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How do you measure an NMR signal?
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frequency dispersion: 10 kHz
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Two-dimensional spectroscopy
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Structure calculation

• The NOE intensities measured in a NOESY spectrum are calibrated and used
   to derive proton/proton distance restraints (NOE ~ 1/r6)
• These are applied in a restrained molecular dynamics / simulated annealing (MD/SA)
   calculation.
• Different and/or randomized starting structures are used. The result is an ensemble of
  structures that is consistent with the experimentally derived distance restraints.

An ensemble of NMR structures obtained 
from a

restrained MD/SA calculation

M. Sattler
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Performance of conventional composite pulses

for broadband (robust) excitation

(excitation efficiency: 98%, max. rf amplitude: 10 kHz, no rf inhomogeneity)
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Steam Engine

1697 
D. Papin

1712
T. Newcomen

1765 
J. Watt

?



„The theory of  its operation 
is rudimentary and attempts 
to improve its performance 
are still made in an almost 
haphazard way.“ 

Steam Engine

1824





Optimal Control Theory Quantum Mechanics

Optimal Control of Spin Systems
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Time-optimal control of a spin 1/2 with relaxation
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Lapert, Zhang, Braun, Glaser, Sugny, PRL 104 (2010)

Time-optimal trajectories between any initial and 
target state can be determined in the presence of 
relaxation and bounds on the rf amplitude

extensions:
robustness
minimum energy
radiation damping
optimal contrast

Zhang, Lapert, Sugny, Braun, Glaser, J. Chem. Phys. 134, 054103 (2011)

Lapert, Zhang, Glaser, Sugny, J. Phys. B 44, 154014 (2011)
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maximum transfer efficiency:

η =    1 +  ξ2 − ξ

 formal proof (based on principles of optimum control theory):
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GRAPE (Gradient Ascent Pulse Engineering) 
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Khaneja, Reiss, Kehlet, Schulte-Herbrüggen, Glaser, J. Magn. Reson. 172, 296-305 (2005)

desired transfer: 

ρ(0) = A

0 T

CA

λ(T) = C

Cperformance: ρ(T)

Machnes, Sander, Glaser, de Fouquieres, Gruslys, Schirmer, Schulte-Herbrüggen,
Phys. Rev. A 84, 022305 (2011)

de Fouquieres, Schirmer, Glaser, Kuprov, J. Magn. Reson. 212, 412-417 (2011)
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frequency dispersion: 10 kHz







Previous excitation pulses with the same performance

are significantly longer than optimized pulses (BEBOP)

(excitation efficiency: 98%, max. rf amplitude: 10 kHz, no rf inhomogeneity)
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Longer pulse durations 

allow for more complex 

phase variations

excitation bandwidth: 20 kHz
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and they can be calculated at each time for a given pulse.
Mopt (t) will satisfy the stationary condition of Eq. (7) when
kopt (t) = 0. For a non-optimal pulse, the gradient calculat-
ed in Eq. (7) for each time point of the two trajectories
gives the proportional adjustment to make in the pulse
phase /.

2.2. Numerical algorithm

The procedure for optimizing the cost can be incorpo-
rated in the following algorithm:

(i) Choose an initial RF sequence xð0Þ
e .

(ii) Evolve M forward in time from the initial state ẑ.
(iii) Evolve k backward in time from the target state x̂.
(iv) /(k+1)(t) fi /(k)(t) + !xrf Æ (kMz #Mkz).
(v) Repeat steps (ii)–(iv) until a desired convergence of U

is reached.

Since the optimization is performed over a range of
chemical-shift offsets and variations in the peak RF cali-
bration, the gradient used in step (iv) is averaged over
the entire range. Additional details of the averaging proce-
dure and the choice of stepsize ! for incrementing the phase
in each iteration are described in [14,15].

3. Results and discussion

In our work to date, we have focused on demonstrat-
ing the capabilities of optimal control theory for NMR
pulse design, establishing the effectiveness of the algo-
rithms and the viability of the resulting pulses. The exci-
tation pulse is a simple example that characterizes
optimal control behavior in NMR while minimizing its
convolution with any particular application. This charac-
terization establishes a foundation for pursuing other
applications. We first assess the performance of the cali-
bration-free phase-modulated pulse derived by the new
algorithm, then consider applications to two commonly
used pulse sequences, illustrating the advantages of the
new pulse.

3.1. Pulse performance

Pulse performance, in general, depends on the pulse
duration, with pulses of sufficient length giving the optimal
control algorithm the flexibility to obtain practically ideal
results in many cases. In addition, excitation (and inver-
sion) efficiency undergoes a steep drop in performance
below a minimum pulse length [16], which depends on
the parameters defining the optimization. Increasing pulse
length significantly above this minimum provides only
marginal improvement, so the shortest pulse that provides
acceptable performance is the goal.

Choosing 2 ms for the pulse length initially and opti-
mizing with the new algorithm provided a pulse that
transforms 99.9% of initial z magnetization to within
1.5! of the x-axis over a resonance offset range of
50 kHz for a constant RF amplitude anywhere in the
range 10–20 kHz (results not shown). This nearly ideal
performance can be traded for shorter pulse length. Since
performance drops rapidly for shorter pulses, we find
that overdigitizing the initial waveform used in the opti-
mal control procedure gives the algorithm additional
flexibility in finding the best solution, as discussed in
Ref. [17]. Every other point of the resulting pulse is used
as the initial input for generating a new pulse, and this
procedure is continued until a minimal digitization with
acceptable performance is reached. For a 1 ms pulse
length, 320,000 random phases were input initially
($3 ns per time step). Such a large number of parameters
would be extremely difficult, if not impossible, to opti-
mize using conventional methods. This ‘‘breeder’’ pulse
resulted in the final 625-point pulse shown in Fig. 1.

3.1.1. Comparison to existing pulses
Although adiabatic pulses accommodate a wide range of

peak power levels, the exceptional bandwidth of adiabatic
inversion for a given peak RF amplitude does not translate
to excitation. The orientation of the effective RF field at the
end of an adiabatic excitation pulse, which, ideally gives
the location of the magnetization, is not in the transverse
plane for non-zero chemical-shift offset. Other existing

Fig. 1. Phase modulation of the constant amplitude 1 ms PM-BEBOP pulse. This pulse performs the point-to-point transformation Iz fi Ix over a 50 kHz
range of resonance offsets for constant RF amplitude set anywhere in the range 10–20 kHz (see Figs. 2 and 3).
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corresponding to RF amplitudes of 10.0, 11.2, 12.6, 14.1,
15.8, 17.8, and 20.0 kHz. The results are shown in Fig. 4.
The experimental data provide an excellent match with the-
ory and represent a considerable improvement over the
maximum attainable performance of a phase-corrected
hard pulse, opening the door to practically calibration-free
excitation pulses.

3.2. 2D applications

The benefits of using PM-BEBOP in practical NMR
applications are well-illustrated by 13C–1H correlated exper-
iments, as e.g., HSQC or HMBC. An important element of
these types of experiment is the sub-sequence 90!–t1–90!
applied to the 13C spins to encode the frequencies for the first
dimension of the 2D spectrum. The linear phase roll of a
hard 90! pulse is commonly eliminated from the first spectral
dimension by subtracting a constant time (equal to 4t90/p)
from t1. Details of themechanism responsible for this ‘‘reph-
asing’’ are straightforward, but it suffices to note merely that
one can expect approximately phase-corrected performance
from hard 90! pulses in HSQC-type sequences, at least in the
absence of RF inhomogeneity.

Two-dimensional spectra were recorded on a Bruker
Avance 500 spectrometer using a !500 mM menthol sam-
ple dissolved in CDCl3. Standard HSQC [28,29] and
HMBC experiments [30,31] were acquired with variations
in offset, RF amplitude, and the kind of pulses applied
on 13C nuclei. The maximum RF amplitude of the Bruker
TXI probehead used corresponds to 14.3 kHz (equivalent
to a 90! pulse of 17.5 ls). To avoid maximum power for
the shaped pulses, we used slightly lower RF amplitudes
of 12 kHz for the nominal power. This scales to a 1.2 ms
PM-BEBOP pulse covering ±20 kHz bandwidth (rather
than the 15 kHz nominal amplitude of the 1 ms pulse
shown in Fig. 1, which has a bandwidth of ±25 kHz).

The total sweep width needed for covering the 13C-spectra
of menthol on a 500 MHz spectrometer is !8 kHz. We
therefore, decided to record three spectra with 0, 8, and
16 kHz offset relative to the center of the 13C-spectral
width, leading to a coverage of offsets corresponding to
"4–4, 4–12, and 12–20 kHz, respectively. Since spectral
width and offsets are matched, no folding artefacts were
observed.

Based on the procedure described in [27], we also con-
structed a 2.4 ms, 180! universal rotation pulse consisting
of the original PM-BEBOP pulse appended to its phase
and time-reversed version, resulting in a pulse with an
active bandwidth identical to the pulse from which it orig-
inates. The performance of the resulting inversion/refocus-
ing pulse with respect to offset and RF amplitude is shown
in Fig. 5 in comparison to a hard 180! pulse. To test the
robustness of the pulse sequences with respect to variation
in RF amplitude, hard and shaped pulses were set to 8, 10,
and 12 kHz RF amplitude.

For each combination of offset and RF amplitude, three
HSQC and three HMBC experiments were acquired using

Fig. 3. The phase behavior of the optimized PM-BEBOP pulse of Fig. 1 is
plotted as a function of RF amplitude m1 and resonance offset m0. Phase
deviations from an ideal excitation pulse are shown in 1! steps in different
shades of gray (see scale to the right). For almost the entire range of offsets
and RF amplitudes, the phase is less than 2–3!, with minor distortions in
the 6–9! range at the lowest RF (10 kHz) in the optimized range.

Fig. 4. Excitation profiles for the residual HDO signal in a sample of
99.96% D2O are displayed as a function of resonance offset (1 kHz
increments) and RF power levels applied using the 1 ms PM-BEBOP pulse
of Fig. 1. The pulse was applied with constant amplitudes of 10 kHz
(+3 dB), 11.2 kHz (+2 dB), 12.6 kHz (+1 dB), 14.1 kHz (0 dB), 15.8 kHz
("1 dB), 17.8 kHz ("2 dB), and 20 kHz ("3 dB). The experimental
performance of the pulse is in excellent agreement with theory, producing
practically perfect excitation, Mx > 0.99M0, over ±25 kHz for RF
variability within ±33.3% (#6 dB) of the nominal value 15 kHz.
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and they can be calculated at each time for a given pulse.
Mopt (t) will satisfy the stationary condition of Eq. (7) when
kopt (t) = 0. For a non-optimal pulse, the gradient calculat-
ed in Eq. (7) for each time point of the two trajectories
gives the proportional adjustment to make in the pulse
phase /.

2.2. Numerical algorithm

The procedure for optimizing the cost can be incorpo-
rated in the following algorithm:

(i) Choose an initial RF sequence xð0Þ
e .

(ii) Evolve M forward in time from the initial state ẑ.
(iii) Evolve k backward in time from the target state x̂.
(iv) /(k+1)(t) fi /(k)(t) + !xrf Æ (kMz #Mkz).
(v) Repeat steps (ii)–(iv) until a desired convergence of U

is reached.

Since the optimization is performed over a range of
chemical-shift offsets and variations in the peak RF cali-
bration, the gradient used in step (iv) is averaged over
the entire range. Additional details of the averaging proce-
dure and the choice of stepsize ! for incrementing the phase
in each iteration are described in [14,15].

3. Results and discussion

In our work to date, we have focused on demonstrat-
ing the capabilities of optimal control theory for NMR
pulse design, establishing the effectiveness of the algo-
rithms and the viability of the resulting pulses. The exci-
tation pulse is a simple example that characterizes
optimal control behavior in NMR while minimizing its
convolution with any particular application. This charac-
terization establishes a foundation for pursuing other
applications. We first assess the performance of the cali-
bration-free phase-modulated pulse derived by the new
algorithm, then consider applications to two commonly
used pulse sequences, illustrating the advantages of the
new pulse.

3.1. Pulse performance

Pulse performance, in general, depends on the pulse
duration, with pulses of sufficient length giving the optimal
control algorithm the flexibility to obtain practically ideal
results in many cases. In addition, excitation (and inver-
sion) efficiency undergoes a steep drop in performance
below a minimum pulse length [16], which depends on
the parameters defining the optimization. Increasing pulse
length significantly above this minimum provides only
marginal improvement, so the shortest pulse that provides
acceptable performance is the goal.

Choosing 2 ms for the pulse length initially and opti-
mizing with the new algorithm provided a pulse that
transforms 99.9% of initial z magnetization to within
1.5! of the x-axis over a resonance offset range of
50 kHz for a constant RF amplitude anywhere in the
range 10–20 kHz (results not shown). This nearly ideal
performance can be traded for shorter pulse length. Since
performance drops rapidly for shorter pulses, we find
that overdigitizing the initial waveform used in the opti-
mal control procedure gives the algorithm additional
flexibility in finding the best solution, as discussed in
Ref. [17]. Every other point of the resulting pulse is used
as the initial input for generating a new pulse, and this
procedure is continued until a minimal digitization with
acceptable performance is reached. For a 1 ms pulse
length, 320,000 random phases were input initially
($3 ns per time step). Such a large number of parameters
would be extremely difficult, if not impossible, to opti-
mize using conventional methods. This ‘‘breeder’’ pulse
resulted in the final 625-point pulse shown in Fig. 1.

3.1.1. Comparison to existing pulses
Although adiabatic pulses accommodate a wide range of

peak power levels, the exceptional bandwidth of adiabatic
inversion for a given peak RF amplitude does not translate
to excitation. The orientation of the effective RF field at the
end of an adiabatic excitation pulse, which, ideally gives
the location of the magnetization, is not in the transverse
plane for non-zero chemical-shift offset. Other existing

Fig. 1. Phase modulation of the constant amplitude 1 ms PM-BEBOP pulse. This pulse performs the point-to-point transformation Iz fi Ix over a 50 kHz
range of resonance offsets for constant RF amplitude set anywhere in the range 10–20 kHz (see Figs. 2 and 3).
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