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Introduction

Collective animal behavior

Motivation: Understand the dynamics of emerging
patterns in animal groups, such as swarms of
birds, schools of fish, herds of sheep and many
other.

Similarity: Macroscopic structures arise from
seemingly local interactions of individuals and in
absence of leaders or global information.

Our model type: Newtonian particles, pairwise
interaction, short-range repulsion vs. long-range
attraction. Able to reproduce aligned flocks and
rotating mills.

In this talk: Introduce Quasi-Morse interaction
potentials, whose stationary states are explicitly
computable up to linear coefficients
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The self-propelled interacting particle model

Self-propelled second-order interacting particle model

dxi
dt

= vi ,

dvi
dt

= αvi − βvi |vi |2 −∇xi

∑
i 6=j

W (xi − xj) .

i ∈ {1, . . . ,N} , α: propulsion force , β: friction force
W (r) = U(|r |) interaction potential (with a local minimum)

Standard choice: Morse potential U(r) = −CAe
−r/lA + CRe

−r/lR

CA, CR attractive / repulsive strengths, lA, lR resp. length scales

Aligned flocks and rotating mills are obtained
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The self-propelled interacting particle model

Kinetic equations

Letting N →∞, with the weak-coupling scaling, the associated
mean-field equation reads

Vlasov-like kinetic equation

∂t f + v · ∇x f + F [ρ] · ∇v f + div
((
α− β|v |2

)
vf
)

= 0 ,

f (t, x, v) : R× Rn × Rn → R: (one-particle) probability distribution function

ρ(t, x) :=
∫
f (t, x, v) dv .: macroscopic density

F [ρ] = −∇xW ? ρ: interaction force

Monokinetic ansatz: f (t, x , v) = ρ(t, x) δ(v − u(t, x)), leads to

Hydrodynamic equations
∂ρ

∂t
+ divx(ρu) = 0,

ρ
∂u

∂t
+ ρ (u · ∇x)u = ρ (α− β|u|2)u − ρ (∇xW ? ρ).
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The self-propelled interacting particle model

Characteristic equations

Relevant radially symmetric stationary states of the system are written as

Flock: fF (t, x , v) = ρF (x − tu0) δ(v − u0) , |u0| =

√
α

β

Mill: fM(t, x , v) = ρM(x) δ

(
v −±

√
α

β

x⊥

|x | ,
)

Inserting into kinetic equations, we get the characteristic equations

Flock: W ? ρF = C in B(0,RF ) = supp(ρF )

Mill: W ? ρM = D +
α

β
log |x | in B(Rm,RM) = supp(ρM) ,

where the support is a-priori unknown.
Bertozzi, A.L. et. al.: State transitions and the continuum limit for a 2D interacting,
self-propelled particle system.
Carrillo, J.A. et. al. : Double milling in self-propelled swarms from kinetic theory.
Levine, H. et. al. : Self-organization in systems of self-propelled particles.

D’Orsogna et. al. Self-propelled particles with soft-core interactions.
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Quasi-Morse potentials

Quasi-Morse potentials

Definition

Let C , l , λ, k ∈ R be positive parameters, then the Quasi-Morse potential is

U(r) := λ
(
V (r)− C V

( r
l

))
,

where V is chosen dependent of the space dimension as
n = 1 : V (r) = − 1

2k
e−kr

n = 2 : V (r) = − 1
2π
K0(kr)

n = 3 : V (r) = − 1
4π

e−kr

r

K0 is the modified Bessel function of second kind. V are chosen as the radially
symmetric, monotone fundamental solution of the screened Poisson equation

∆u − k2u = δ0 ,

that vanish at infinity. For n = 1, we re-obtain the Morse potential.
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Quasi-Morse potentials

An exemplary configuration

We illustrate the Quasi-Morse potential in comparison to Morse potential for
n = 2:
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(a) Quasi-Morse potential,
C = 10

9 , l = 0.75, k = 1
2 , λ = 4
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(b) Morse potential,
C = 10

9 , l = 0.75, k = 1, λ = 2

⇒ Attraction-repulsion setting in both potentials. Different singularity at zero.
⇒ From modeling point-of-view, there is no reason to prefer one over the other.
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Quasi-Morse potentials

Properties

The Quasi-Morse potential is H-stable for Cln > 1 and catastrophic for
Cln < 1.

Biologically relevant shapes, i.e. a unique minimum of the potential, are
obtained for the following range of parameters:

n = 1 : l < 1, l < C

n = 2 : l < 1,C > 1

n = 3 : l < 1,Cl > 1
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Quasi-Morse potentials

Emerging patterns (2D)

Quasi-Morse potentials have the ability to produce coherent patterns just as
the standard Morse potential:
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Example 2: Mill, N = 400

Movies will be available on my website

C = 10
9 k = 1

2 l = 3
4

α = 1 β = 5 λ = 1000

N = number of particles
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Quasi-Morse potentials

Emerging patterns (3D)

We observe the emergence of aligned flocks for the three-dimensional
Quasi-Morse potential:
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Example 1: Flock, N = 200
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Example 2: Flock, N = 1000

Movies will be available on my website

C = 1.255 k = 0.2 l = 0.8
α = 1 β = 5 λ = 1000

N = number of particles
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Explicit solvability

Computation

Define the operators L1 := ∆− k2I , L2 := ∆− k2

l2
I and consider the

characteristic equation (W ? ρ)(r) = s(r) on supp(ρ) with some radial s(r).
Then

L2L1(W ? ρ) = (L2L1W ) ? ρ = λ
(
−C L1L2V

( r
l

)
+ L2L1V (r)

)
? ρ

= λ

(
−Cln−2∆δ + Ck2ln−2δ + ∆δ − k2

l2
δ

)
? ρ

= λ(1− Cln−2)∆ρ+ λ

(
Ck2ln−2 − k2

l2

)
ρ = L2L1s.

Hence, ρ should satisfy the following equation in its support

∆ρ± a2ρ =
1

λ

1

1− Cln−2
L2L1s

must hold with a2 = |A| and A =
Ck2ln−2 − k2

l2

1− Cln−2
= k2 Cl

n − 1

l2 − Cln
.

This is the Helmholtz equation for A > 0, the screened Poisson equation for
A < 0 and the Poisson equation for A = 0.
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Explicit solvability

Computations (II)

Right-hand side:

Flock in any dimension: s(r) = D ⇒ 1
λ(1−Cln−2)

L2L1D = D̃

⇒ inhomogeneous solution : ρ(r) = D̃
A

= D̄ for A 6= 0

Mill in 2D: s(r) = D + α
β

log(r)

⇒ 1
λ(1−C)

L2L1

[
D + α

β
log(r)

]
= k4

λl2(1−C)
α
β

log(r) + D̃

⇒ inhomogeneous solution:ρinhom,A(r) = k4

λAl2(1−C)
α
β

log(r) + D̃
A

for A 6= 0.

Homogeneous & fundamental solutions:

Helmholtz equation:


n = 1 : sin(ar) , cos(ar)

n = 2 : J0(ar) , Y0(ar)

n = 3 : sin(ar)
r

, cos(ar)
r

Screened Poisson equation:


n = 1 : exp(ar) , exp(−ar)

n = 2 : I0(ar) , K0(ar)

n = 3 : sinh(ar)
r

, cosh(ar)
r

Poisson equation: (in)-homogeneous solution explicitly known
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Explicit solvability

Explicit solution space

Given that flock/mill densities are radially symmetric and flock solutions do not
posses a singularity at zero, we get that if stationary solutions to W ? ρ = s
exist, they have to be of the following form:

Theorem: Quasi-Morse potential solution space

n = 2: flock A > 0 ρF = µ1 J0(ar) + µ2

A = 0 ρF = µ1r
2 + µ2

A < 0 ρF = µ1 I0(ar) + µ2

mill A > 0 ρM = ρinhom + µ1 J0(ar) + µ2 Y0(ar) + µ3

A = 0 ρM = α
β

k4

4λl2(1−C)
r 2(log(r)− 1) + µ1r

2 + µ2 log(r) + µ3

A < 0 ρM = ρinhom + µ1 I0(−ar) + µ2 · K0(ar) + µ3

n = 3: flock A > 0 ρF = µ1 sin(ar) 1
r

+ µ2

A = 0 ρF = µ1r
2 + µ2

A < 0 ρF = µ1 sinh(ar) 1
r

+ µ2

Ref: A. Bernoff and C. Topaz: ”A primer of swarm equilibria”
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Numerical method and results

Numerical challenge

Task: Find supp ρ and coefficients µi , such that
∫
ρ dx = 1 , ρ > 0.

Remark: Multi-d convolution of radially symmetric functions are a linear
operator of radial functions: (W ? ρ̄)(r) =

∫
R+ Ψ(r , s)ρ̄(s)ds, where Ψ

has to be computed.

Strategy: support optimization

Vary support ⇒ ”inverse” best fit approximation for ρ ⇒ positivity and
unit mass hard constraints for feasability ⇒ penalize (W ? ρ)(r)− s(r)
select support with minimal penalty

Discretization refinement:

RM

R m

→ RM

R m
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Numerical method and results

Search algorithm (for mills)

Input : fixed support B(Rm,RM ), discretization size ∆r
(0): Define radial grid r̄ = {r0, . . . , rN} s.t. r0 = rl , rN = Rr , ri+1 − ri = ∆r ∀i

Denote ρ̄ the approximation of ρ on r̄ (likewise for other functions).

Compute a matrix H s.t. W ? ρ = Hρ̄
(1): Evaluate ρinhom,A on supp ρ and convolve s̄inhom := Hρ̄inhom,A.

Define s̄rem := s̄ − s̄inhom.
(2): Evaluate J0(ar),Y0(ar), 1 on supp ρ and convolve

g1 := HJ̄0, g
2 := HȲ0, g

3 := H1̄.
(3): Fix three points r1, rj , rN (j = bN/2c) and interpolate s̄rem with g1, g2, g3 ⇒ .

Solve µrem :=

g1
1 g2

1 g3
1

g1
j g2

j g3
j

g1
N g2

N g3
N

∖ s̄rem,1

s̄rem,j

s̄rem,N

 with j := bN/2c.

(4) : Likewise, interpolate the constant D = 1 temp. choice .⇒

Solve µconst :=

g1
1 g2

1 g3
1

g1
j g2

j g3
j

g1
N g2

N g3
N

∖1
1
1

 .

(5) : Set ρ̄rem := µrem,1J̄0 + µrem,2Ȳ0 + µrem,3 and ρ̄const := µconst,1J̄0 + µconst,2Ȳ0 + µconst,3.

(6): Set ρ̄ := ρ̄inhom,A + ρ̄rem + γρ̄const with γ :=
1−m(ρ̄rem)−m(ρ̄inhom,A)

m(ρ̄temp) (unit mass).

(7) : Measure deviation from s̄ : e1 := 1
RM−Rm

∫ [
Hρ̄− s̄ − 1

RM−Rm

∫
(Hρ̄− s̄) dr̄

]
dr̄ .

(8) : Penalize convexity of s̄ by e2 :=
∫
χ[s̄′′>0] s̄ dr̄

Output : e = e1 + e2, ρ̄, s̄ if ρ̄ ≥ 0
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Numerical method and results

Results: 2D flock
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Numerical method and results

Results: 2D flock

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

r

F
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Stationary flock solution: ρF = µ1 J0(ar) + µ2

with µ1 ≈ 0.2356, µ2 ≈ 0.018,A = 1.5,RF ≈ 1.31
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9 k = 1
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Numerical method and results

Results: 2D flock
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∆r error e computation time

0.1 3.54e-05 0.76s
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0.01 3.99e-06 69.1s

0.0025 9.97e-07 1125s

Continuous solution ρF for varying ∆r Computation times & error convergence
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Numerical method and results

Results: 2D mill
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Numerical method and results

Results: 2D mill
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continuous solution

Stationary mill solution: ρM = k4

λa2 l2(1−C)
α
β

log(r) + µ1 J0(ar) + µ2 Y0(ar) + µ3

µ1 ≈ 0.1708, µ2 ≈ 0.0468, µ3 = 0.0320, a2 = A = 1.5, suppρM ≈ B(0.47, 1.57)
C = 10

9 k = 1
2 l = 3

4
α = 1 β = 5 λ = 100
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Numerical method and results

Result: 2D mill parameter dependence λ, α, β
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Stephan Martin, with: José A. Carrillo, Vlad Panferov BIRS Workshop ”Emergent behavior in multi-particle systems” TU KL

Explicitly computable flock and mill states of self-propelled particles systems January 24, 2012



Introduction The self-propelled interacting particle model Quasi-Morse potentials Explicit solvability Numerical method and results

Numerical method and results

Results: 3D flock
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N=35000 particles
continuous solution

Stationary flock solution: ρF = µ1 · sin(ar) 1
r

+ µ2 · 1
with µ1 ≈ 0.3574, µ2 ≈ 0.0052,RF ≈ 0.725,A = 5.585.

C = 1.255 k = 0.2 l = 0.8
α = 1 β = 5 λ = 100
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Numerical method and results

Result: Parameter dependencies for Quasi-Morse
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Separatrix: A = 0: no compactly supported solutions are found
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Numerical method and results

Conclusions

Introduced and defined Quasi-Morse potentials.

All relevant coherent patterns of motions have been observed (micro).

Flock and mill solutions have been explicitly derived.

Numerical algorithm to determine linear coefficients has been introduced.

Coherent match between our result and microscopics.

Catastrophic potentials A > 0: compactly supported solutions are found,
H-stable A ≤ 0: no solutions are found (in accordance to microscopics).∑

: Quasi-Morse potentials allow computationally cheap explicit

computation of stationary flock and mill solutions without simulating any
time evolution, offering essentially the same modeling.
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Numerical method and results

Thanks

Thank you for your attention!
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