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Definition of k-abelian equivalence

Let k ≥ 1 be a natural number. We say that words u and v in Σ+

are k-abelian equivalent, in symbols u ≡a,k v , if

1 prefk−1 (u) = prefk−1 (v) and sufk−1 (u) = sufk−1 (v), and

2 for all w ∈ Σk , the number of occurrences of w in u and v
coincide.

Here prefk−1 (resp. sufk−1) denotes the prefix (resp. suffix) of
length k − 1.
Remarks:

≡a,k is an equivalence relation

u = v ⇒ u ≡a,k v ⇒ u ≡a v

u = v ⇔ u ≡a,k v ∀ k ≥ 1

Juhani Karhumäki (jointly with M. Huova and A. Saarela) Combinatorics on words and k-abelian equivalence



Basics
Older observations

k-abelian repetitions
Local vs. global regularity

The number of the equivalence classes

We can estimate the number of equivalence classes of 2- and
3-abelian words of length n over binary alphabet with the help of
characterization of the representatives of equivalence classes, see
[HKSS].

2-abelian case: n2 − n + 2, i.e. Θ
(
n2
)

3-abelian case: Θ
(
n4
)

In general, we can estimate the number of k-abelian equivalence
classes of words of length n with the following result, see [KSZ].

Let k ≥ 1 and m ≥ 2 be fixed numbers and let Σ be an
m-letter alphabet. The number of k-abelian equivalence
classes of Σn is Θ(n(m−1)mk−1

).

For example, in a binary alphabet for k = 4 the number is Θ(n8).
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2. Older observations
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k-generalized Parikh properties

Problems on 1-free morphisms and k-generalized Parikh properties
(k-abelian) can be reduced to problems on 1-free morphisms and
usual Parikh properties (abelian) in a bigger alphabet, as stated in
[Ka].

Let h : Σ∗ → Σ∗ be a 1-free morphism and k ≥ 1. Then there
exists a morphism ĥ : Σ̂∗ → Σ̂∗ such that

∧
k h = ĥ

∧
k , i.e.,

the following diagram holds true for all x ∈ Σ∗

x
∧k //

h
��

x̂

ĥ
��

h(x)
∧k// ĥ(x) = ĥ(x̂).

Here
∧

k is a mapping from Σ∗ to Σ̂∗ and
∧

k(x) = x̂ .
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Modification of the PCP

From the result of the previous slide and with the help of earlier
results of automata theory it is shown in [Ka] that a modification
of the Post Correspondence Problem is decidable.

Let h and g be 1-free morphisms from Σ∗ into ∆∗ and k ≥ 0
and define sets Pk(h, g) of the form

Pk(h, g) =
{

x ∈ Σ+ | ∃y ∈ Σ+ : x ≡k y , h(x) = g(y)
}
.

Then for a given integer k the problem of emptiness of the set
Pk(h, g) is decidable.

It is also decidable whether E k(h, g) is empty for

E k(h, g) =
{

x ∈ Σ+ | h(x) ≡k g(x)
}
.
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3. k-abelian repetitions
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Repetitions and avoidability

Let u, v and w be words over Σ.

We say that a repetition of order two, i.e. v2 = vv , is a
square and correspondingly v3 = vvv is a cube.

Similarly vu is an abelian square if u ≡a v and uvw is an
abelian cube if u ≡a v ≡a w .

The word w contains a square if it has a square as a factor,
i.e. w = αv2β for some v ∈ Σ+, α, β ∈ Σ∗.

If the word w does not contain a square we say that it avoids
squares and it is a square-free word.

We say that the alphabet Σ avoids squares if there exists an
infinite word over Σ that avoids squares.
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Earlier results

Avoidability of squares Avoidability of cubes

size of type of rep. size of type of rep.
the alph. = ≡a the alph. = ≡a

2 − − 2 + −
3 + − 3 + +

4 + +

Table: Avoidability of different types of repetitions in infinite words.

Results for equality: A. Thue
Results for abelian equality: (A. A. Evdokimov, P. A. B. Pleasant),
V. Keränen and F. M. Dekking
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Examples

abbabaabb ≡a,2 aabbabbab

abcababb ≡a,3 ababcabb

abcababb ≡a,2 ababcabb

abbabaabb 6≡a,3 aabbabbab

abca 6≡a,2 acba
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Questions

What is the size of the smallest alphabet that avoids k-abelian
squares (resp. cubes)?

Difficult even for k = 2

Avoidability of squares Avoidability of cubes

size of type of rep. size of type of rep.
the alph. = ≡a,2 ≡a the alph. = ≡a,2 ≡a

2 − − − 2 + ? −
3 + ? − 3 + + +

4 + + +

Table: Earlier results give limits for our problems.
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Iterating morphisms

The infinite words for the results of the previous slide are obtained
by iterating morphisms.

Infinite cube-free, in fact overlap-free, Thue-Morse word

(morphism: 0→ 01, 1→ 10): 01
︷ ︸︸ ︷
101001

︷ ︸︸ ︷
100101

︷ ︸︸ ︷
101001 011...

Infinite cube-free word (morphism: 0→ 001, 1→ 011):

001001
︷ ︸︸ ︷
011001

︷ ︸︸ ︷
001011

︷ ︸︸ ︷
001011 011...
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Unavoidability of 2-abelian squares in ternary alphabets

The longest ternary word which is 2-abelian square-free has
length 537.
The size of the smallest alphabet avoiding 2-abelian squares is
four.

This longest word, given below, is unique up to the permutations
of the alphabet, Σ = {a, b, c}.

abcbabcacbacabacbabcbacabcbabcabacabcacbacabacbabcbacbcacbabcacbcabcba

bcabacbabcbacbcacbacabacbabcbacabcbabcabacabcacbacabacbabcbacbcacbacab

acbcabacabcacbcabcbacbcacbacabacbabcbacbcacbabcacbcabcbabcabacbabcbacb

cacbacabacbabcbacabcbabcabacabcacbacabacbabcbacbcacbacabacbcabacabcacb

cabcbabcabacabcacbacabacbabcbacabcbabcabacabcacbcabcbabcabacbabcbacbca

cbabcacbcabcbabcabacabcacbcabcbacbcacbacabacbcabacabcacbcabcbabcabacab

cacbacabacbabcbacabcbabcabacabcacbcabcbabcabacbabcbacbcacbabcacbcabcba

bcabacabcacbacabacbabcbacabcbabcabacabcacbabcba

a
b
c
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Unavoidability of 2-abelian squares in ternary alphabets

The longest ternary word which is 2-abelian square-free has
length 537.
The size of the smallest alphabet avoiding 2-abelian squares is
four.

This longest word, given below, is unique up to the permutations
of the alphabet, Σ = {a, b, c}.

abcbabcacbacabacbabcbacabcbabcabacabcacbacabacbabcbacbcacbabcacbcabcba

bcabacbabcbacbcacbacabacbabcbacabcbabcabacabcacbacabacbabcbacbcacbacab

acbcabacabcacbcabcbacbcacbacabacbabcbacbcacbabcacbcabcbabcabacbabcbacb

cacbacabacbabcbacabcbabcabacabcacbacabacbabcbacbcacbacabacbcabacabcacb

cabcbabcabacabcacbacabacbabcbacabcbabcabacabcacbcabcbabcabacbabcbacbca

cbabcacbcabcbabcabacabcacbcabcbacbcacbacabacbcabacabcacbcabcbabcabacab

cacbacabacbabcbacabcbabcabacabcacbcabcbabcabacbabcbacbcacbabcacbcabcba

bcabacabcacbacabacbabcbacabcbabcabacabcacbabcba
a
b
c
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The number of 2-abelian square-free words

Figure: The number of ternary 2-abelian square-free words with respect
to their lengths.
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Behaviour of 2-abelian cube-free words in binary alphabets

There exist binary words of more than 100 000 letters that
still avoid 2-abelian cubes.

The number of words with fixed lengths up to 60 letters grows
approximately with factor 1,3 with respect to the lengths.

The number of binary 2-abelian cube-free words of length 60
is 478 456 030.

With length 12 there exist more binary 2-abelian cube-free
words (254) than ternary 2-abelian square-free words (240).

Examples of such binary 2-abelian cube-free words that the
number of their extensions grows again approximately with
factor 1,3 when increasing the length of extensions by one.
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The number of 2-abelian cube-free words

Figure: The number of binary 2-abelian cube-free words with respect to
their lengths for small values of length.
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The number of extensions

Figure: The numbers of 2-abelian cube-free words of lengths 2 000-2 031
having a fixed prefix of length 2 000.
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A cube-free and a square-free word

The morphism

h :

{
a 7→ aab

b 7→ abb
,

defines a cube-free word, as is particularly simple to see, if we
notice that h(x) = axb for x ∈ {a, b}.
By using corresponding methods to produce an infinite ternary
square-free word we end up with a morphic word with
morphism

g :


a 7→ abcbacbcabcba

b 7→ bcacbacabcacb

c 7→ cabacbabcabac

.

It was already proved by Leech [Le] that this word is
square-free.
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An 8-abelian cube-free binary word

In [HKS] we use similar techniques to prove the existence of an
infinite binary 8-abelian cube-free word.

Theorem

Let w ∈ {0, 1, 2, 3}ω be an abelian square-free word. Let k ≤ n and
h : {0, 1, 2, 3}∗ → {0, 1}∗ be an n-uniform morphism that satisfies
the following three conditions. Then h(w) is k-abelian cube-free.

1. If u ∈ {0, 1, 2, 3}4 is square-free, then h(u) is k-abelian
cube-free.

2. If u ∈ {0, 1, 2, 3}∗ and v is a factor of h(u) of length 2k − 2,
then every occurrence of v in h(u) has the same starting
position modulo n.
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An 8-abelian cube-free binary word

Theorem (Continues)

3. There is a number i such that 0 ≤ i ≤ n − k and for at least
three letters x ∈ {0, 1, 2, 3}, v = h(x)[i ..i + k] satisfies
|h(u)|v = |u|x for every u ∈ {0, 1, 2, 3}∗.
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An 8-abelian cube-free binary word

By using the previous Theorem and the fact that there exists an
infinite abelian square-free word over four letter alphabet, see [Ke],
we can construct an 8-abelian cube-free binary word.

Theorem

Let w ∈ {0, 1, 2, 3}ω be an abelian square-free word. Let
h : {0, 1, 2, 3}∗ → {0, 1}∗ be the morphism defined by

h(0) = 00101 0 011001 0 01011,

h(1) = 00101 0 011001 1 01011,

h(2) = 00101 1 011001 0 01011,

h(3) = 00101 1 011001 1 01011.

Now h(w) is 8-abelian cube-free.
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4. Local vs. global regularity
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Description of the problem

In [HKSS] we examine the following problem:

For a given number n, if a binary right-infinite word contains
at every position a square of a word of length at most n, is
the word necessarily ultimately periodic?

We have nine different variants depending on whether we study the
word, the abelian or the 2-abelian case and whether we use a
consept of left square, right square or centered square.
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Type of a square

A word w contains everywhere a

left square of length at most n, if every factor of w of length
2n has a nonempty square as a suffix,

right square of length at most n, if every factor of w of length
2n has a nonempty square as a prefix,

centered square of length at most n, if every factor of w of
length 2n has a nonempty square exactly in the middle, i.e. is
of the form uxxv , where |u| = |v | and x 6= 1.
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Results

The following Table presents the minimal values of n for which
there are aperiodic right-infinite words containing an ordinary (or
2-abelian or abelian) left (or right or centered) square of length at
most n everywhere.

words 2-abelian abelian

left 5 5 3

right 5 5 3

centered ∞ 12 8

Table: Optimal values for local regularity which does not imply global
regularity in our problems.
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About general k-abelian case

There are two remarks on general k-abelian case.

For left and right squares the values of Table would remain as
5.

For the centered variant of the problem the exact borderline
for k-abelian repetitions when k ≥ 3 is unknown.
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Thank You For Your Attention!
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