Spectroscopy & beyond Optimal control of uncoupled and coupled spins

Steffen Glaser, TU München

Optimal Control in Spin Systems

physical limits of spin dynamics

spectroscopy

imaging

quantum computing

metrology

hyperpolarization

robust pulses

cooperative pulses

decoupling

Nobel Prizes:

1952: Edward Purcell, Felix Bloch (Physics) 1991: Richard Ernst (Chemistry) 2002: Kurt Wüthrich (Chemistry) 2003: Paul Lauterbur, Peter Mansfield (Medicine)

How do you measure an NMR signal?

Resonance frequencies at 14 Tesla: ¹H 600 MHz

chemical shift range: ± 3 kHz

frequency dispersion: 10 kHz

Resonance frequencies at 14 Tesla: ¹H 600 MHz

¹⁵N 60 MHz

Two-dimensional spectroscopy

H. S. Atreya

H. Primas, Helv. Phys. Acta 34, 36 (1961)

Resonance frequencies at 14 Tesla: ¹H 600 MHz

¹⁵N 60 MHz

Resonance frequencies at 14 Tesla:

¹H 600 MHz

¹⁵N 60 MHz

¹³C 150 MHz

Resonance frequencies at 14 Tesla:

- ¹H 600 MHz
- ¹⁵N 60 MHz
- ¹³C 150 MHz

- ¹H 600 MHz
- ¹⁵N 60 MHz
- ¹³C 150 MHz

exp. correlations + known sequence of amono acids

assignment of all resonances to individual atoms

Structure calculation

- The NOE intensities measured in a NOESY spectrum are calibrated and used to derive proton/proton distance restraints (NOE ~ 1/r⁶)
- These are applied in a restrained molecular dynamics / simulated annealing (MD/SA) calculation.
- Different and/or randomized starting structures are used. The result is an ensemble of structures that is consistent with the experimentally derived distance restraints.

Figure 10.2. Schematic presentation of the amino acid sequence of *lac* headpiece, with three boxes identifying α -helical regions. The curved lines connect residues between which one or several long-range NOE's were observed (from Zuiderweg et al., 1984b).

An ensemble of NMR structures obtained from a restrained MD/SA calculation

t1

t2

t3

tз

t1 t2

t3

Performance of conventional composite pulses for broadband (robust) excitation

(excitation efficiency: 98%, max. rf amplitude: 10 kHz, no rf inhomogeneity)

Relaxation rates k increase with molecular weight

Steam Engine

1697 D. Papin

1712 T. Newcomen

1765 .7. Watt

Steam Engine

"The theory of its operation is rudimentary and attempts to improve its performance are still made in an almost haphazard way."

1824

RÉFLEXIONS

.

SUR LA

PUISSANCE MOTRICE

DU FEU

ET

SUR LES MACHINES

PROPRES A DÉVELOPPER CETTE PUISSANCE.

PAR S. CARNOT,

ANCIEN ÉLÈVE DE L'ÉCOLE POLYTECHNIQUE.

A PARIS,

CHEZ BACHELIER, LIBRAIRE, QUAI DES AUGUSTINS, Nº. 55.

1824.

Optimal Control of Spin Systems

Optimal Control Theory

Quantum Mechanics

N. C. Nielsen, C. Kehlet, S. J. Glaser, N. Khaneja, Encyclopedia of Nuclear Magnetic Resonance (2010).

N. C. Nielsen, C. Kehlet, S. J. Glaser, N. Khaneja, Encyclopedia of Nuclear Magnetic Resonance (2010).

Control Parameters u_k(t)

 $H_0 + \sum_k u_k(t) H_k$

Time-optimal control of a spin 1/2 with relaxation

 $T_1 = 740 \text{ ms}$ $T_2 = 60 \text{ ms}$

Time-optimal control of a spin 1/2 with relaxation

 $T_1 = 740 \text{ ms}$ $T_2 = 60 \text{ ms}$

Lapert, Zhang, Braun, Glaser, Sugny, PRL 104 (2010)

Time-optimal control of a spin 1/2 with relaxation

 $T_1 = 740 \text{ ms}$ $T_2 = 60 \text{ ms}$

Lapert, Zhang, Braun, Glaser, Sugny, PRL 104 (2010)

Time-optimal trajectories between any initial and target state can be determined in the presence of relaxation and bounds on the rf amplitude

extensions: robustness minimum energy radiation damping optimal contrast

Lapert, Zhang, Braun, Glaser, Sugny, PRL 104 (2010) Zhang, Lapert, Sugny, Braun, Glaser, J. Chem. Phys. 134, 054103 (2011) Lapert, Zhang, Glaser, Sugny, J. Phys. B 44, 154014 (2011)

Optimal imaging contrast

J $k_{a}+k_{c}$ $k_{a}-k_{c}$

Multiplet of Spin I

Optimal transfer efficiency η from I_z to 2 I_zS_z :

$$\eta = \sqrt{1 + \xi^2} - \xi$$

with
$$\xi^2 = \frac{k_a^2 - k_c^2}{J^2 + k_c^2}$$

Khaneja, Luy, Glaser, Proc. Natl. Acad. Sci. (2003)

maximum transfer efficiency:

$$\eta = \sqrt{1 + \xi^2} - \xi$$

formal proof (based on principles of optimum control theory):

optimal return function $V(r_1, r_2)$

Hamilton-Jacobi-Bellman equation

$$\max \left[\frac{\partial V}{\partial r_1} \delta r_1 + \frac{\partial V}{\partial r_2} \delta r_2 \right] = 0$$

$$u_1, u_2$$

Transfer Efficiency
$$\eta$$
 for $k_c/k_a = 0.75$

Experimental Transfer Functions

GRAPE (Gradient Ascent Pulse Engineering)

Khaneja, Reiss, Kehlet, Schulte-Herbrüggen, Glaser, J. Magn. Reson. 172, 296-305 (2005) Machnes, Sander, Glaser, de Fouquieres, Gruslys, Schirmer, Schulte-Herbrüggen, Phys. Rev. A 84, 022305 (2011)

de Fouquieres, Schirmer, Glaser, Kuprov, J. Magn. Reson. 212, 412-417 (2011)

frequency dispersion

(excitation efficiency: 98%, max. rf amplitude: 10 kHz, no rf inhomogeneity)

K. Kobzar, T. E. Skinner, N. Khaneja, S. J. Glaser, B. Luy, JMR 170, 236 (2004)

Longer pulse durations 1 allow for more complex phase variations

excitation bandwidth: 20 kHz no rf inhomogeneity

Robust broadband excitation pulse

<i>Harvard</i> N. Khaneja H. Yuan	<i>Wright State Univ.</i> T. Skinner N. Gershenzon	<i>TU München</i> M. Sattler A. Haase M. Schwaiger
<i>Dijon</i> D. Sugny B. Bonnard	<i>University of Aarhus</i> N. C. Nielsen	<i>Karlsruhe</i> B. Luy
<i>UC Santa Barbara</i>	<i>Univ. Frankfurt</i>	<i>Stuttgart/UIm</i>
S. Han	T. Prisner	J. Wrachtrup
M. Sherwin	P. Spindler	F. Jelezko
<i>Aix-Marseille Univ.</i>	<i>General Electrics</i>	<i>Bruker</i>
S. Caldarelli	R. Schulte	W. Bermel
M. Reddy	F. Wiesinger	R. Kümmerle

Technische Universität München (TUM)

Y. Zhang, M. Braun, M. Nimbalkar, F. Schilling, A. Djintchui, M. Janich, A. Khegai, A. Garon, T. Nguyen, R. Marx, R. Zeier

T. Schulte-Herbrüggen, C. O'Meara, T. Nguyen, S. Düwel

Funding: DFG, SFB-631, EU (Q-ESSENCE), ENB(QCCC), DAAD, FCI

selected references

"Optimal Control Solutions to the Magnetic Resonance Selective Excitation Problem", Conolly et al., IEEE Trans. Med. Imag. MI-5, 106 (1986) "Optimal Control of Coupled Spin Dynamics: Design of NMR Pulse Sequences by Gradient Ascent Algorithms" Khaneja et al., J.Magn, Reson. 172, 296 (2005) "Exploring the Limits of Broadband Excitation and Inversion Pulses" Kobzar et al., J. Magn. Reson. 170, 236 (2004) "Pattern Pulses: Design of Arbitrary Excitation Profiles as a Function of Pulse Amplitude and Offset", Kobzar et al., J. Magn. Reson. 173, 229 (2005) "Exploring the Limits of Excitation and Inversion Pulses II. RF-Power Optimized Pulses", Kobzar et al., J. Magn. Reson. 194, 58 (2008) "Optimal Control Design of Excitation Pulses that Accomodate Relaxation" Gershenzon et al., J. Magn. Reson.188, 330 (2007) "Cooperative Pulses" Braun, Glaser, J. Magn. Reson. 207, 114 (2010)

"Robust Slice-Selective Broadband Refocusing Pulses" Janich et al., J. Magn. Reson. 213, 126 (2011)