Unrepetitive paths in digraphs

(and the repetition threshold)

Arturo Carpi
Dipartimento di Matematica e Informatica Università di Perugia

Outstanding Challenges in Combinatorics on Words
Banff, February 19-24, 2012

Unrepetitive graph coloring

Q A bi-inifnite word can be viewed as a coloring of edges (or nodes) of $\operatorname{Cay}(\mathbb{Z} ; 1)$
Q Its factors are the coloring of finite simple paths

Unrepetitive graph coloring

Q A bi-inifnite word can be viewed as a coloring of edges (or nodes) of $\operatorname{Cay}(\mathbb{Z} ; 1)$
Q Its factors are the coloring of finite simple paths
Q Generalize to an arbitrary graph G

Unrepetitive graph coloring

Q A bi-inifnite word can be viewed as a coloring of edges (or nodes) of $\operatorname{Cay}(\mathbb{Z} ; 1)$
Q Its factors are the coloring of finite simple paths
Q Generalize to an arbitrary graph G
Q E.g., the minimal number of colors to avoid squares is the Thue chromatic number of G (Alon, Grytczuk, Hałuszczak, Riordan, 2002)

Unrepetitive graph coloring

Q A bi-inifnite word can be viewed as a coloring of edges (or nodes) of $\operatorname{Cay}(\mathbb{Z} ; 1)$
Q Its factors are the coloring of finite simple paths
Q Generalize to an arbitrary graph G
Q E.g., the minimal number of colors to avoid squares is the Thue chromatic number of G (Alon, Grytczuk, Hałuszczak, Riordan, 2002)

We consider a different problem

Unrepetitive walks

Let $G=(V, E)$ be a finite digraph.
Q A walk is a sequence of edges, i.e., a word on the alphabet E

Unrepetitive walks

Let $G=(V, E)$ be a finite digraph.
Q A walk is a sequence of edges, i.e., a word on the alphabet E
Q Thus we can look for unrepetitive words among walks in G

Unrepetitive walks

Let $G=(V, E)$ be a finite digraph.
Q A walk is a sequence of edges, i.e., a word on the alphabet E
Q Thus we can look for unrepetitive words among walks in G

Motivation

Q Symbolic dynamics (ergodicity)

Unrepetitive walks

Let $G=(V, E)$ be a finite digraph.
Q A walk is a sequence of edges, i.e., a word on the alphabet E
Q Thus we can look for unrepetitive words among walks in G

Motivation

Q Symbolic dynamics (ergodicity)
Q Unrepetitive traces

Unrepetitive walks

Let $G=(V, E)$ be a finite digraph.
Q A walk is a sequence of edges, i.e., a word on the alphabet E
Q Thus we can look for unrepetitive words among walks in G

Motivation

Q Symbolic dynamics (ergodicity)
Q Unrepetitive traces
Q Repetition threshold for words

Unrepetitive walks

Let $G=(V, E)$ be a finite digraph.
Q A walk is a sequence of edges, i.e., a word on the alphabet E
Q Thus we can look for unrepetitive words among walks in G

Motivation

Q Symbolic dynamics (ergodicity)
Q Unrepetitive traces
Q Repetition threshold for words
Q Unending chess

Unrepetitive walks

Let $G=(V, E)$ be a finite digraph.
Q A walk is a sequence of edges, i.e., a word on the alphabet E
Q Thus we can look for unrepetitive words among walks in G

Motivation

Q Symbolic dynamics (ergodicity)
Q Unrepetitive traces
Q Repetition threshold for words
Q Unending chess
A match of chess may be viewed as a walk in a digraph with vertices $=$ positions and edges $=$ moves. With modified rules, infinite square-free walks correspond to unending matches (Morse, Hedlund, 1943)

Preliminaries

Let $G=(V, E)$ be a digraph
A walk in G is any word of $W=E^{+} \backslash E^{*} N E^{*}$, where

$$
N=\left\{\left(v_{1}, v_{2}\right)\left(v_{3}, v_{4}\right) \mid v_{1}, v_{2}, v_{3}, v_{4} \in V, v_{2} \neq v_{3}\right\}
$$

Preliminaries

Let $G=(V, E)$ be a digraph
A walk in G is any word of $W=E^{+} \backslash E^{*} N E^{*}$, where

$$
N=\left\{\left(v_{1}, v_{2}\right)\left(v_{3}, v_{4}\right) \mid v_{1}, v_{2}, v_{3}, v_{4} \in V, v_{2} \neq v_{3}\right\}
$$

As any infinite walk terminates in a strongly connected component, we will consider only strongly connected digraphs, w.l.o.g.

Unending square-free walks

Theorem
A strongly connected digraph $G=(V, E)$ has an unending square-free walk if and only if

$$
\operatorname{Card}(E) \geq \operatorname{Card}(V)+2
$$

Unending square-free walks

Theorem

A strongly connected digraph $G=(V, E)$ has an unending square-free walk if and only if

$$
\operatorname{Card}(E) \geq \operatorname{Card}(V)+2
$$

Unending square-free walks

Theorem

A strongly connected digraph $G=(V, E)$ has an unending square-free walk if and only if

$$
\operatorname{Card}(E) \geq \operatorname{Card}(V)+2
$$

Theorem
Any strongly connected digraph G has an unending cube-free walk unless it is a simple cicle

Vertex sequences

The vertex sequence of a walk

$$
w=\left(v_{0}, v_{1}\right)\left(v_{1}, v_{2}\right)\left(v_{2}, v_{3}\right) \cdots
$$

is the infinite word

$$
v_{0} v_{1} v_{2} v_{3} \cdots
$$

on the alphabet V
We say that a walk is vertex-square-free if its vertex sequence is square-free

Problem

Effectively characterize digraphs with an infinite vertex-square-free walk

Square-free traces

A alphabet
D symmetric, anti-reflexive relation on A (dependency) $M(A, D)=A / \approx$ where \approx is the congruence generated by

$$
a b \approx b a \text { for all }(a, b) \in(A \times A) \backslash D
$$

(trace monoid)

Theorem (C., de Luca, 1986)
Let $M=M(A, D)$ be a trace monoid. The following propositions are equivalent:
Q M has infinitely many square-free traces

Theorem (C., de Luca, 1986)
Let $M=M(A, D)$ be a trace monoid. The following propositions are equivalent:
Q M has infinitely many square-free traces
Q the dependency graph has a vertex-square-free infinite walk

Theorem (C., de Luca, 1986)

Let $M=M(A, D)$ be a trace monoid. The following propositions are equivalent:
Q M has infinitely many square-free traces
Q the dependency graph has a vertex-square-free infinite walk
Q the dependency graph has one of the following subgraphs

Theorem (C., de Luca, 1986)

Let $M=M(A, D)$ be a trace monoid. The following propositions are equivalent:
Q M has infinitely many square-free traces
Q the dependency graph has a vertex-square-free infinite walk
Q the dependency graph has one of the following subgraphs

Remark

This characterize undirected graphs with a vertex-square-free infinite walk. The problem remains open for digraphs

Example

has an infinite vertex-square-free walk

Example

has an infinite vertex-square-free walk

has no infinite vertex-square-free walk

Repetition threshold

Q the exponent of a finite word is the ratio of its length and its least period
Q the critical exponent of a (possibly infinite) word is the supremum of the exponents of its (finite) factors
Q the repetition threshold $\mathrm{RT}(k)$ is the minimal critical exponent of an infinite word on k letters

Repetition threshold

Q the exponent of a finite word is the ratio of its length and its least period
Q the critical exponent of a (possibly infinite) word is the supremum of the exponents of its (finite) factors
Q the repetition threshold $\mathrm{RT}(k)$ is the minimal critical exponent of an infinite word on k letters

Definition

The repetition threshold of a digraph G is the minimal critical exponent $\operatorname{RT}(G)$ of an infinite walk in G

Repetition threshold on n letters

n	RT(n)	
2	2	Thue, 1906
3	$7 / 4$	Dejean, 1972
4	$7 / 5$	Pansiot, 1984
$n \geq 5$	$\mathrm{n} /(\mathrm{n}-1)$	Moulin-Ollagnier, 1992 for $5 \leq n \leq 11$ Mohammad-Noori, Currie, 2007 for $12 \leq n \leq 14$
	C., 2007 for $n \geq 33$ Rao and Currie, Rampersad, 2009 for $15 \leq n \leq 32$	

Q All conjectured by Dejean, 1972

Generalized repetition threshold

Q the k-exponent of a finite word is the ratio of its length and its least period not smaller than k
Q the k-critical exponent of a (possibly infinite) word is the supremum of the k-exponents of its (finite) factors
Q the generalized repetition threshold $\mathrm{RT}(n, k)$ is the minimal k-critical exponent of an infinite word on n letters (llie, Ochem, Shallit, 2004)

Generalized repetition threshold

Q the k-exponent of a finite word is the ratio of its length and its least period not smaller than k
Q the k-critical exponent of a (possibly infinite) word is the supremum of the k-exponents of its (finite) factors
Q the generalized repetition threshold $\mathrm{RT}(n, k)$ is the minimal k-critical exponent of an infinite word on n letters (Ilie, Ochem, Shallit, 2004)

Definition

For a digraph G, the generalized repetition threshold $\operatorname{RT}(G, k)$ is the minimal k-critical exponent of an infinite walk in G

Examples

All these graphs have repetition threshold 2:

No square-free infinite walk

A square-free infinite walk, no vertex-square-free infinite walk

A vertex-square-free infinite walk

Other examples

The n-edge star has repetition threshold $\operatorname{RT}(n)$

Other examples

K_{n}
$3 n$ vertices
$4 n$ edges
a (2-automatic) infinite walk of critical exponent $1+4 / n$

$$
\frac{n+2}{n} \leq \operatorname{RT}\left(K_{n}\right) \leq \frac{n+4}{n}
$$

de Bruijn digraph

$$
\begin{aligned}
& B(n, k)=\left(A^{k-1}, E\right) \text { with } \operatorname{Card}(A)=n \text { and } \\
& E=\left\{(a u, u b) \mid a, b \in A, u \in A^{k-2}\right\}
\end{aligned}
$$

de Bruijn digraph

$$
\begin{aligned}
& B(n, k)=\left(A^{k-1}, E\right) \text { with } \operatorname{Card}(A)=n \text { and } \\
& E=\left\{(a u, u b) \mid a, b \in A, u \in A^{k-2}\right\}
\end{aligned}
$$

00011110

Remark

There is a natural 1-1 correspondence between $A^{\geq k} \cup A^{\omega}$ and the set of finite and infinite walks in $B(n, k)$ which preserves factors and periods (compatibly with length contraction)

Proposition

For $1 \leq m \leq k$,

$$
\mathrm{RT}(B(n, m), k) \leq \mathrm{RT}(n, k) \leq \mathrm{RT}(B(n, m), k)+\frac{m-1}{k}
$$

Uniform embeddings

Definition

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ with $V_{2} \subseteq V_{1}$. An embedding of G_{2} in G_{1} is a monoid morphism a map $\varphi: E_{2}^{*} \rightarrow E_{1}^{*}$ such that

1. for any edge $\left(v, v^{\prime}\right) \in E_{2}, \varphi\left(v, v^{\prime}\right)$ is a path from v to v^{\prime} whose internal vertices do not belong to V_{2},
2. for any $e_{1}, e_{2} \in E_{2}$ with $e_{1} \neq e_{2}, \varphi\left(e_{1}\right)$ and $\varphi\left(e_{2}\right)$ have no common edges.

Uniform embeddings

Definition

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ with $V_{2} \subseteq V_{1}$. An embedding of G_{2} in G_{1} is a monoid morphism a map $\varphi: E_{2}^{*} \rightarrow E_{1}^{*}$ such that

1. for any edge $\left(v, v^{\prime}\right) \in E_{2}, \varphi\left(v, v^{\prime}\right)$ is a path from v to v^{\prime} whose internal vertices do not belong to V_{2},
2. for any $e_{1}, e_{2} \in E_{2}$ with $e_{1} \neq e_{2}, \varphi\left(e_{1}\right)$ and $\varphi\left(e_{2}\right)$ have no common edges.

Remark

φ maps walks of G_{2} into walks of G_{1}

Uniform embeddings

Definition

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ with $V_{2} \subseteq V_{1}$. An embedding of G_{2} in G_{1} is a monoid morphism a map $\varphi: E_{2}^{*} \rightarrow E_{1}^{*}$ such that

1. for any edge $\left(v, v^{\prime}\right) \in E_{2}, \varphi\left(v, v^{\prime}\right)$ is a path from v to v^{\prime} whose internal vertices do not belong to V_{2},
2. for any $e_{1}, e_{2} \in E_{2}$ with $e_{1} \neq e_{2}, \varphi\left(e_{1}\right)$ and $\varphi\left(e_{2}\right)$ have no common edges.

Remark

φ maps walks of G_{2} into walks of G_{1}

Proposition

If there is a uniform embedding of G_{2} in G_{1} then

$$
\operatorname{RT}\left(G_{1}\right) \leq \operatorname{RT}\left(G_{2}\right)
$$

Generalized embeddings

Definition

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ with $V_{2} \subseteq V_{1}$. A generalized embedding of G_{2} in G_{1} is a monoid morphism a map $\varphi: E_{2}^{*} \rightarrow E_{1}^{*}$ such that

1. for any edge $\left(v, v^{\prime}\right) \in E_{2}, \varphi\left(v, v^{\prime}\right)$ is a path from v to v^{\prime} whose internal vertices do not belong to V_{2},
2. for any $e_{1}, e_{2} \in E_{2}$ with distinct origins and distinct tails, $\varphi\left(e_{1}\right)$ and $\varphi\left(e_{2}\right)$ have no common edges.

Generalized embeddings

Definition

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ with $V_{2} \subseteq V_{1}$. A generalized embedding of G_{2} in G_{1} is a monoid morphism a map $\varphi: E_{2}^{*} \rightarrow E_{1}^{*}$ such that

1. for any edge $\left(v, v^{\prime}\right) \in E_{2}, \varphi\left(v, v^{\prime}\right)$ is a path from v to v^{\prime} whose internal vertices do not belong to V_{2},
2. for any $e_{1}, e_{2} \in E_{2}$ with distinct origins and distinct tails, $\varphi\left(e_{1}\right)$ and $\varphi\left(e_{2}\right)$ have no common edges.

Proposition

If there is a generalized uniform embedding of G_{2} in G_{1} then

$$
\mathrm{RT}\left(G_{1}\right) \leq \operatorname{RT}\left(G_{2}\right)+\frac{2}{c}
$$

where c is the minimal length of cycles in G_{2}

Embedding in Cayley digraphs

Proposition

Let T be a subtree of a Cayley digraph K, rooted in 1 , with leaves $\ell_{1}, \ell_{2}, \ldots, \ell_{r}$, and let $H=\left\langle\ell_{1}, \ell_{2}, \ldots, \ell_{r}\right\rangle, r \geq 2$. Suppose that the following condition is verified:
Q for any pair of distinct internal vertices v_{1}, v_{2} of T such that $v_{1}^{-1} v_{2} \in H$ there exists x such that $v_{1} x$ is the unique child of v_{1} and $v_{2} x$ is the unique child of v_{2}
Then there is a generalized embedding of $\operatorname{Cay}\left(H ; \ell_{1}, \ell_{2}, \ldots, \ell_{r}\right)$ in K. Moreover, if all the leaves have the same height in T, then the generalized embedding is uniform

From de Bruijn graph to the symmetric group

Proposition (Moulin-Ollagnier, 1992)
The digraph $\operatorname{Cay}\left(\mathbb{S}_{n} ; \sigma_{0}, \sigma_{1}\right)$, where

$$
\sigma_{0}=(12 \cdots n) \text { and } \sigma_{1}=(12 \cdots n-1)
$$

is a subgraph of $B(n, n-1)$

From de Bruijn graph to the symmetric group

Proposition (Moulin-Ollagnier, 1992)
The digraph $\operatorname{Cay}\left(\mathbb{S}_{n} ; \sigma_{0}, \sigma_{1}\right)$, where

$$
\sigma_{0}=(12 \cdots n) \text { and } \sigma_{1}=(12 \cdots n-1)
$$

is a subgraph of $B(n, n-1)$

Fact

Let $n \geq 15$. There is a generalized uniform embedding of $\operatorname{Cay}\left(G ; \tau_{0}, \tau_{1}, \tau_{2}\right)$ in $\operatorname{Cay}\left(\mathbb{S}_{n} ; \sigma_{0}, \sigma_{1}\right)$ where $\tau_{0}=\left(\begin{array}{ll}7 & 108\end{array}\right), \tau_{1}=\left(\begin{array}{l}911\end{array} 12\right.$ 10), $\tau_{2}=\left(\begin{array}{lll}1 & 5 & 6\end{array}\right), G=\left\langle\tau_{0}, \tau_{1}, \tau_{2}\right\rangle$.

From symmetric group to grid

Q Since the orbit of τ_{2} does not intersect those of τ_{0} and τ_{1},

$$
\operatorname{Cay}\left(G ; \tau_{0}, \tau_{1}, \tau_{2}\right)=\operatorname{Cay}\left(G_{1} ; \tau_{0}, \tau_{1}\right) \times C_{5}
$$

Q Computer verification shows that $\operatorname{Cay}\left(G_{1} ; \tau_{0}, \tau_{1}\right)$ has a simple cycle of length 100
Q Thus, $C_{100} \times C_{5}$ is a subgraph of $\operatorname{Cay}\left(G ; \tau_{0}, \tau_{1}, \tau_{2}\right)$
Q The graph we called K_{100} is a subgraph of $C_{100} \times C_{5}$

In conclusion, there is a generalized uniform embedding of K_{100} in $B(n, n-1)$

One derives

$$
\mathrm{RT}(B(n, n-1)) \leq 1.03 \quad \text { and } \quad R T(n, k) \leq 1.03+2 / k, k \geq n-1
$$

Actually, K_{100} is embedded in a subgraph of $B(n, n-1)$ where 'short' walks correspond to words of critical exponent $\leq n /(n-1)$.
Thus we have obtained a new infinite word of minimal critical exponent.

Thank you!

