Combinatorics on words and k-abelian equivalence

Juhani Karhumäki
(jointly with M. Huova and A. Saarela)

Department of Mathematics and TUCS, University of Turku, Finland

BIRS, February 2012

Outline

(1) Basics
(2) Older observations
(3) k-abelian repetitions
(4) Local vs. global regularity

1. Basics

Definition of k-abelian equivalence

Let $k \geq 1$ be a natural number. We say that words u and v in Σ^{+} are k-abelian equivalent, in symbols $u \equiv_{a, k} v$, if
(1) $\operatorname{pref}_{k-1}(u)=\operatorname{pref}_{k-1}(v)$ and $\operatorname{suf}_{k-1}(u)=\operatorname{suf}_{k-1}(v)$, and
(2) for all $w \in \Sigma^{k}$, the number of occurrences of w in u and v coincide.

Here $\operatorname{pref}_{k-1}\left(\right.$ resp. $\left.\operatorname{suf}_{k-1}\right)$ denotes the prefix (resp. suffix) of length $k-1$.
Remarks:

- $\equiv_{a, k}$ is an equivalence relation
- $u=v \Rightarrow u \equiv_{a, k} v \Rightarrow u \equiv_{a} v$
- $u=v \Leftrightarrow u \equiv_{a, k} v \quad \forall k \geq 1$

The number of the equivalence classes

We can estimate the number of equivalence classes of 2- and 3 -abelian words of length n over binary alphabet with the help of characterization of the representatives of equivalence classes, see [HKSS].

- 2-abelian case: $n^{2}-n+2$, i.e. $\Theta\left(n^{2}\right)$
- 3-abelian case: $\Theta\left(n^{4}\right)$

In general, we can estimate the number of k-abelian equivalence classes of words of length n with the following result, see [KSZ].

- Let $k \geq 1$ and $m \geq 2$ be fixed numbers and let Σ be an m-letter alphabet. The number of k-abelian equivalence classes of Σ^{n} is $\Theta\left(n^{(m-1) m^{k-1}}\right)$.
For example, in a binary alphabet for $k=4$ the number is $\Theta\left(n^{8}\right)$.

2. Older observations

k-generalized Parikh properties

Problems on 1-free morphisms and k-generalized Parikh properties (k-abelian) can be reduced to problems on 1-free morphisms and usual Parikh properties (abelian) in a bigger alphabet, as stated in [Ka].

- Let $h: \Sigma^{*} \rightarrow \Sigma^{*}$ be a 1-free morphism and $k \geq 1$. Then there exists a morphism $\hat{h}: \hat{\Sigma}^{*} \rightarrow \hat{\Sigma}^{*}$ such that $\bigwedge_{k} h=\hat{h} \bigwedge_{k}$, i.e., the following diagram holds true for all $x \in \Sigma^{*}$

Here \bigwedge_{k} is a mapping from Σ^{*} to $\hat{\Sigma}^{*}$ and $\bigwedge_{k}(x)=\hat{x}$.

Modification of the PCP

From the result of the previous slide and with the help of earlier results of automata theory it is shown in [Ka] that a modification of the Post Correspondence Problem is decidable.

- Let h and g be 1 -free morphisms from Σ^{*} into Δ^{*} and $k \geq 0$ and define sets $P_{k}(h, g)$ of the form

$$
P_{k}(h, g)=\left\{x \in \Sigma^{+} \mid \exists y \in \Sigma^{+}: x \equiv_{k} y, h(x)=g(y)\right\} .
$$

Then for a given integer k the problem of emptiness of the set $P_{k}(h, g)$ is decidable.

- It is also decidable whether $E^{k}(h, g)$ is empty for

$$
E^{k}(h, g)=\left\{x \in \Sigma^{+} \mid h(x) \equiv_{k} g(x)\right\} .
$$

3. k-abelian repetitions

Repetitions and avoidability

Let u, v and w be words over Σ.

- We say that a repetition of order two, i.e. $v^{2}=v v$, is a square and correspondingly $v^{3}=v v v$ is a cube.
- Similarly $v u$ is an abelian square if $u \equiv{ }_{a} v$ and $u v w$ is an abelian cube if $u \equiv{ }_{a} v \equiv{ }_{a} w$.
- The word w contains a square if it has a square as a factor, i.e. $w=\alpha v^{2} \beta$ for some $v \in \Sigma^{+}, \alpha, \beta \in \Sigma^{*}$.
- If the word w does not contain a square we say that it avoids squares and it is a square-free word.
- We say that the alphabet Σ avoids squares if there exists an infinite word over Σ that avoids squares.

Earlier results

Avoidability of squares			Avoidability of cubes		
size of	type of rep.		size of	type	
the alph.	=	$\equiv{ }_{a}$	the alph.	$=$	$\equiv{ }_{a}$
2	-	-	2	+	-
3	+	-	3	+	+
4	+	+			

Table: Avoidability of different types of repetitions in infinite words.

Results for equality: A. Thue
Results for abelian equality: (A. A. Evdokimov, P. A. B. Pleasant), V. Keränen and F. M. Dekking

Examples

- $a b b a b a a b b \equiv_{a, 2} a a b b a b b a b$
- $a b c a b a b b \equiv_{a, 3} a b a b c a b b$
- $a b c a b a b b \equiv_{a, 2} a b a b c a b b$
- $a b b a b a a b b \not \equiv_{a, 3}$ aabbabbab
- $a b c a \not \equiv_{a, 2} a c b a$

Questions

What is the size of the smallest alphabet that avoids k-abelian squares (resp. cubes)?

- Difficult even for $k=2$

Avoidability of squares				Avoidability of cubes			
size of	type of rep.			size of the alph.	type of rep.		
the alph.	$=$	$\equiv{ }_{\text {a,2 }}$	$\equiv{ }_{a}$		=	$\equiv_{a, 2}$	三 ${ }_{a}$
2	-	-	-	2	$+$?	-
3	+	?	-	3	+	+	+
4	$+$	+	+				

Table: Earlier results give limits for our problems.

Iterating morphisms

The infinite words for the results of the previous slide are obtained by iterating morphisms.

- Infinite cube-free, in fact overlap-free, Thue-Morse word (morphism: $0 \rightarrow 01,1 \rightarrow 10$): $01 \overbrace{101001} \overbrace{100101} \overbrace{101001} 011 \ldots$
- Infinite cube-free word (morphism: $0 \rightarrow 001,1 \rightarrow 011$): $001001 \overbrace{011001} \overbrace{001011} \overbrace{001011} 011 .$.

Unavoidability of 2-abelian squares in ternary alphabets

- The longest ternary word which is 2-abelian square-free has length 537.
- The size of the smallest alphabet avoiding 2-abelian squares is four.

This longest word, given below, is unique up to the permutations of the alphabet, $\Sigma=\{a, b, c\}$.
abcbabcacbacabacbabcbacabcbabcabacabcacbacabacbabcbacbcacbabcacbcabcba bcabacbabcbacbcacbacabacbabcbacabcbabcabacabcacbacabacbabcbacbcacbacab acbcabacabcacbcabcbacbcacbacabacbabcbacbcacbabcacbcabcbabcabacbabcbacb cacbacabacbabcbacabcbabcabacabcacbacabacbabcbacbcacbacabacbcabacabcacb cabcbabcabacabcacbacabacbabcbacabcbabcabacabcacbcabcbabcabacbabcbacbca cbabcacbcabcbabcabacabcacbcabcbacbcacbacabacbcabacabcacbcabcbabcabacab cacbacabacbabcbacabcbabcabacabcacbcabcbabcabacbabcbacbcacbabcacbcabcba bcabacabcacbacabacbabcbacabcbabcabacabcacbabcba

Unavoidability of 2-abelian squares in ternary alphabets

- The longest ternary word which is 2-abelian square-free has length 537.
- The size of the smallest alphabet avoiding 2-abelian squares is four.

This longest word, given below, is unique up to the permutations of the alphabet, $\Sigma=\{a, b, c\}$.
abcbabcacbacabacbabcbacabcbabcabacabcacbacabacbabcbacbcacbabcacbcabcba bcabacbabcbacbcacbacabacbabcbacabcbabcabacabcacbacabacbabcbacbcacbacab acbcabacabcacbcabcbacbcacbacabacbabcbacbcacbabcacbcabcbabcabacbabcbacb cacbacabacbabcbacabcbabcabacabcacbacabacbabcbacbcacbacabacbcabacabcacb cabcbabcabacabcacbacabacbabcbacabcbabcabacabcacbcabcbabcabacbabcbacbca cbabcacbcabcbabcabacabcacbcabcbacbcacbacabacbcabacabcacbcabcbabcabacab cacbacabacbabcbacabcbabcabacabcacbcabcbabcabacbabcbacbcacbabcacbcabcba bcabacabcacbacabacbabcbacabcbabcabacabcacbabcba $\underset{c}{a}$

The number of 2-abelian square-free words

Figure: The number of ternary 2-abelian square-free words with respect to their lengths.

Behaviour of 2-abelian cube-free words in binary alphabets

- There exist binary words of more than 100000 letters that still avoid 2-abelian cubes.
- The number of words with fixed lengths up to 60 letters grows approximately with factor 1,3 with respect to the lengths.
- The number of binary 2-abelian cube-free words of length 60 is 478456030.
- With length 12 there exist more binary 2-abelian cube-free words (254) than ternary 2-abelian square-free words (240).
- Examples of such binary 2-abelian cube-free words that the number of their extensions grows again approximately with factor 1,3 when increasing the length of extensions by one.

The number of 2-abelian cube-free words

Figure: The number of binary 2 -abelian cube-free words with respect to their lengths for small values of length.

The number of extensions

Figure: The numbers of 2-abelian cube-free words of lengths 2 000-2 031 having a fixed prefix of length 2000.

A cube-free and a square-free word

- The morphism

$$
h:\left\{\begin{array}{l}
a \mapsto a a b \\
b \mapsto a b b
\end{array}\right.
$$

defines a cube-free word, as is particularly simple to see, if we notice that $h(x)=a x b$ for $x \in\{a, b\}$.

- By using corresponding methods to produce an infinite ternary square-free word we end up with a morphic word with morphism

$$
g:\left\{\begin{array}{l}
a \mapsto a b c b a c b c a b c b a \\
b \mapsto b c a c b a c a b c a c b \\
c \mapsto c a b a c b a b c a b a c
\end{array}\right.
$$

It was already proved by Leech [Le] that this word is square-free.

An 8-abelian cube-free binary word

In [HKS] we use similar techniques to prove the existence of an infinite binary 8 -abelian cube-free word.

Theorem

Let $w \in\{0,1,2,3\}^{\omega}$ be an abelian square-free word. Let $k \leq n$ and $h:\{0,1,2,3\}^{*} \rightarrow\{0,1\}^{*}$ be an n-uniform morphism that satisfies the following three conditions. Then $h(w)$ is k-abelian cube-free.

1. If $u \in\{0,1,2,3\}^{4}$ is square-free, then $h(u)$ is k-abelian cube-free.
2. If $u \in\{0,1,2,3\}^{*}$ and v is a factor of $h(u)$ of length $2 k-2$, then every occurrence of v in $h(u)$ has the same starting position modulo n.

An 8-abelian cube-free binary word

Theorem (Continues)

3. There is a number i such that $0 \leq i \leq n-k$ and for at least three letters $x \in\{0,1,2,3\}, v=h(x)[i . . i+k]$ satisfies $|h(u)|_{v}=|u|_{x}$ for every $u \in\{0,1,2,3\}^{*}$.

An 8-abelian cube-free binary word

By using the previous Theorem and the fact that there exists an infinite abelian square-free word over four letter alphabet, see [Ke], we can construct an 8 -abelian cube-free binary word.

Theorem

Let $w \in\{0,1,2,3\}^{\omega}$ be an abelian square-free word. Let $h:\{0,1,2,3\}^{*} \rightarrow\{0,1\}^{*}$ be the morphism defined by

$$
\begin{aligned}
& h(0)=001010011001001011, \\
& h(1)=001010011001101011, \\
& h(2)=001011011001001011, \\
& h(3)=001011011001101011 .
\end{aligned}
$$

Now $h(w)$ is 8 -abelian cube-free.

4. Local vs. global regularity

Description of the problem

In [HKSS] we examine the following problem:

- For a given number n, if a binary right-infinite word contains at every position a square of a word of length at most n, is the word necessarily ultimately periodic?

We have nine different variants depending on whether we study the word, the abelian or the 2-abelian case and whether we use a consept of left square, right square or centered square.

Basics
Older observations
k-abelian repetitions Local vs. global regularity

Type of a square

A word w contains everywhere a

- left square of length at most n, if every factor of w of length $2 n$ has a nonempty square as a suffix,
- right square of length at most n, if every factor of w of length $2 n$ has a nonempty square as a prefix,
- centered square of length at most n, if every factor of w of length $2 n$ has a nonempty square exactly in the middle, i.e. is of the form $u x x v$, where $|u|=|v|$ and $x \neq 1$.

Results

The following Table presents the minimal values of n for which there are aperiodic right-infinite words containing an ordinary (or 2-abelian or abelian) left (or right or centered) square of length at most n everywhere.

	words	2-abelian	abelian
left	5	5	3
right	5	5	3
centered	∞	12	8

Table: Optimal values for local regularity which does not imply global regularity in our problems.

About general k-abelian case

There are two remarks on general k-abelian case.

- For left and right squares the values of Table would remain as 5.
- For the centered variant of the problem the exact borderline for k-abelian repetitions when $k \geq 3$ is unknown.

References

References

(F. M. Dekking: Strongly non-repetitive sequences and progression-free sets. J. Combin. Theory Ser. A 27(2), 181-185 (1979).

囯 A. A. Evdokimov: Strongly asymmetric sequences generated by a finite number of symbols. Dokl. Akad. Nauk SSSR 179, 1268-1271 (1968); English translation in Soviet Math. Dokl. 9, 536-539 (1968).
R M. Huova, J. Karhumäki, A. Saarela: Problems in between words and abelian words: k-abelian avoidability. In: G. Rozenberg, A.Salomaa (eds.) Special issue of Theoretical Computer Science, to be published.

References

R M．Huova，J．Karhumäki，A．Saarela，K．Saari：Local squares， periodicity and finite automata．In：C．Calude，G．Rozenberg， A．Salomaa（eds．）Rainbow of Computer Science，90－101， Springer， 2011.
围 J．Karhumäki：Generalized Parikh Mappings and Homomorphisms．Information and control 47，155－165（1980）．
击 J．Karhumäki，A．Saarela，L．Zamboni：Generalized abelian equivalence．Manuscript to be published．

囯 V．Keränen：Abelian squares are avoidable on 4 letters．In：W． Kuich（ed．）ICALP 1992．LNCS，vol．623，41－52．Springer， Heidelberg， 1992.

References

图 J．Leech：A problem on strings of beads．Math．Gazette 41， 277－278（1957）．

圊 P．A．B．Pleasant：Non－repetitive sequences．Proc．Cambridge Philos．Soc．68，267－274（1970）．
目 A．Thue：Über unendliche Zeichenreihen．Norske vid．Selsk． Skr．Mat．Nat．KI．7，1－22（1906）．
圊 A．Thue：Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen．Norske vid．Selsk．Skr．Mat．Nat．KI．1，1－67 （1912）．

Thank You For Your Attention!

