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A degenerate diffusion equation with nonlocal drift

We study the equation

ut = ∆um︸︷︷︸+∇ · (u∇(u ∗ V ))︸ ︷︷ ︸, (P)

degenerate diffusion nonlocal aggregation

This PDE describes biological aggregation:
u – population density
V – models the long-range attraction

We focus on the case when V is of power-law form, i.e.
V (x) = − 1

|x |γ .
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An aggregation equation with degenerate diffusion

When m = 1 and V is Newtonian kernel, it becomes the
well-known Patlak-Keller-Segel model.

The degenerate diffusion term is introduced by Boi, Capasso,
Morale (2000) and Topaz, Bertozzi, Lewis (2006) to avoid
overcrowding.

When V is the Newtonian kernel, m = 2− 2/d gives the exact
balance between the diffusion term and aggregation term.
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Global Well-posedness v.s. Finite-time Blow-up

When V is Newtonian potential − 1
|x |d−2 :

1 ≤ m < 2− 2
d

m = 2− 2
d

m > 2− 2
d

M > Mc

M = Mc

M < Mc

may blow-up in
finite time

global existence

Sugiyama ’06

Sugiyama ’06

Blanchet, Carrillo, Laurençot ’09
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Global Well-posedness v.s. Finite-time Blow-up

For a power-law kernel V = − 1
|x |γ : (Bedrossian-Rodŕıguez-Bertozzi,’10)

1 ≤ m < d+γ
d

m = d+γ
d

m > d+γ
d

M > Mc

M = Mc

M < Mc

may blow-up in
finite time

global existence
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Numerical Method and Blow-up Behaviors

We use an arbitrary Lagrangian Eulerian method with
adaptive mesh refinement.

Aggregation step: we adopt the method by Huang and
Bertozzi (2010) and let the mesh move with the particles.

Diffusion step: we use an implicit finite volume scheme to
solve the degenerate diffusion equation on a fixed mesh.

1 ≤ m < d+γ
d

m = d+γ
d ,M > Mc

Self-similar blow-up

Non-self-similar blow-up

Near-self-similar blow-up
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m < (d + γ)/d : Self-similar Blow-up

(movie of the log-log plot of the density)

As t goes to the blow-up time T , no mass is concentrating at the
origin.
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self_similar_loglog.avi
Media File (video/avi)



m < (d + γ)/d : Self-similar Blow-up

The scaling of the solution u(x , t) is

u(x , t) ∼ (T − t)−βw(
x

(T − t)α
) as t → T
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m < (d + γ)/d : Non-self-similar Blow-up

(movie of the log-log plot of the density)

As t → T , the peak contains a finite amount of mass.
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non_self_similar.avi
Media File (video/avi)



m < (d + γ)/d : Non-self-similar Blow-up

The blow-up profile for u(r , t) is u(r , t) ∼ Q(t) ϕ

(
r − R(t)

δ(t)

)
,

where Q(t)→∞, δ(t)� R(t)→ 0 as t → T .
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m < (d + γ)/d : What happens in between?

We carefully adjust the initial data to get a separatrix between a
self-similar and non-self-similar blow-up:

(movie of the log-log plot of the density)

Brenner-Constantin-Kadanoff-Schenkel-Venkataramani (1999)
observed similar behavior when m = 1 and K is Newtonian kernel.
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separatrix.avi
Media File (video/avi)



m = d+γ
d : Near-self-similar Blow-up

(movie of the log-log plot of the density)

As t → T , the peak area contains exactly the critical mass Mc .

Yao Yao (joint work with A. Bertozzi and I. Kim) Degenerate diffusion with nonlocal aggregation


near_self_similar.avi
Media File (video/avi)



m = d+γ
d : Near-self-similar Blow-up

The scaling of the solution u(x , t) is

u(r , t) =
1

R(t)d
ū(

r

R(t)
) + 1{r>R(t)}f (r),

Here ū is the stationary solution for M = Mc .

R(t) ∼ (T − t)αg(T − t), where g(T − t) is some
logarithmic correction term. When m = 1, the correction term
is computed by Herrero-Velazquez (1996) using matched
asymptotic methods.
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Asymptotic behavior for global solutions: previous results

From now on we assume that V is the Newtonian potential.

m > 2− 2
d

m = 2− 2
d

M = Mc

M < Mc

there exists a unique radial
stationary solution for every
mass size

there is a family of station-
ary solutions which are scal-
ings of each other

there exists a self-similar
dissipating solution

Existence: Lions ’84

Uniqueness: Lieb-Yau ’87

Blanchet-Carrillo-

-Laurençot ’09

Blanchet-Carrillo-

-Laurençot ’09

However the asymptotic behavior of solutions was not clear.
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Asymptotic behavior for radial solutions

m > 2− 2
d

m = 2− 2
d

M = Mc

M < Mc

radial solutions converge
to the stationary solution
exponentially fast

radial solution converge to
some stationary solution
within the family

radial solutions converge to
the self-similar dissipating
solution algebraically fast

Kim-Y., ’11

Y., ’11+

Y., ’11+
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Our main tool: mass comparison

Definition

Given two radially symmetric non-negative function u1 and u2, we
define

Mi (r) :=

∫
B(0,r)

ui (y)dy .

We say u1 is less concentrated than u2, or
u1 ≺ u2 if for any r > 0, we have M1(r) ≤ M2(r).

When V is the Newtonian potential,
u1(·, 0) ≺ u2(·, 0) =⇒ u1(·, t) ≺ u2(·, t).

This enables us to construct subsolutions and supersolutions
in the mass comparison sense.
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Difficulties in nonradial solutions

In Kim-Y. ’11, for Newtonian potential V , we showed that
‖u(·, t)‖p ≤ ‖ū(·, t)‖p for any time t, where ū is the solution
to (P) with a symmetrized initial data u∗(·, 0).

What about the other direction?

For m > 2− 2/d and Newtonian potential V ,

- Does there exist any non-radial stationary solutions?

- Does a non-radial solution with compactly supported initial
data stay in some compact set forever?
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Thank you for your attention!
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