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Experiments with Bacillus subtilis

Dense bacterial colonies on wet agar: hierarchy of scales
and collective behaviors

Microscopic level: bacteria (micrometer)

Mesoscopic level: whirls and jets (tens of micrometers)

Macroscopic level: colony shape (centimeters)

Modeling: different models are appropriate at different scales

Reaction-diffusion models: shape of a colony

hydrodynamic model [developed with T. Passot]: colony
boundary and large-scale structures inside the colony

Microscopic level: one needs to model how bacteria interact
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Ingredients for a microscopic model

If the bacteria do not communicate through chemical cues
or long-range forces, the only way they can interact is through
collisions.

The word collision should be understood in a general sense:

Two bacteria come into physical contact.

Two bacteria affect one another through mechanical effects.

In particular, one can model how the fluid displacement
created by one swimmer influences the motion of another one.

The problem is then reduced to the question of the dynamics
of a collection of “live” colliding particles.
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Systems of colliding particles

Systems of colliding particles are well studied.

Molecular gases consist of particulate systems that undergo
elastic collisions. Each collision conserves momentum and
kinetic energy. Such systems are typically chaotic.

Granular gases can display incredibly rich and complex
behaviors.

Self-propelled granular particles have been shown to
organize themselves into vortex structures, and self-propelled
needles into jets.

Active granular nematics also display large-scale structures.
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Systems of self-propelled particles

There is also an abundant literature on models of self-propelled
interacting particles.

Most of these models are in terms of Newton’s equations.

Each group member feels attractive and repulsive forces
exerted by other members, often tends to align its direction of
motion with the average direction of its neighbors, and may
be subject to drag and random forcing.

(1) m
d~vi

dt
= −γ~vi +

∑
other forces

=⇒ ~vi =
1

γ

∑
other forces.

(2) m
d~vi

dt
= velocity-dependent friction +

∑
other forces.

Velocity-dependent friction includes self-propulsion.
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Systems of self-propelled particles

These models assume that each group members continuously
feels the presence of its neighbors, through short- and
long-range forces.

Most of these forces are potential, so that one can study
equilibrium configurations as the minima of a potential
function.

Such an approach of course only works for agents that can
communicate with one another, or sense each other’s
presence.

Here, we consider a different situation, where particles only
interact through collisions, i.e. such that no long-range forces
are present.
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Ingredients for a microscopic model

We are interested in modeling the dynamics of particles of
finite size that interact through collisions, and tumble, just
like bacteria.

We first consider hard disks that move on a plane.

The collision rule however may be more general than for
elastic collisions. In particular, it does not have to conserve
momentum.

It should be chosen on the basis of experimental observations
or theoretical investigation.

We consider a collision rule that promotes collinear motion
after a collision.
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Collision rule

In mathematical terms, the collision rule is given by
(~v1, ~v2) 7→ (~u1, ~u2), where

~u1 =
1

2
(~v1 + ~v2 + α δ~v) , ~u2 =

1

2
(~v1 + ~v2 − α δ~v) ,

δ~v =
~v ·~r
||~r ||2

~r , ~r = ~r2 −~r1, ~v = ~v2 − ~v1, (1)

α =
||~v ||
||δ~v ||

if ||δ~v || 6= 0 and α = 0 otherwise.

For comparison, a binary elastic collision, which conserves
momentum and kinetic energy, is given by

(~v1, ~v2) 7→ (~u1, ~u2), ~u1 = ~v1 + δ~v , ~u2 = ~v2 − δ~v .
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Molecular dynamics simulations of live particles

Initial conditions: N particles of radius ρ =
√

L2η
Nπ (L = 1; η is

the packing fraction) are placed on a square lattice. They are
assigned random initial velocities (both components of their
velocity vector are normally distributed).

Boundary conditions are periodic.

Tumbles: particles start tumbling after t = 0.5.

Tumbling times are uniformly distributed.
The velocity of a particle after a tumble has the same
Maxwellian distribution as what was used for the initial
conditions.

Techniques used for molecular dynamics simulations can be
adapted to simulate such a system. In particular, the codes
developed for this work make use of cell structures and of
linked lists, in order to save time and memory space.
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Results

The movies below show the steady state dynamics of the
system for different packing fractions, both for the non-elastic
collision rule introduced above, and for elastic collisions.

They confirm that, in contrast with elastic collisions, the
proposed collision rule can promote coherent, large-scale
motions.

η = 0.15: Clusters form and break up.

η = 0.45: Clusters are bigger and more coherent.

η = 0.6: Coherence is almost system-wide.

J.L., Collective Behaviors in Two-Dimensional Systems of Interacting Particles, SIAM
J. Appl. Dyn. Sys. 10, 1213-1231 (2011)
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Measuring order and aggregation

The positional order parameter and the average Voronoi
cell size measure order but do not differentiate between
collision rules.

The coefficient of variation of the distribution of Voronoi
cell sizes quantifies the presence of large and small Voronoi
cells, corresponding to regions of low and high particle density
respectively.

The Morisita index measures the amount of clustering in the
system.

The total polarization describes system-wide coherence of
the particles.
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Measuring order and aggregation

As the packing fraction η increases,

the average Voronoi cell size < κ > decreases and the
positional order parameter A increases,

the coefficient of variation of Voronoi cell sizes
σκ

< κ >
decreases and the Morisita index I10 decreases.

These quantities indicate that the particle positions become
more ordered and that clusters disappear as η becomes larger.

At the same time, the total polarization P decreases,
indicating an increase in the system-wide coherence of the
direction of motion.
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Summary

Collision rules, defined at the microscopic scale, can affect the
dynamics at the macroscopic scale.

The collision rule introduced here is not elastic and does not
conserve momentum.

It leads to the appearance of large-scale coherent structures
that have a characteristic size, but which are short lived.

To model bacteria, randomness, in the form of tumbling, is
also included.

Only the size of the particles relative to the size of the system
(or the packing fraction) is relevant. As a consequence, this
approach is not restricted to bacterial systems.
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A new type of complex fluid

The system of particles that we
just described can be viewed as
a generalization of molecular or
granular gases, and is therefore
a new type of complex fluid.

One can thus seek to develop a
kinetic theory to describe the
dynamics of macroscopic
quantities.

Because it is easier to densely
pack rods rather than disks, it
might be preferable to follow
the same approach with
colliding rods.
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Lyapunov spectrum and Lyapunov modes

The Lyapunov spectrum of a system of interacting hard
disks shows two regions [1]:

Small Lyapunov exponents are associated with large-scale
modes.

Large Lyapunov exponents are associated with modes that are
very localized.

It will be interesting to analyze how changing the collision rule
affects the Lyapunov spectrum and modes.

In particular, can one connect the emergence of collective
behaviors with a loss of influence of the strongly localized
modes?

[1] J.P. Eckmann, C. Forster, H.A. Posch, & E. Zabey, Lyapunov modes in
hard-disk systems, J. Stat. Phys. 118, 813-847 (2005).
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Connection with random matrices

The flow is the composition of free flight and collision maps.

Its linearization is the product of matrices comprised of the
free flight map and the linearized collision map.

If we assume the duration of each free flight is random, and
the particles that collide are chosen randomly, the result is a
random matrix.

Results on the spectral properties of such random matrices
will give information on the Lyapunov spectrum and modes of
the dynamics.

The goal would again be to describe how the collision rule
affects the tangent flow.
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Granular gases

Granular gases consist
of particles that
interact through
inelastic collisions.

Such collisions, which
dissipate energy, favor
clustering.

Picture from I. Goldhirsch and G.
Zanetti, Clustering instability in
dissipative gases, Phys. Rev. Lett.
70, 1619-1622 (1993).

Back
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Self-propelled granular gases

Vortex structures, of the size of
the system, were found in
simulations of self-propelled
disks that interact through
inelastic collisions and are
confined to a region of finite
extent.

Picture from Y. Limon Duparcmeur, H. Herrmann, and J.P. Troadec, Spontaneous
formation of vortex in a system of self motorised particles, J. Phys. I France 5,
1119-1128 (1995).

Back
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Self-propelled needles

Simulations of self-propelled
needles that interact through
volume exclusion reveal a
tendency for the needles to align
locally and to create structures
in the form of large-scale jets, at
size of the system.

Picture from N. Sambelashvili, A.W.C. Lau, D. Cai, Dynamics of bacterial flow:
emergence of spatiotemporal coherent structures, Phys. Lett. A 360, 507-511 (2007).

Back
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Active granular nematics

Copper rods etched at both ends, confined to an almost
two-dimensional layer, and vibrated vertically, behave as an
active granular nematic. Movie

The fact that cylindrical (i.e. not
tapered at the ends) rods do not form
nematic states may be an indication
that the collision rule between rods
plays an important role in these
experiments.

Picture from V. Narayan, S. Ramaswamy, N. Menon, Long-lived giant number
fluctuations in a swarming granular nematic, Science 317, 105-108 (2007).

Back
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Collective motions in an active granular nematic layer

V. Narayan, S. Ramaswamy, N. Menon, Long-lived giant number fluctuations in a
swarming granular nematic, Science 317, 105-108 (2007).

Back
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Collision between two bacteria (experiment)

Inelasic collision between two bacteria in a thin fluid film

I.S. Aranson, A. Sokolov, J.O. Kessler, & R.E. Goldstein, Model for dynamical
coherence in thin films of self-propelled microorganisms, Phys. Rev. E 75,
040901 (2007).

Back
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Collision between two bacteria (model)

Collision between two bacteria, based on a model taking into account
hydrodynamic interactions between swimming cells

T. Ishikawa, G. Sekiya, Y. Imai, & T. Yamaguchi, Hydrodynamic interactions
between two swimming bacteria, Biophys. J. 93, 2217-2225 (2007).

Back
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Motion of B. subtilis on agar

The movie on the right (Cathy Ott,
2001) shows how Bacillus subtilis
moves on agar. Larger Movie

E coli movie

Bacillus subtilis is a flagellated rod-like bacterium
Length: 2 to 3 µm.
Diameter: ∼ 0.7 µm.
Swimming speed: about 10 times its length per second.
It moves by a succession of runs and tumbles.

In the experiments of Mendelson et al., B. subtilis
does not form spores;
does not secrete a surfactant;
does not form a biofilm.

Back
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Collective behaviors in colonies of B. subtilis

The movie on the right (Cathy Ott,
2001) shows a colony of Bacillus
subtilis before and after exposure to
formaldehyde vapors. Larger Movie

Jets and vortices are present inside the colony.

These motions stop when the bacteria die.

Bacterial motion in jets is faster than the swimming speed of
an isolated bacterium.

These phenomena involve a broad range of scales.

N.H. Mendelson, A. Bourque, K. Wilkening, K.R. Anderson, and J.C. Watkins,
Organized cell swimming motions in Bacillus subtilis colonies: patterns of short-lived
whirls and jets, J. Bacteriol. 181, 600-609 (1999).

Back
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Colony forms for B. subtilis

N.H. Mendelson, and B. Salhi, Patterns of reporter gene expression in the phase
diagram of Bacillus subtilis colony forms, J. Bacteriol. 178, 1980-1989 (1996).

(Diameter of petri dishes: 6 cm)

Back
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Hydrodynamic model

∂S

∂t
= RS + DS∇2S

∂W

∂t
+∇ · (W ~v) = RW +∇ ·

(
DW ∇W

)
−∇ ·

(
DN ∇N

)
∂N

∂t
+∇ · (N~v) = RN +∇ ·

(
DN ∇N

)
∂~v

∂t
= P

[
− (~v · ∇)~v +

(
1

ρ
− 1

ρm

)
D~v −

(
η

ρ
− ηm

ρm

)
~v +

~F

ρ

]

−1

ρ
∇pN

c +
D~v
ρm
− ηm

ρm
~v ,

where S , W and N are the concentrations of nutrients, water, and
bacteria respectively, ~v is the velocity field of the bacteria-water
mixture, ρ = N + W , D~v = µ∇2~v + λ∇ (∇ · ~v), ηm and ρm are
typical (constant) values of η and ρ in the system, and P~v is the
projection of ~v on its solenoidal part. Back
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Chemotaxis-like behavior

Only keep the bacterial pressure term in the equation for ~v .

Neglect diffusion in equation for nutrients and assume
RS = −k0Nϕ, where ϕ is an arbitrary function of S .

Then, the hydrodynamic model may be simplified into

∂S

∂t
= RS + DS∇2S ~v ' 2γ

k0

N

ρ

∇S

ϕ(S)
= χ∇S

∂W

∂t
+∇ · (W ~v) = RW +∇ ·

(
DW ∇W

)
−∇ ·

(
DN ∇N

)
∂N

∂t
+∇ · (N~v) = RN +∇ ·

(
DN ∇N

)
The chemotactic coefficient χ =

2γ

k0

N

ρ

1

ϕ(S)
matches

The Keller-Segel model for chemotaxis if ϕ(S) = S .

The “receptor law” for chemotaxis if ϕ(S) = (1 + S)2.
Back
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Numerical phase diagram

DS = 0.002

DW = 0.002

D0 = 0.0004

k0 = 1.0 N0 = 1.0

α = 1.0 µ = 0.01

f0 = 0.04 η = 0.01

γ0 = 0.001 λW = 0

W0 = 3 - S0 = 1.2

W0 = 7 - S0 = 0.4

RS = −k0NS |N0 − N| RN = αNS(N0 − N) RW (N,S ,W ) = −λW W

DN (N,S ,W ) = D0 f (N,S ,W ) Fg (N,S ,W ) = ρ f0 f (N,S ,W )G

Fe(N,S ,W ) = 0 γ(N,S ,W ) = γ0 f (N,S ,W )

f (N,S ,W ) is small for W0 or N0 small, and of order 1 otherwise

Back
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Reaction-diffusion models

It is well known that branched colony shapes may be captured by
means of reaction-diffusion models

∂S

∂t
= DS∇2S − ηNS

S : density of nutrients
N : density of bacteria

These models often involve nonlinear diffusion

∂N

∂t
= ∇

(
DNNk∇N

)
+ NS − µN

S. Kitsunezaki, J. Phys. Soc. Jpn. 66, 1544-1550 (1997)

Possibly with a stochastic diffusion coefficient

∂N

∂t
= ∇

(
DN(1 + σ)NS∇N

)
+ NS

K. Kawasaki et al., J. Theor. Biol. 188, 177-185 (1997)

Images from I. Golding et al., Physica A 260, 510-554 (1998).
Back
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Collective motions in B. subtilis colony

Movie by Cathy Ott

Back
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Motion of B. subtilis on agar

Movie by Cathy Ott

Back
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Swimming of E. coli on agar

Back

Turner, L., Ryu, W.S. and Berg, H.C. Real-time imaging of fluorescent flagellar
filaments. J. Bacteriol. 182, 2793-2801 (2000).
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Hydrodynamic model, with T. Passot

Our model is based on a two-phase fluid description of dense
colonies growing on agar plates.

It generalizes classical reaction-diffusion equations with
nonlinear diffusion that are used in the literature to model
bacterial colonies.

It describes large-scale collective bacterial behaviors in terms
of a hydrodynamic field ~v and reproduces a variety of colony
forms observed in experiments.

Our numerical simulations revealed a non-trivial interaction
between hydrodynamic motions within the colony and the
dynamics of the colony boundary.

J.L. & T. Passot,
Hydrodynamics of bacterial colonies: a model, Phys. Rev. E 67, 031906 (2003);
Hydrodynamics of bacterial colonies: phase diagrams, Chaos 14, 562-570 (2004);
Hydrodynamics of bacterial colonies, Nonlinearity 20, C1-C16 (2007).

Back
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Techniques of molecular dynamics simulations

In a system of hard disks, one needs to estimate collision
times between particles. This is typically resource consuming,
especially when the number of particles N is large.

The problem is similar for soft potentials, since one would
have to calculate the contribution of each particle to the
potential experienced by any other particle.

The above process is greatly simplified by dividing the
computational box into cells, so that collisions take place
between particles that are either in the same or in neighboring
cells.

The price to pay is that one then has to correctly describe
what happens when a particle leaves a cell and keep track of
which cell each particle occupies (in particular when collisions
occur on the boundary between two cells).
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Techniques of molecular dynamics simulations

This can be accomplished as follows.

Define a head matrix, of size equal to the number of cells,

such that the jth entry of head is the index of a particle in
cell j . If that cell is empty, then head(j) = 0.

Define a linked list that keeps track of particles in a same cell,
such that

1 list(j) = i means that particle i is in the same cell as particle
j .

2 list(j) = 0 means that there are no other particles in that
cell.

It is then easy to
1 Find all of the particles in a given cell;

2 Update the head and list matrices when a particle moves
from one cell to another.
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Techniques of molecular dynamics simulations

The simulation time decays faster than exponentially as the
number of cells increases.

Simulation time as a function of the number of particles p and the number of
cells m.
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Techniques of molecular dynamics simulations

Number of collisions (top) and number of exits (bottom) as functions of the
number of particles p and the number of cells m.

Back
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Numerical simulation - η = 0.15

Left: non-elastic collisions. Right: elastic collisions

Back
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Numerical simulation - η = 0.6

Left: non-elastic collisions. Right: elastic collisions

Back
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Numerical simulation - η = 0.45

Left: non-elastic collisions. Right: elastic collisions

Back

Coherent behaviors for locally interacting particles



Numerical simulation - W0 = 3 - S0 = 1.2

Movie from t = 340 to t = 400, with a frame shown every unit of time

Back
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Numerical simulation - W0 = 7 - S0 = 0.4

Movie from t = 0 to t = 1000, with a frame shown every 20 units of time

Back
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Numerical simulation - W0 = 5 - S0 = 0.8 - γ0 = 10−10

Movie from t = 400 to t = 410, with a frame shown every 0.1 unit of time

Back
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Positional order parameter and average Voronoi cell size

A measure of order is given by
how close the system is to a
hexagonal lattice.

Voronoi tessellations are used to
count the number of neighbors
of each particle. We define the
positional order parameter as
the probability for a particle to
have 6 neighbors.

Clusters of particles correspond
to small Voronoi cells, while
regions of low particle density
are associated with larger
Voronoi cells.

t = 65.00 − η = 0.15

1 2 3 4 5 6 7 8 9 10 11 12
0
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0.2

0.3

0.4
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Number of neighbors, n

P(
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Distribution of neighbors − η = 0.15
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Positional order parameter and average Voronoi cell size
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Collision rule (2.1)
Elastic collisions

Positional order parameter (left) and average Voronoi cell size (right) as
functions of the packing fraction η, for both types of collision rules. Error bars
correspond to one standard deviation above and below the mean.

Back
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Distribution of Voronoi cell sizes
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packing fraction η.
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Coefficient of variation of Voronoi cell sizes
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Collision rule (2.1)
Elastic collisions

Coefficient of variation of the distribution of Voronoi cell sizes, for both types
of collisions.
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Polarization

The polarization of a group of agents (e.g. fish in a school) is
defined as “the average of the angle deviation of each fish to
the mean swimming direction of the school. For p = 0o the
school is optimally parallel, for p = 90o the school is
maximally confused.”

Here, we define the polarization P as the average of the
absolute value of the angle (∈ [−π, π]) between the direction
of motion of each particle and the average direction of motion
of the group

P =

〈 Ng∑
i=1

|θi (t)− θ(t)|

〉
t

.

A. Huth, C. Wissel, The simulation of fish schools in comparison with experimental
data, Ecological Modelling 75, 135-145 (1994).
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Collision rule (2.1)
Elastic collisions

Polarization as a function of the packing fraction η, for both types of collision
rules. Error bars represent one standard deviation below and above the mean.
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The Morisita index

The Morisita index Iδ of a population of N individuals divided
into δ units is defined as

Iδ = δ

∑δ
i=1 xi (xi − 1)

N(N − 1)
,

where xi is the number of individuals in unit i .

Iδ measures the probability of having two individuals together
in any one of the δ units, divided by that same probability if
the individuals were grouped randomly.

If the units are the cells in a square lattice covering the region
where the population is distributed, then Iδ measures
clustering.

M. Morisita, Application of Iδ-index to sampling techniques, Res. Popul. Ecol. VI,
43-53 (1964).
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The Morisita index
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Collision rule (2.1)
Elastic collisions

Morisita index I10 as a function of the packing fraction η, for both types of
collision rules. Error bars represent one standard deviation below and above the
mean.
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Molecular gases are chaotic

Systems of interacting hard disks are typically chaotic. This is well
known for the case of standard molecular dynamics simulations,
with collision rules that conserve momentum and energy.

Simulations with 100 particles. Random components of size 10−18 are added to each
velocity vector after each collision. (Left) The circles show the particles in the absence
of noise, and the stars in the presence of noise. (Right) The distance between the two

sets of particles first increases exponentially with time, and then saturates.
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Lyapunov Spectrum

Lyapunov spectrum for a system of 780 hard disks, as in the work of Eckmann
et al. (2005). Simulations by Joe Dinius.
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Lyapunov Modes

Large-scale Lyapunov modes for a system of 780 hard disks, as in the work of
Eckmann et al. (2005). Simulations by Joe Dinius.
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Lyapunov Modes

Mode associated with the largest Lyapunov exponent, for a system of 780 hard
disks, as in the work of Eckmann et al. (2005). Simulations by Joe Dinius.
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