots\}$

$$
x f(x) y
$$

We consider permutations here.

Avoidability

Pattern p : word over $\{x, y, \ldots\}$

$$
x x y
$$

\mathbf{w} avoids p if $\sigma(p)$ does not occur in \mathbf{w} for all non-erasing morphisms σ

Generalization: functional dependencies between variables
Pattern p : word over $\{x, y, \ldots, f(x), g(x), f(y), \ldots\}$

$$
x f(x) y
$$

We consider permutations here.
\mathbf{w} avoids p if u does not occur in \mathbf{w}, where u results from p after

- all variables x are replaced by $\sigma(x)$ and
- all $f(x)$ are replaced by $f^{\prime}(\sigma(x))$
- for all non-erasing morphisms σ and permutations f^{\prime} on the alphabet.

An Example

$$
x f(x) x
$$

An Example

$$
x f(x) x
$$

is avoidable in Σ_{3} (but not in Σ_{2}).

An Example

$$
x f(x) x
$$

is avoidable in Σ_{3} (but not in Σ_{2}).
Consider

$$
\mathbf{v}=\delta(\mathbf{t})=02110022100221002110 \ldots
$$

where

$$
\begin{aligned}
& \delta(0)=02110 \\
& \delta(1)=02210
\end{aligned}
$$

and \mathbf{t} is the Thue-Morse word.

An Example

$$
x f(x) x
$$

is avoidable in Σ_{3} (but not in Σ_{2}).
Consider

$$
\mathbf{v}=\delta(\mathbf{t})=02110022100221002110 \ldots
$$

where

$$
\begin{aligned}
& \delta(0)=02110 \\
& \delta(1)=02210
\end{aligned}
$$

and \mathbf{t} is the Thue-Morse word.
Lemma (*)
\mathbf{v} avoids the pattern $x f(x) x$.

Another Example

$$
x f^{5}(x) f^{12}(x)
$$

Another Example

$$
x f^{5}(x) f^{12}(x)
$$

- unavoidable in Σ_{2}

Another Example

$$
x f^{5}(x) f^{12}(x)
$$

- unavoidable in Σ_{2}
- avoidable in Σ_{4} (witness on next slide)

Another Example

$$
x f^{5}(x) f^{12}(x)
$$

- unavoidable in Σ_{2}
- avoidable in Σ_{4} (witness on next slide)
- unavoidable in Σ_{8}

Another Example

$$
x f^{5}(x) f^{12}(x)
$$

- unavoidable in Σ_{2}
- avoidable in Σ_{4} (witness on next slide)
- unavoidable in Σ_{8}
- ...in fact, avoidable in Σ_{m} iff $m \in\{3, \ldots 7\}$

Another Interesting Word

Consider

$$
\mathbf{u}=\delta(\mathbf{t})=012013213012031023012013213 \ldots
$$

where

$$
\begin{aligned}
& \delta(0)=012013213 \\
& \delta(1)=012031023
\end{aligned}
$$

and \mathbf{t} is the Thue-Morse word.
Claim u avoids $x f^{5}(x) f^{12}(x)$

Another Interesting Word

Consider

$$
\mathbf{u}=\delta(\mathbf{t})=012013213012031023012013213 \ldots
$$

where

$$
\begin{aligned}
& \delta(0)=012013213 \\
& \delta(1)=012031023
\end{aligned}
$$

and \mathbf{t} is the Thue-Morse word.
Claim \mathbf{u} avoids $x f^{5}(x) f^{12}(x)$
Lemma ($* *$)

- u contains no $v f(v) g(v)$ for all $|v| \geq 7$
- \mathbf{u} contains no $w f^{i}(w) f^{j}(w)$ with

$$
\left|\left\{w_{[\ell]}, f^{i}(w)_{[\ell]}, f^{j}(w)_{[\ell]}\right\}\right| \leq 2
$$

for all $\ell \leq|w| \leq 6$.

Result

Theorem
Let $p=x f^{i}(x) f^{j}(x)$ with $i \neq j$. We can effectively determine the values m such that p is avoidable over Σ_{m}.

$$
\begin{aligned}
k_{1} & =\min \{t \text { with } t \nmid|i-j| \text { and } t \nmid i \text { and } t \nmid j\} \\
k_{2} & =\min \{t \text { with } t| | i-j \mid \text { and } t \nmid i \text { and } t \nmid j\} \\
k_{3} & =\min \{t \text { with } t \mid i \text { and } t \nmid j\} \\
k_{4} & =\min \{t \text { with } t \nmid i \text { and } t \mid j\}
\end{aligned}
$$

(minimum of empty set equals $+\infty$ here)

$$
\begin{aligned}
k_{1} & =\min \{t \text { with } t \nmid|i-j| \text { and } t \nmid i \text { and } t \nmid j\} \\
k_{2} & =\min \{t \text { with } t| | i-j \mid \text { and } t \nmid i \text { and } t \nmid j\} \\
k_{3} & =\min \{t \text { with } t \mid i \text { and } t \nmid j\} \\
k_{4} & =\min \{t \text { with } t \nmid i \text { and } t \mid j\}
\end{aligned}
$$

(minimum of empty set equals $+\infty$ here)
Note that $k_{1}<+\infty$ and $\min \left\{k_{3}, k_{4}\right\}<+\infty($ since $i \neq j)$.

$$
\begin{aligned}
k_{1} & =\min \{t \text { with } t \nmid|i-j| \text { and } t \nmid i \text { and } t \nmid j\} \\
k_{2} & =\min \{t \text { with } t| | i-j \mid \text { and } t \nmid i \text { and } t \nmid j\} \\
k_{3} & =\min \{t \text { with } t \mid i \text { and } t \nmid j\} \\
k_{4} & =\min \{t \text { with } t \nmid i \text { and } t \mid j\}
\end{aligned}
$$

(minimum of empty set equals $+\infty$ here)
Note that $k_{1}<+\infty$ and $\min \left\{k_{3}, k_{4}\right\}<+\infty($ since $i \neq j)$.

$$
k=\min \left\{\max \left\{k_{1}, k_{2}\right\}, \max \left\{k_{1}, k_{3}\right\}, \max \left\{k_{1}, k_{4}\right\}\right\}
$$

$$
\begin{aligned}
k_{1} & =\min \{t \text { with } t \nmid|i-j| \text { and } t \nmid i \text { and } t \nmid j\} \\
k_{2} & =\min \{t \text { with } t| | i-j \mid \text { and } t \nmid i \text { and } t \nmid j\} \\
k_{3} & =\min \{t \text { with } t \mid i \text { and } t \nmid j\} \\
k_{4} & =\min \{t \text { with } t \nmid i \text { and } t \mid j\}
\end{aligned}
$$

(minimum of empty set equals $+\infty$ here)
Note that $k_{1}<+\infty$ and $\min \left\{k_{3}, k_{4}\right\}<+\infty($ since $i \neq j)$.

$$
k=\min \left\{\max \left\{k_{1}, k_{2}\right\}, \max \left\{k_{1}, k_{3}\right\}, \max \left\{k_{1}, k_{4}\right\}\right\}
$$

Example
pattern $x f^{5}(x) f^{12}(x)$

$$
k=k_{1}=8, \quad k_{2}=7, \quad k_{3}=5, \quad k_{4}=2
$$

Cases $4 \leq m$

Lemma

The pattern $x f^{i}(x) f^{j}(x)$, with $i \neq j$, is
(1) avoidable over Σ_{m} if $4 \leq m<k$ and
(2) unavoidable over Σ_{m} if $k \leq m$.

Cases $4 \leq m$

Lemma

The pattern $x f^{i}(x) f^{j}(x)$, with $i \neq j$, is
(1) avoidable over Σ_{m} if $4 \leq m<k$ and
(2) unavoidable over Σ_{m} if $k \leq m$.

Example

pattern $x f^{5}(x) f^{12}(x)$

- avoidable over Σ_{m} if $4 \leq m<8$ and
- unavoidable over Σ_{m} if $8 \leq m$.

Case $4 \leq m<k$

$$
\begin{aligned}
k_{1} & =\min \{t|t \nmid| i-j \mid, t \nmid i, t \nmid j\}, \quad k_{3}=\min \{t|t| i, t \nmid j\} \\
k_{2} & =\min \{t|t||i-j|, t \nmid i, t \nmid j\}, \quad k_{4}=\min \{t|t \nmid i, t| j\} \\
k & =\min \left\{\max \left\{k_{1}, k_{2}\right\}, \max \left\{k_{1}, k_{3}\right\}, \max \left\{k_{1}, k_{4}\right\}\right\}
\end{aligned}
$$

Case study on $\min \left\{k_{1}, k_{2}, k_{3}, k_{4}\right\}$.

Case $4 \leq m<k$

$$
\begin{aligned}
k_{1} & =\min \{t|t \nmid| i-j \mid, t \nmid i, t \nmid j\}, \quad k_{3}=\min \{t|t| i, t \nmid j\} \\
k_{2} & =\min \{t|t||i-j|, t \nmid i, t \nmid j\}, \quad k_{4}=\min \{t|t \nmid i, t| j\} \\
k & =\min \left\{\max \left\{k_{1}, k_{2}\right\}, \max \left\{k_{1}, k_{3}\right\}, \max \left\{k_{1}, k_{4}\right\}\right\}
\end{aligned}
$$

Case study on $\min \left\{k_{1}, k_{2}, k_{3}, k_{4}\right\}$.
For example, let $k_{4}=\min \left\{k_{1}, k_{2}, k_{3}, k_{4}\right\}$.
$4 \leq m<k=k_{1}$ and $k_{4} \leq k$ implies

- $\operatorname{ord}_{f}(a) \mid i$ or $\operatorname{ord}_{f}(a) \mid j$ and
- for every factor $u f^{i}(u) f^{j}(u)$ and every position ℓ in u we have

$$
u_{[\ell]}=f^{i}(u)_{[\ell]} \text { or } u_{[\ell]}=f^{j}(u)_{[\ell]}
$$

Avoidable by Lemma ($* *$).

Case $k \leq m$

$$
\begin{aligned}
k_{1} & =\min \{t|t \nmid| i-j \mid, t \nmid i, t \nmid j\}, \quad k_{3}=\min \{t|t| i, t \nmid j\} \\
k_{2} & =\min \{t|t||i-j|, t \nmid i, t \nmid j\}, \quad k_{4}=\min \{t|t \nmid i, t| j\} \\
k & =\min \left\{\max \left\{k_{1}, k_{2}\right\}, \max \left\{k_{1}, k_{3}\right\}, \max \left\{k_{1}, k_{4}\right\}\right\}
\end{aligned}
$$

Case $k \leq m$

$$
\begin{array}{rlrl}
k_{1} & =\min \{t|t \nmid| i-j \mid, t \nmid i, t \nmid j\}, & & k_{3}=\min \{t|t| i, t \nmid j\}, \\
k_{2} & =\min \{t|t||i-j|, t \nmid i, t \nmid j\}, & k_{4}=\min \{t|t \nmid i, t| j\}, \\
k & =\min \left\{\max \left\{k_{1}, k_{2}\right\}, \max \left\{k_{1}, k_{3}\right\}, \max \left\{k_{1}, k_{4}\right\}\right\}
\end{array}
$$

- $m \geq k_{1}$ implies $a \neq f^{i}(a) \neq f^{j}(a)$ for some permutation f

Case $k \leq m$

$$
\begin{array}{rlrl}
k_{1} & =\min \{t|t \nmid| i-j \mid, t \nmid i, t \nmid j\}, & k_{3}=\min \{t|t| i, t \nmid j\}, \\
k_{2} & =\min \{t|t||i-j|, t \nmid i, t \nmid j\}, & k_{4}=\min \{t|t \nmid i, t| j\}, \\
k & =\min \left\{\max \left\{k_{1}, k_{2}\right\}, \max \left\{k_{1}, k_{3}\right\}, \max \left\{k_{1}, k_{4}\right\}\right\}
\end{array}
$$

- $m \geq k_{1}$ implies $a \neq f^{i}(a) \neq f^{j}(a)$ for some permutation f
- $m \geq k_{2}$ implies $a \neq f^{i}(a)=f^{j}(a)$ for some permutation f

Case $k \leq m$

$$
\begin{array}{rlrl}
k_{1} & =\min \{t|t \nmid| i-j \mid, t \nmid i, t \nmid j\}, & k_{3} & =\min \{t|t| i, t \nmid j\}, \\
k_{2} & =\min \{t|t||i-j|, t \nmid i, t \nmid j\}, & k_{4} & =\min \{t|t \nmid i, t| j\}, \\
k & =\min \left\{\max \left\{k_{1}, k_{2}\right\}, \max \left\{k_{1}, k_{3}\right\}, \max \left\{k_{1}, k_{4}\right\}\right\}
\end{array}
$$

- $m \geq k_{1}$ implies $a \neq f^{i}(a) \neq f^{j}(a)$ for some permutation f
- $m \geq k_{2}$ implies $a \neq f^{i}(a)=f^{j}(a)$ for some permutation f
- $m \geq k_{3}$ implies $f^{i}(a)=a \neq f^{j}(a)$ for some permutation f

Case $k \leq m$

$$
\begin{array}{rlrl}
k_{1} & =\min \{t|t \nmid| i-j \mid, t \nmid i, t \nmid j\}, & & k_{3}=\min \{t|t| i, t \nmid j\}, \\
k_{2} & =\min \{t|t||i-j|, t \nmid i, t \nmid j\}, & k_{4}=\min \{t|t \nmid i, t| j\}, \\
k & =\min \left\{\max \left\{k_{1}, k_{2}\right\}, \max \left\{k_{1}, k_{3}\right\}, \max \left\{k_{1}, k_{4}\right\}\right\}
\end{array}
$$

- $m \geq k_{1}$ implies $a \neq f^{i}(a) \neq f^{j}(a)$ for some permutation f
- $m \geq k_{2}$ implies $a \neq f^{i}(a)=f^{j}(a)$ for some permutation f
- $m \geq k_{3}$ implies $f^{i}(a)=a \neq f^{j}(a)$ for some permutation f
- $m \geq k_{4}$ implies $f^{i}(a) \neq a=f^{j}(a)$ for some permutation f

Case $k \leq m$

$$
\begin{array}{rlrl}
k_{1} & =\min \{t|t \nmid| i-j \mid, t \nmid i, t \nmid j\}, & k_{3} & =\min \{t|t| i, t \nmid j\}, \\
k_{2} & =\min \{t|t||i-j|, t \nmid i, t \nmid j\}, & k_{4}=\min \{t|t \nmid i, t| j\}, \\
k & =\min \left\{\max \left\{k_{1}, k_{2}\right\}, \max \left\{k_{1}, k_{3}\right\}, \max \left\{k_{1}, k_{4}\right\}\right\}
\end{array}
$$

- $m \geq k_{1}$ implies $a \neq f^{i}(a) \neq f^{j}(a)$ for some permutation f
- $m \geq k_{2}$ implies $a \neq f^{i}(a)=f^{j}(a)$ for some permutation f
- $m \geq k_{3}$ implies $f^{i}(a)=a \neq f^{j}(a)$ for some permutation f
- $m \geq k_{4}$ implies $f^{i}(a) \neq a=f^{j}(a)$ for some permutation f

Suppose $k=\max \left\{k_{1}, k_{2}\right\} \leq m$.
A word avoiding p must avoid cubes and $a b c$ and $a b b$ (a, b, c different).
\ldots and the cases $m=2$ and $m=3 \ldots$

2 letters: avoidance iff $i \equiv j \equiv 0(\bmod 2)$
3 letters: avoidance by some cube-free ternary word or word \mathbf{v} from Lemma $(*)$.

Actually

Theorem
Let $p=f^{i}(x) f^{j}(x) f^{k}(x)$. We can effectively determine the values m such that p is avoidable over Σ_{m}.

Actually

Theorem
Let $p=f^{i}(x) f^{j}(x) f^{k}(x)$. We can effectively determine the values m such that p is avoidable over Σ_{m}.

Remark

All results hold for both morphic and antimorphic extensions of the permutations.

Example for Antimorphic Case

Consider

$$
\mathbf{w}=\delta(\mathbf{t})=0011022110012211001220011022 \ldots
$$

where

$$
\begin{aligned}
& \delta(0)=0011022 \\
& \delta(1)=1100122
\end{aligned}
$$

and \mathbf{t} is the Thue-Morse word.

Example for Antimorphic Case

Consider

$$
\mathbf{w}=\delta(\mathbf{t})=0011022110012211001220011022 \ldots
$$

where

$$
\begin{aligned}
& \delta(0)=0011022 \\
& \delta(1)=1100122
\end{aligned}
$$

and \mathbf{t} is the Thue-Morse word.
Lemma
\mathbf{w} avoids the pattern $x f(x) x$ for antimorphic permutations.

Example for Antimorphic Case

Consider

$$
\mathbf{w}=\delta(\mathbf{t})=0011022110012211001220011022 \ldots
$$

where

$$
\begin{aligned}
& \delta(0)=0011022 \\
& \delta(1)=1100122
\end{aligned}
$$

and \mathbf{t} is the Thue-Morse word.
Lemma
\mathbf{w} avoids the pattern $x f(x) x$ for antimorphic permutations.

- End of Talk -

Combinatorics on Words Wiki

https://www.cs.uwaterloo.ca/twiki/view/CoWiki/
or
google cowiki words
or
go to link on Jeff Shallit's home page

