Unrepetitive paths in digraphs

(and the repetition threshold)

Arturo Carpi

Dipartimento di Matematica e Informatica Università di Perugia

Outstanding Challenges in Combinatorics on Words Banff, February 19–24, 2012

- \blacksquare A bi-inifnite word can be viewed as a coloring of edges (or nodes) of $Cay(\mathbb{Z};1)$
- Its factors are the coloring of finite simple paths

- A bi-inifinite word can be viewed as a coloring of edges (or nodes) of Cay(Z; 1)
- Its factors are the coloring of finite simple paths
- \bigcirc Generalize to an arbitrary graph G

- \blacksquare A bi-inifnite word can be viewed as a coloring of edges (or nodes) of $Cay(\mathbb{Z};1)$
- Its factors are the coloring of finite simple paths
- \bigcirc Generalize to an arbitrary graph G
- E.g., the minimal number of colors to avoid squares is the Thue chromatic number of G (Alon, Grytczuk, Hałuszczak, Riordan, 2002)

- A bi-inifinite word can be viewed as a coloring of edges (or nodes) of Cay(Z; 1)
- Its factors are the coloring of finite simple paths
- \bigcirc Generalize to an arbitrary graph G
- E.g., the minimal number of colors to avoid squares is the Thue chromatic number of G (Alon, Grytczuk, Hałuszczak, Riordan, 2002)

We consider a different problem

- Let G = (V, E) be a finite digraph.
 - \blacksquare A walk is a sequence of edges, i.e., a word on the alphabet E

- Let G = (V, E) be a finite digraph.
- \bigcirc A walk is a sequence of edges, i.e., a word on the alphabet E
- \blacksquare Thus we can look for unrepetitive words among walks in G

- Let G = (V, E) be a finite digraph.
- \blacksquare A walk is a sequence of edges, i.e., a word on the alphabet E
- L Thus we can look for unrepetitive words among walks in G

Motivation

Symbolic dynamics (ergodicity)

- Let G = (V, E) be a finite digraph.
- \blacksquare A walk is a sequence of edges, i.e., a word on the alphabet E
- \blacksquare Thus we can look for unrepetitive words among walks in G

Motivation

- Symbolic dynamics (ergodicity)
- Unrepetitive traces

- Let G = (V, E) be a finite digraph.
 - \blacksquare A walk is a sequence of edges, i.e., a word on the alphabet E
 - \blacksquare Thus we can look for unrepetitive words among walks in G

Motivation

- Symbolic dynamics (ergodicity)
- Unrepetitive traces
- Repetition threshold for words

- Let G = (V, E) be a finite digraph.
 - \blacksquare A walk is a sequence of edges, i.e., a word on the alphabet E
 - \blacksquare Thus we can look for unrepetitive words among walks in G

Motivation

- Symbolic dynamics (ergodicity)
- Unrepetitive traces
- Repetition threshold for words
- Unending chess

- Let G = (V, E) be a finite digraph.
 - \blacksquare A walk is a sequence of edges, i.e., a word on the alphabet E
 - \blacksquare Thus we can look for unrepetitive words among walks in G

Motivation

- Symbolic dynamics (ergodicity)
- Unrepetitive traces
- Repetition threshold for words
- Unending chess

A match of chess may be viewed as a walk in a digraph with vertices = positions and edges = moves. With modified rules, infinite square-free walks correspond to unending matches (Morse, Hedlund, 1943)

Preliminaries

Let G = (V, E) be a digraph A walk in G is any word of $W = E^+ \setminus E^* N E^*$, where

$$N = \{(v_1, v_2)(v_3, v_4) \mid v_1, v_2, v_3, v_4 \in V, \; v_2
eq v_3 \}$$

Preliminaries

Let G = (V, E) be a digraph A walk in G is any word of $W = E^+ \setminus E^*NE^*$, where

$$N = \{(v_1, v_2)(v_3, v_4) \mid v_1, v_2, v_3, v_4 \in V, \ v_2
eq v_3\}$$

As any infinite walk terminates in a strongly connected component, we will consider only strongly connected digraphs, w.l.o.g.

Unending square-free walks

Theorem

A strongly connected digraph G = (V, E) has an unending square-free walk if and only if

 $\operatorname{Card}(E) \geq \operatorname{Card}(V) + 2$

Unending square-free walks

Theorem

A strongly connected digraph G = (V, E) has an unending square-free walk if and only if

 $\operatorname{Card}(E) \geq \operatorname{Card}(V) + 2$

Unending square-free walks

Theorem

A strongly connected digraph G = (V, E) has an unending square-free walk if and only if

 $\operatorname{Card}(E) \geq \operatorname{Card}(V) + 2$

Theorem

Any strongly connected digraph G has an unending cube-free walk unless it is a simple cicle

Vertex sequences

The vertex sequence of a walk

$$w = (v_0, v_1)(v_1, v_2)(v_2, v_3) \cdots$$

is the infinite word

 $v_0 v_1 v_2 v_3 \cdots$

on the alphabet $\,V\,$ We say that a walk is vertex-square-free if its vertex sequence is square-free

Problem

Effectively characterize digraphs with an infinite vertex-square-free walk

Square-free traces

A alphabet D symmetric, anti-reflexive relation on A (dependency) $M(A, D) = A/\approx$ where \approx is the congruence generated by $ab \approx ba$ for all $(a, b) \in (A \times A) \setminus D$

(trace monoid)

Let M = M(A, D) be a trace monoid. The following propositions are equivalent:

 \bigcirc *M* has infinitely many square-free traces

Let M = M(A, D) be a trace monoid. The following propositions are equivalent:

- \bigcirc *M* has infinitely many square-free traces
- Let the dependency graph has a vertex-square-free infinite walk

Let M = M(A, D) be a trace monoid. The following propositions are equivalent:

- M has infinitely many square-free traces
- Let the dependency graph has a vertex-square-free infinite walk
- Let the dependency graph has one of the following subgraphs

Let M = M(A, D) be a trace monoid. The following propositions are equivalent:

- M has infinitely many square-free traces
- Let the dependency graph has a vertex-square-free infinite walk
- Let the dependency graph has one of the following subgraphs

Remark

This characterize undirected graphs with a vertex-square-free infinite walk. The problem remains open for digraphs

has an infinite vertex-square-free walk

has an infinite vertex-square-free walk

has no infinite vertex-square-free walk

- the exponent of a finite word is the ratio of its length and its least period
- the critical exponent of a (possibly infinite) word is the supremum of the exponents of its (finite) factors
- the repetition threshold RT(k) is the minimal critical exponent of an infinite word on k letters

- the exponent of a finite word is the ratio of its length and its least period
- the critical exponent of a (possibly infinite) word is the supremum of the exponents of its (finite) factors
- **•** the repetition threshold RT(k) is the minimal critical exponent of an infinite word on k letters

Definition

The repetition threshold of a digraph G is the minimal critical exponent RT(G) of an infinite walk in G

Repetition threshold on n letters

n	$\operatorname{RT}(n)$	
2	2	Thue, 1906
3	7/4	Dejean, 1972
4	7/5	Pansiot, 1984
$n \ge 5$	n/(n-1)	Moulin-Ollagnier, 1992 for $5 \le n \le 11$
		Mohammad-Noori, Currie, 2007 for $12 \le n \le 14$
		C., 2007 for $n \ge 33$
		Rao and Currie, Rampersad, 2009 for $15 \leq n \leq 32$

▲ All conjectured by Dejean, 1972

Generalized repetition threshold

- **Q** the k-exponent of a finite word is the ratio of its length and its least period not smaller than k
- the k-critical exponent of a (possibly infinite) word is the supremum of the k-exponents of its (finite) factors
- the generalized repetition threshold RT(n, k) is the minimal k-critical exponent of an infinite word on n letters (Ilie, Ochem, Shallit, 2004)

Generalized repetition threshold

- **Q** the k-exponent of a finite word is the ratio of its length and its least period not smaller than k
- the k-critical exponent of a (possibly infinite) word is the supremum of the k-exponents of its (finite) factors
- the generalized repetition threshold RT(n, k) is the minimal k-critical exponent of an infinite word on n letters (Ilie, Ochem, Shallit, 2004)

Definition

For a digraph G, the generalized repetition threshold RT(G, k) is the minimal k-critical exponent of an infinite walk in G

All these graphs have repetition threshold 2:

No square-free infinite walk

A square-free infinite walk, no vertex-square-free infinite walk

A vertex-square-free infinite walk

Other examples

The *n*-edge star has repetition threshold RT(n)

Other examples

3n vertices 4n edges a (2-automatic) infinite walk of critical exponent 1+4/n

$$\frac{n+2}{n} \leq \operatorname{RT}(K_n) \leq \frac{n+4}{n}$$

 K_n

de Bruijn digraph

$$B(n,k)=(A^{k-1},E)$$
 with $\operatorname{Card}(A)=n$ and $E=\{(au,ub)\mid a,b\in A,\ u\in A^{k-2}\}$

de Bruijn digraph

$$B(n,k)=(A^{k-1},E)$$
 with $\operatorname{Card}(A)=n$ and $E=\{(au,ub)\mid a,b\in A,\ u\in A^{k-2}\}$

Remark

There is a natural 1-1 correspondence between $A^{\geq k} \cup A^{\omega}$ and the set of finite and infinite walks in B(n, k) which preserves factors and periods (compatibly with length contraction)

Proposition

For $1 \leq m \leq k$,

$$\operatorname{RT}(B(n,m),k) \leq \operatorname{RT}(n,k) \leq \operatorname{RT}(B(n,m),k) + rac{m-1}{k}$$

Uniform embeddings

Definition

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ with $V_2 \subseteq V_1$. An embedding of G_2 in G_1 is a monoid morphism a map $\varphi : E_2^* \to E_1^*$ such that

- 1. for any edge $(v, v') \in E_2$, $\varphi(v, v')$ is a path from v to v' whose internal vertices do not belong to V_2 ,
- 2. for any $e_1, e_2 \in E_2$ with $e_1 \neq e_2$, $\varphi(e_1)$ and $\varphi(e_2)$ have no common edges.

Uniform embeddings

Definition

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ with $V_2 \subseteq V_1$. An embedding of G_2 in G_1 is a monoid morphism a map $\varphi : E_2^* \to E_1^*$ such that

- 1. for any edge $(v, v') \in E_2$, $\varphi(v, v')$ is a path from v to v' whose internal vertices do not belong to V_2 ,
- 2. for any $e_1, e_2 \in E_2$ with $e_1 \neq e_2$, $\varphi(e_1)$ and $\varphi(e_2)$ have no common edges.

Remark

 φ maps walks of G_2 into walks of G_1

Uniform embeddings

Definition

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ with $V_2 \subseteq V_1$. An embedding of G_2 in G_1 is a monoid morphism a map $\varphi : E_2^* \to E_1^*$ such that

- 1. for any edge $(v, v') \in E_2$, $\varphi(v, v')$ is a path from v to v' whose internal vertices do not belong to V_2 ,
- 2. for any $e_1, e_2 \in E_2$ with $e_1 \neq e_2$, $\varphi(e_1)$ and $\varphi(e_2)$ have no common edges.

Remark

```
\varphi maps walks of G_2 into walks of G_1
```

Proposition

If there is a uniform embedding of G_2 in G_1 then

```
\operatorname{RT}(G_1) \leq \operatorname{RT}(G_2)
```

Generalized embeddings

Definition

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ with $V_2 \subseteq V_1$. A generalized embedding of G_2 in G_1 is a monoid morphism a map $\varphi : E_2^* \to E_1^*$ such that

- 1. for any edge $(v, v') \in E_2$, $\varphi(v, v')$ is a path from v to v' whose internal vertices do not belong to V_2 ,
- 2. for any $e_1, e_2 \in E_2$ with distinct origins and distinct tails, $\varphi(e_1)$ and $\varphi(e_2)$ have no common edges.

Generalized embeddings

Definition

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ with $V_2 \subseteq V_1$. A generalized embedding of G_2 in G_1 is a monoid morphism a map $\varphi : E_2^* \to E_1^*$ such that

- 1. for any edge $(v, v') \in E_2$, $\varphi(v, v')$ is a path from v to v' whose internal vertices do not belong to V_2 ,
- 2. for any $e_1, e_2 \in E_2$ with distinct origins and distinct tails, $\varphi(e_1)$ and $\varphi(e_2)$ have no common edges.

Proposition

If there is a generalized uniform embedding of G_2 in G_1 then

$$\operatorname{RT}(G_1) \leq \operatorname{RT}(G_2) + \frac{2}{c}$$

where c is the minimal length of cycles in G_2

Proposition

Let T be a subtree of a Cayley digraph K, rooted in 1, with leaves $\ell_1, \ell_2, \ldots, \ell_r$, and let $H = \langle \ell_1, \ell_2, \ldots, \ell_r \rangle$, $r \geq 2$. Suppose that the following condition is verified:

• for any pair of distinct internal vertices v_1, v_2 of T such that $v_1^{-1}v_2 \in H$ there exists x such that v_1x is the unique child of v_1 and v_2x is the unique child of v_2

Then there is a generalized embedding of $Cay(H; \ell_1, \ell_2, \ldots, \ell_r)$ in K. Moreover, if all the leaves have the same height in T, then the generalized embedding is uniform

From de Bruijn graph to the symmetric group

Proposition (Moulin-Ollagnier, 1992)

The digraph $Cay(\mathbb{S}_n; \sigma_0, \sigma_1)$, where

$$\sigma_0 = (1 \ 2 \ \cdots \ n)$$
 and $\sigma_1 = (1 \ 2 \ \cdots \ n-1)$

is a subgraph of B(n, n - 1)

From de Bruijn graph to the symmetric group

Proposition (Moulin-Ollagnier, 1992)

The digraph $Cay(S_n; \sigma_0, \sigma_1)$, where

$$\sigma_0 = (1 \ 2 \ \cdots \ n)$$
 and $\sigma_1 = (1 \ 2 \ \cdots \ n-1)$

is a subgraph of B(n, n - 1)

Fact

Let $n \ge 15$. There is a generalized uniform embedding of $Cay(G; \tau_0, \tau_1, \tau_2)$ in $Cay(\mathbb{S}_n; \sigma_0, \sigma_1)$ where $\tau_0 = (7 \ 9 \ 10 \ 8), \ \tau_1 = (9 \ 11 \ 12 \ 10), \ \tau_2 = (1 \ 5 \ 6 \ 3 \ 4), \ G = \langle \tau_0, \tau_1, \tau_2 \rangle$.

From symmetric group to grid

Q Since the orbit of τ_2 does not intersect those of τ_0 and τ_1 ,

$$\operatorname{Cay}(G; au_0, au_1, au_2) = \operatorname{Cay}(G_1; au_0, au_1) imes C_5$$

- Computer verification shows that Cay(G₁; τ₀, τ₁) has a simple cycle of length 100
- Thus, $C_{100} \times C_5$ is a subgraph of $Cay(G; \tau_0, \tau_1, \tau_2)$
- The graph we called K_{100} is a subgraph of $C_{100} \times C_5$

In conclusion, there is a generalized uniform embedding of $K_{\rm 100}$ in $B(\,n,\,n-1)$

One derives

 $\operatorname{RT}(B(n, n-1)) \le 1.03$ and $\operatorname{RT}(n, k) \le 1.03 + 2/k, \ k \ge n-1$

Actually, K_{100} is embedded in a subgraph of B(n, n - 1) where 'short' walks correspond to words of critical exponent $\leq n/(n - 1)$. Thus we have obtained a new infinite word of minimal critical exponent. Thank you !