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Introduction

Some interesting questions:
Can we recreate criminal activity patterns?
Do innate human tendencies change the criminal activity patterns?
What do we expect in large time?
Can we observe propagation of crime?
Can we prevent, using minimum resources, the propagation of crime?

Goal: Explore these questions

Study a basic reaction-diffusion system to model crime patterns1:

s(x , t) is the propensity towards crime.

u(x , t) moving average of crime.

c(x , t) cost of committing a crime.

st = ∆s − s + so(x) + (ρ(x) − c(x, t)) u(x, t)

ut = Λ(s) − u(x, t)

ct =
u(x, t)ρ(x)∫
u(x, t)ρ(x) dx

− c(x, t)

1H. Berestycki and J. P. Nadal. Self-organised critical hot spots of criminal activity. European
Journal of Applied Mathematics, 21(Special Double Issue 4-5):371399, 2010.
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Introduction

Reaction-diffusion system to model crime patterns:

st = ∆s − s + so(x) + (ρ(x)− c(x , t))︸ ︷︷ ︸
total payoff

u(x , t)

ut = Λ(s)− u(x , t)

ct =
u(x , t)ρ(x)∫

u(x , t)ρ(x) dx
− c(x , t)

so(x) base willingness to commit a crime.
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Reaction-diffusion system to model crime patterns:

st = ∆s − s + so(x) + (ρ(x)− c(x , t)) u(x , t)

ut = Λ(s)− u(x , t)

ct =
u(x , t)ρ(x)∫

u(x , t)ρ(x) dx
− c(x , t)

so(x) base willingness to commit a
crime.

Λ(s) is the acting-out function.

Λ(s) =

{
0 if s ≤ 0

1− e−βs if s > 0.

β measures the strength that a positive
s(x , t) has on whether a crime is
committed.
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Introduction

Reaction-diffusion system to model crime patterns:

st = ∆s − s + so(x) + (ρ(x)− c(x , t)) u(x , t)

ut = Λ(s)− u(x , t)

ct =
u(x , t)ρ(x)∫

u(x , t)ρ(x) dx
− c(x , t)

so(x) base willingness to commit a crime.

Λ(s) is the acting-out function.

Λ(s) =

{
0 if s ≤ 0

1− e−βs if s > 0.

High-payoff policing vs. hotspot policing.
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Mathematical Formulations

Pattern formation: Stability of steady-states (Berestycki and Nadal)

Longtime behavior: Existence and uniqueness of steady-states.

Interesting case is the variable coefficient case.

Is there a condition which determines uniqueness of the steady-states?

Propagation of crime: Existence of traveling wave solutions.

Blocking invasion: Can we block propagation of crime with minimum
resources?

What is the minimum amount of resources we need?

If the cost reaches a steady-state faster than the other variables, label this
c(x), we can define α(x) = ρ(x)− c(x), measures the net payoff of committing
a crime.



Modeling Aggregation

Mathematical Formulations

Pattern formation: Stability of steady-states (Berestycki and Nadal)

Longtime behavior: Existence and uniqueness of steady-states.

Interesting case is the variable coefficient case.

Is there a condition which determines uniqueness of the steady-states?

Propagation of crime: Existence of traveling wave solutions.

Blocking invasion: Can we block propagation of crime with minimum
resources?

What is the minimum amount of resources we need?

If the cost reaches a steady-state faster than the other variables, label this
c(x), we can define α(x) = ρ(x)− c(x), measures the net payoff of committing
a crime.



Modeling Aggregation

Exisence of Steady-States

The model we study:

st = ∆s − s + so(x) + α(x)u(x , t)

ut = Λ(s)− u(x , t).

Solving for the steady-state solutions as u = Λ(s) the system simplifies to

∆s = s − so − α(x)Λ(s).

For the remaining of the talk we assume that so ∈ R and it will provide
some measure of the population tendency.
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Stability Analysis

Let u∗ and s∗ be steady-states (not necessarily unique) and consider a
perturbation

u(x , t) = u∗ + δue ikx+σt

s(x , t) = s∗ + δse
ikx+σt

This gives rise to the following system:[
−k2 − 1 α
Λ′(s∗) −1

] [
δs
δu

]
= σ

[
δs
δu

]
This leads to the characteristic equation

− (k2 + 2)

2
± 1

2

√
k4 + 4αΛ′(s∗).

If αΛ′(s∗) > 1 this will lead to instabilities. An example is when s0 = 0
and αβ > 1 then s ≡ 0 is an unstable steady-state.
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Steady-State Solutions

Consider the spatially-homogeneous case.

αβ so No. of steady states
< 1 R 1
> 1 > 0 1
> 1 0 2
> 1 α− 1

β
ln(αβ)− 1

β
2

> 1 (α− 1
β

ln(αβ)− 1
β
, 0) 3

Note: α < 0 always lead to a unique steady-state.
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α ≥ 0 and s0 > 0

Sociological Interpretation

If there is a positive payoff for committing a crime and a natural tendency
towards criminal activity, s0 > 0, then one expects there to be either a hotspot
or warm-spot.
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α ≥ 0 and s0 = 0

Sociological Interpretation

A society with a neutral tendency towards criminal activity, so = 0, will need a
high enough incentive to commit a crime in order for one to observe hotspots
or warm-spots.

Critical value: αβ = 1

Figure: αβ > 1 Figure: αβ < 1
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α ≥ 0 and s0 < 0

Sociological Interpretation

A society with a negative tendency towards criminal activities, so < 0, can
exhibit interesting behavior. If the payoff to commit a crime is high enough to
overcome the tendency towards peace there can be two stable steady-states
and one unstable steady-state.

Warm-spot is unstable.

Relevant condition:

so ≤
1

β
− α +

logαβ

β
.
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Spatially heterogeneous coefficients

However, the net payoff function, α(x), should be heterogenous.

Proposition (Monotone f (u, x))

Let α(x) ≤ 1/β for all x ∈ Ω and so ∈ R then there is a unique steady-state.

Existence:
so ≤ 0⇒ so is a solution.
so > 0: Find positive super and sub solutions.

Uniqueness:
Point-wise bound leads to monotone increasing function.
Use Mean Value Theorem and Maximum Principle.

How can we generalize this?
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General spatially heterogeneous payoff α(x)

Study the spatially heterogeneous problem with so = 0:

∆s = s − α(x)Λ(s) (1)

= f (x , s) (2)

Clearly s ≡ 0 is a solution, is it unique?

Study the eigenvalue problem:{
∆φ− fo(x)φ = λφ
φ > 0, ‖φ‖∞.

(3)

with f0(x) = lims→0+
f (x,s)

s
= 1− α(x)β

Proposition

Let s0 = 0 then s ≡ 0 is a solution to (1). If λ > 0, as defined in (3) then there
exists a positive solution to (1). If λ < 0 then s ≡ 0 is the unique solution to
(1).
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Is there a sharp condition that differentiates the above cases?

Previous condition is not very useful.

When is λ > 0?∫
Ω

fo(x) dx =

∫
Ω

(1− α(x)β) dx ≤ 0⇒ λ > 0

When is λ < 0?
Consider

Γ

∫
Ω
fo(x) dx > 0,

for Γ > 0
Then for the corresponding eigen-value problem to ∆s = Γf (x , s) has a
negative eigenvalue, λ < 0 for Γ small enough.
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Ideas on the remaining cases

so > 0 then the steady-state should be unique for general α(x).

so < 0 then we have one, two, or three steady-states.

Natural conjecture is that the critical quantity depends on:∫ (
1

β
− α(x) +

logα(x)β

β
− so

)
dx

Still looking for the right eigen-value problem formulations.
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Traveling Wave Solutions

Remark

Toy Problem: Assume that the criminal activities reaches a steady-state much
faster than the willingness to act. Is it possible for hotspots or warm-spots to
invade low or zero crime regions.

Consider the one-dimensional problem:

st = sxx − s + s0 + αΛ(s). (4)

We consider two cases:
αβ ≤ 1⇒ unique steady-state
αβ > 1⇒ possible multiple-steady-states.
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Existence of Traveling Wave Solutions

Sociological Interpretation

If αβ > 1 one can observe the propagation of crime from high crime density
ares to zero crime density areas.

Theorem

Let s0 = 0 and let s(x , t) be a solution to . Then if

(a) If αβ ≤ 1 then

lim
t→∞

‖s(x , t)‖Lp = 0

for all p ≥ 1.

(b) If αβ > 1 then there exists traveling wave solutions, S(x − ct), connecting
the two steady-states.
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αβ > 1: Crime Dominates

We see solutions of the form S(z) for c ∈ R and z = x − ct, then

S ′′ + cS ′ − S + αΛ(S) = 0,

such that.

lim
x→∞

S(x − ct) = s > 0 and lim
x→∞

S(x − ct) = 0.

Note that we have c
∫

(vz)2 dz =
∫ s

0
S − αΛ(S) ds.

Written as a system:

S ′ = p

p′ = −cp + S − αΛ(s).
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αβ > 1: Crime Dominates

Analyze the stability of S ≡ 0.[
0 1

1− αβ −c

] [
s
p

]
= λ

[
s
p

]
The characteristic equation λ2 + cλ+ αβ − 1

Hence, λ± = −c ±
√

c2 − 4(αβ − 1).

Need c ≥
√
αβ − 1 for the eigenvalues to be real.

The larger αβ > 1 the faster the the wave will travel.
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Hotspot invasion

Consider the full
one-dimensional problem:

st = sxx − s + s0 + αu.

ut = Λ(s)− u.

Same condition on αβ.

Numerical results:
Initial condition O(e−ψx )
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Blocking the Invasion of Crime

Can we solve: R

∆s = −s + so + α(x)Λ(s)

with

α(x) =

{
α |x | > L
0 |x | ≤ L

Find minimum L such that the
above problem has a steady
state.
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Thank you for your attention!


