Maximal Exponent Repeats

MAXIME CROCHEMORE

&

King's College London

Université Paris-Est

joint work with Chalita Toopsuwan & Golnaz Badkobeh

Stringologists' Mascot?

Stringocephalus [Wikipedia, 2011]

- ★ extinct genus; between 360 to 408 million years old
- ★ usually found as fossils in Devonian marine rocks
- ★ found in western North America, northern Europe (especially Poland), Asia and the Canning Basin of Western Australia

A beautiful mind! [based on fake etymology]

- \star String = text = word = sequence of symbols
- * **Repetition** = periodic string = power of exponent ≥ 2

- \star String = text = word = sequence of symbols
- * Repetition = periodic string = power of exponent ≥ 2 abaab abaab abaab abaab ab = $(abaab)^{17/5}$

- \star String = text = word = sequence of symbols
- * Repetition = periodic string = power of exponent ≥ 2 abaab abaab abaab abaab ab = $(abaab)^{17/5}$ alfalfa = $(alf)^{7/3}$ entente = $(ent)^{7/3}$

 \star String = text = word = sequence of symbols

★ Repetition = periodic string = power of exponent ≥ 2 abaab abaab abaab abaab ab = $(abaab)^{17/5}$ alfalfa = $(alf)^{7/3}$ entente = $(ent)^{7/3}$

* **Repeat:** $1 < \text{exponent} \le 2$

$$\frac{\text{length} = 15}{\text{a b a a b c c c c c a b a a b}}$$

$$period = 10 \qquad border$$

$$exponent = \frac{\text{length}}{\text{period}} = 1 + \frac{\text{border}}{\text{period}} = \frac{15}{10} = 1.5$$

 \star String = text = word = sequence of symbols

★ Repetition = periodic string = power of exponent ≥ 2 abaab abaab abaab abaab ab = $(abaab)^{17/5}$ alfalfa = $(alf)^{7/3}$ entente = $(ent)^{7/3}$

* Repeat: $1 < exponent \le 2$ abaab ccccc abaab = $(abaabccccc)^{15/10}$

 \star String = text = word = sequence of symbols

★ Repetition = periodic string = power of exponent ≥ 2 abaab abaab abaab abaab ab = $(abaab)^{17/5}$ alfalfa = $(alf)^{7/3}$ entente = $(ent)^{7/3}$

* Repeat: $1 < exponent \le 2$ abaab ccccc abaab = $(abaabccccc)^{15/10}$ restore = $(resto)^{7/5}$ all in all = $(all in)^{10/7}$ Motivation

***** Combinatorics on words

Avoidability of repetitions, Interaction between periods, Counting repetitions

***** Pattern matching algorithms

String Matching, Time-space optimal String Matching: local and global periods, Indexing

***** Text Compression

Generalised run-length encoding Dictionary-based compression

* Analysis of biological molecular sequences

Intensive study of satellites, Simple Sequence Repeats, or Tandem Repeats in DNA sequences Molecular structure prediction

***** Analysis of music

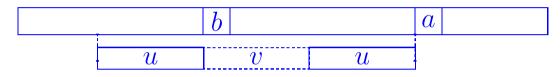
Rhythm detection, Chorus location

Maximal Exponent

- * String y of length n drawn from a fixed alphabet maximal exponent of all factors of y?
- * RUN: maximal periodicity in y (exponent ≥ 2)
- * Linear number of runs, linear-time computation on fixed alphabet [Kolpakov, Kucherov, 1999]
- * **Question 1:** Compute the maximal exponent of all repeats in an overlap-free string

Maximal-Exponent Repeats

 ★ MER: maximal exponent repeat occurring in y a MER occurrence is maximal



abacada.....axayaza $\Omega(n^2)$ maximal repeats but $\lfloor \frac{n}{2} \rfloor$ MER occ. of exponent $\frac{3}{2}$

* **Question 2:** locate all MER occurrences in an overlap-free string

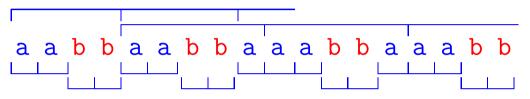
Theorem 1 ([Badkobeh, C., Toopsuwan, 2012]) All the occurrences of maximal-exponent repeats in an overlap-free string over a fixed alphabet can be listed in linear time.

All powers

- ***** Finding all occurrences of powers efficiently
 - Problem: too many occurrences
 - Solution: select some, encode them in a compact form
- * All primitively-rooted right-maximal integer exponent: $O(n \log n)$ time [C., 1981]
- * All primitively-rooted right-maximal: $O(n \log n)$ time [Apostolico, Preparata, 1983]
- * All primitively-rooted maximal: $O(n \log n)$ time [Main, Lorentz, 1985]
- * All leftmost maximal: $O(n \log a)$ time [Main, 1989] extension of [C., 1983]
- * All runs in Fibonacci strings: O(n) time [Iliopoulos, Moore, Smyth, 1997]

Computing runs

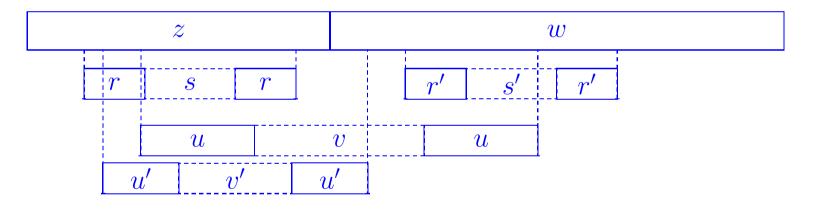
 ★ Run: maximal periodicity Runs encode all powers



- * Computation in $O(n \log a)$ time [Kolpakov, Kucherov, 1999]
- \star .. based on
 - modified Main's algorithm
 - f-factorization (kind of Ziv-Lempel factorization)
 - linear upper bound on the number of runs
- ★ Explicit best known bound: $runs(n) \le 1.029n$ [C., Ilie, Tinta, 2008] $runs(n) \ge 0.944n$ [Simpson, 2009]

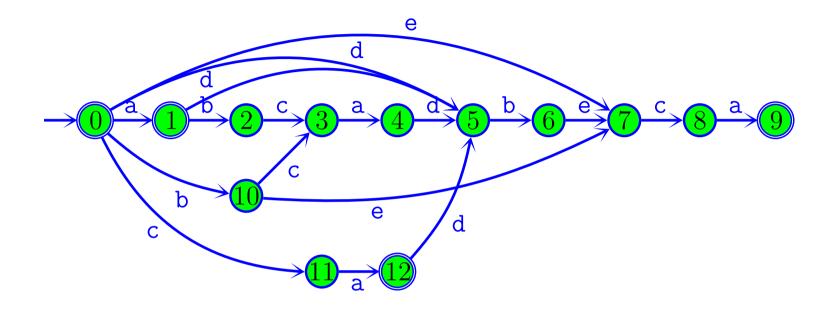
Computing the maximal exponent

- ★ Naive algorithm
 border/period/exponent in linear time (Morris-Pratt algo)
 yields O(n³) time solution, reducible to O(n²)
- ***** Divide and conquer

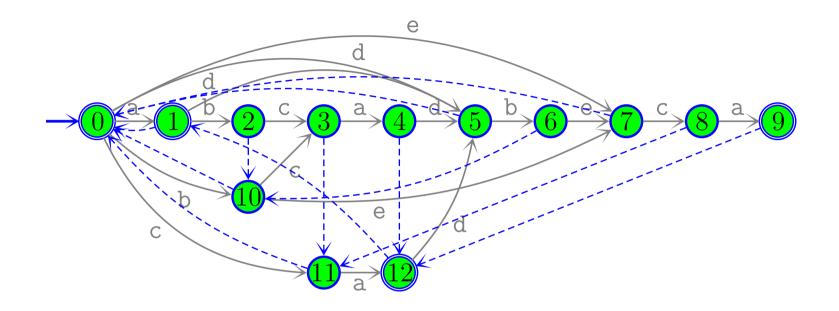


Repeat in a product 0 j z a u v u \ell sc[q] j+1

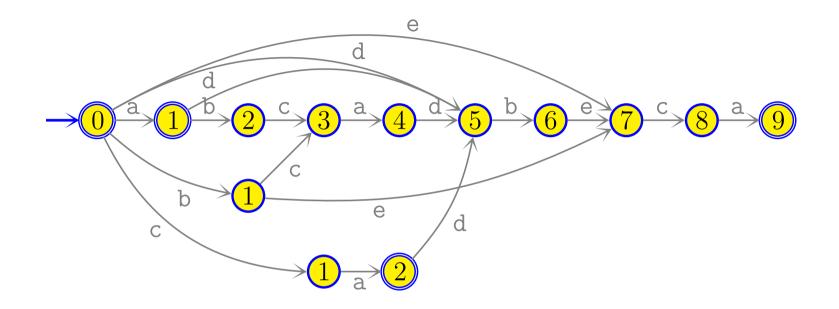
- **\star** With the Suffix Automaton of z:
 - u longest factor of z ending at j; $\ell = |u|$
 - state $q = \delta($ initial, u)
 - sc[q] locates the last occurrence of u in z
 - exponent = $\frac{\ell + sc[q] + j + 1}{sc[q] + j + 1}$
- \star failure links on states to locate suffixes of u



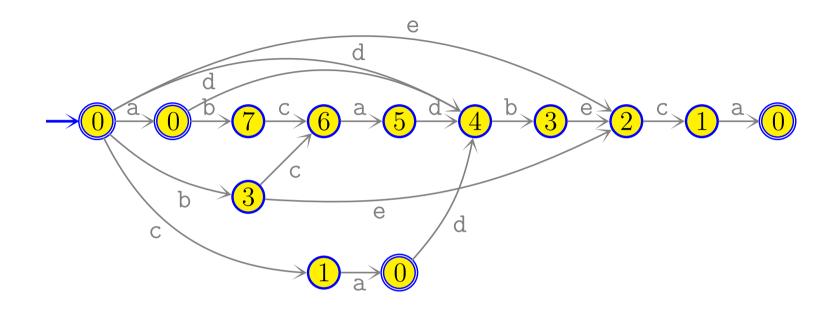
 \star Used to locate rightmost occurrences of border u in z



- \star Used to locate rightmost occurrences of border u in z
- ***** Equipped with: Failure links



- **\star** Used to locate rightmost occurrences of border u in z
- * Equipped with: Failure links L[q] =maximal length of words reaching state q



\star Used to locate rightmost occurrences of border u in z

***** Equipped with:

Failure links

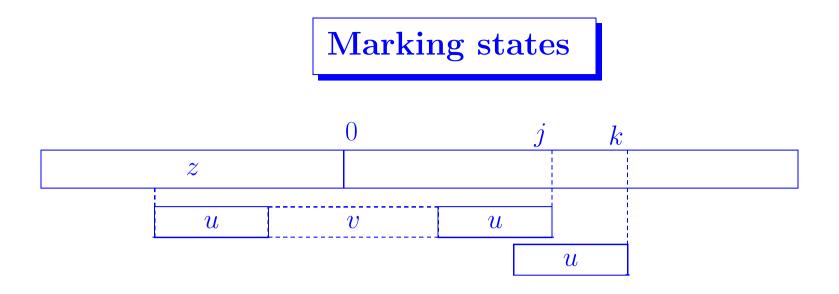
L[q] = maximal length of words reaching state q

sc[q] = shortest length to a terminal state

Core algorithm

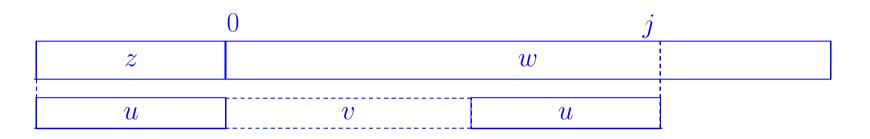
$\mathbf{MaxExp}(z, w, e)$

 $\mathcal{S} \leftarrow \boldsymbol{Suffix} \ \boldsymbol{Automaton} \ \boldsymbol{of} \ z$ 1 **mark** initial(\mathcal{S}) 2 $(q, \ell) \leftarrow (F[\operatorname{last}(\mathcal{S})], L[F[\operatorname{last}(\mathcal{S})]])$ 3 for $j \leftarrow 0$ to min{||z|/(e-1) - 1|, |w| - 1} do 4 5 while goto(q, w[j]) = NIL and $q \neq initial(\mathcal{S})$ do $(q, \ell) \leftarrow (F[q], L[F[q]])$ 6 7 if $goto(q, w[j]) \neq NIL$ then 8 $(q, \ell) \leftarrow (\text{goto}(q, w[j]), \ell + 1)$ $(q', \ell') \leftarrow (q, \ell)$ 9 while q' unmarked do 10 $e \leftarrow \max\{e, (\ell' + sc[q'] + j + 1)/(sc[q'] + j + 1)\}$ 11 if $\ell' = L[q']$ then 12 mark q'13 $(q', \ell') \leftarrow (F[q'], L[F[q']])$ 14 15 return e



- * At j, state q is marked if u longest with $q = \delta(\text{initial}, u)$
- $\star\,$ then no more exponent computation if $q\,$ met later
- ★ it happens when a failure link is used then no more than 2|z| extra exponent computations

***** Linear number of exponent computations due to marking



- * *j* needs not be larger than |z|/(e-1)-1 (*e* current exponent)
- ***** for long enough $y, e \ge \mathbf{RT}(a)$ then

$$j \leq \frac{|z|}{\mathbf{RT}(a) - 1} - 1$$

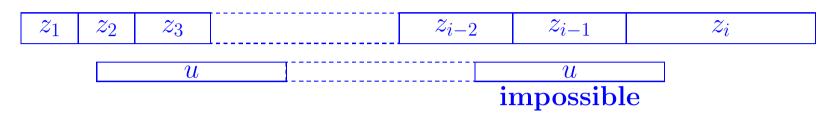
★ O(|z|) time to compute exponents \ge RT(a) in zw independent of |w|

Maximal exponent

- ***** Balanced divide and conquer: $O(n \log n)$
- **\star** Use of the f-factorisation: O(n)
- ★ Phrase = longest factor occurring before (no overlap)
- **\star** Example of y = abaabababaaababb

- * Computation with the suffix tree of y: $O(n \log a)$ time [Storer, Szymanski, 1982]
- \star .. however possible in linear time with the suffix array of y [C., Tischler, 2010], extension of [C., Ilie, 2008]

Maximal exponent



- **\star** No phrase in the second occurrence of u
- \star for each *i*
 - MaxExp (z_{i-1}, z_i)
 - MaxExp $(\widetilde{z_i}, \widetilde{z_{i-1}})$
 - MAXEXP $(z_{i-1}z_i, z_1 \cdot \cdots \cdot z_{i-2})$
- *** Running time:** $O(\Sigma z_i) = O(n)$

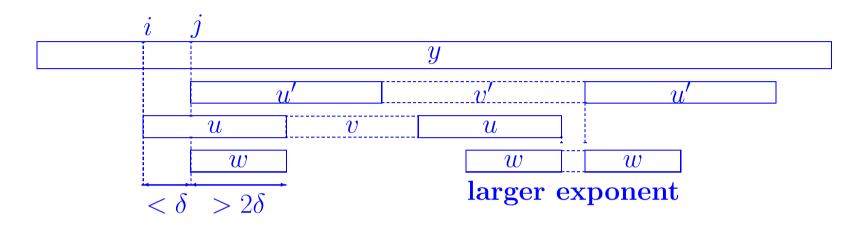
Theorem 2 ([Badkobeh, C., Toopsuwan]) The maximal exponent of repeats can be computed in linear time on a fixed alphabet.

j k y j u v u u v u u v u u' v' u'

- ★ Impossible when uvu and u'v'u' have the same border length: then k - j > |u|
- $\star\,$ no more than n/(b+1) MER occurrences of border length b
- ***** total number of occurrences:

$$\leq \sum_{b=1}^{N} \frac{n}{b+1}$$

Counting MER occurrences (2)



- ★ δ -MER: MER whose border length satisfies $3\delta \leq b < 4\delta$.
- * two δ -MER occurrences at i and j, then $j i \ge \delta$
- ***** total number of occurrences:

$$\leq \sum_{\delta \in \Delta} \frac{n}{\delta} = n \left(3 + \frac{3}{2} + 1 + \frac{3}{4} + \left(\frac{3}{4} \right)^2 + \ldots \right) < 8.5 \, n.$$

Counting MER occurrences (3)

- ***** Combining
- ***** for border lengths up to 11

$$\leq \sum_{b=1}^{11} \frac{n}{b+1} = 2.103211 \, n$$

* for border length from 12, $\Gamma = \{4, 4(4/3), 4(4/3)^2, \ldots\},\$

$$\leq \sum_{\delta \in \Gamma} \frac{n}{\delta} = \frac{1}{4} \left(1 + \frac{3}{4} + \left(\frac{3}{4}\right)^2 + \ldots \right) n = n$$

Theorem 3 There are less than 3.11 n occurrences of MERs in a string of length n.

★ Consequence: linear computation of all MER occurrences with upgraded algorithm

Conclusion and questions

- ★ Linear computation of MER occurrences and of runs on a fixed alphabet
- ★ MER computation in the comparison model? Note: optimal O(n log n) time algorithm for runs [C., Rytter, Tyczyński, 2012]
- ★ Exact bound on the maximal number of MER occurrences? less than n? tested up to length 20 on alphabet sizes 2, 3 and 4

Conclusion and questions

- ★ Linear computation of MER occurrences and of runs on a fixed alphabet
- ★ MER computation in the comparison model? Note: optimal O(n log n) time algorithm for runs [C., Rytter, Tyczyński, 2012]
- ★ Exact bound on the maximal number of MER occurrences? less than n? tested up to length 20 on alphabet sizes 2, 3 and 4
- * 2 is a threshold exponent:
 above, at most a linear number of runs
 below, possible quadratic number of maximal occurrences
 of repeats, but at most a linear number of MER occurrences
- * Any other threshold? Note: no more than $\frac{1}{\epsilon}n \ln n$ maximal repetitions of exponent more than $1 + \epsilon$ [Kolpakov, Kucherov, Ochem, 2010]