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Dynamic evolution: Numerical Methods

pr ==V -(pv) =V - (pVK xp).

1 1
n(n—2)wn|x|"=2 "~ q

K(x) =

Particle system:

Xi— X;
(|1Xi — X =1...
- Z (%=X =5

J#
Continuous density: (in radial coordinate)

dr dp
pri —0.K * p(r), P PA LK * p.



Dynamic evolution: numerical results
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Analytic

Time evolution of the radially symmetric solution.

Left: The case g = 2: the solution approaches asymptotically a
constant, compactly supported steady state.

Right: The case g = 4: the solution approaches asymptotically a
nonconstant, compactly supported steady state.



Dynamic evolution: numerical results

————— £=2.0
Steady State State

Time evolution of the radially symmetric solution.

Left: The case g = 1.5(> 2). The steady state is concave on the
support.

Right: The case g = 20(> 2). The steady state is convex on the
support.



Non-constant steady states

Assume the model admits a radial steady state supported on a
ball B(0, R).

Equilibria supported on B(0, R), V- (pv) = 0:

v=—-VKxp=0,

1
hence divy = —AKxp=p— A(a\x|q) * P

A steady state p satisfies for x € B(0, R)

px) = (n+a=2) [gop Ix —yI72A(y)dy =0

Use radial symmetry p(x) = p(r).



Radial steady states

px) = (n+9q=2) [ Ix = yI725(y)dy =0

The density p satisfies the Fredholm integral equation

R
c(q,n) /0 ()R, ) = Trp(r),  0<r <R,

I(r,r") = / (r? + (r')? — 2rr' cos 0)9/27 1 sin"~2 9d6.
0

The eigenvalue problem: find g and the radius R of the support
for ﬁ = TRﬁ



Exact steady states: g even

Kernel |x — y|972 is separable when q is even.
Define the i-th order moments of the density (my = M):

R
m; = nwn/ r" L 5(r)dr.
0

Example: ¢ =4

I(r,r') = (r* +(r')?) /07T sin" 2 0d6

and

R
) =+ 2)en [ ()1 ()
0
= (n42)mor*> 4 (n+2)m,
Plug (2) into (1): linear system to find R and m;
mg . nwnR"+2 (n =+ 2)0),,/‘?" mg
my ) %wn/?“r4 nw, R"2 my

General g even: p(r) is a polynomial of even powers of r, of degree
q-—2.



Exact steady states: g =4 — n(n > 4)
s =2 [ x=y )y ©)
B(0,R)

Taking the Laplacian in r,

-1
ﬁ”+”—ﬁ’+n2ﬁ:0, Kk =+/2n(n — 2)wp.
;

The solution can be written in terms of Bessel function,

p(r) = crt="2 00 1 (k).

Evaluating (3) at x =0,
Jn/272(I€R) = 07

the radius of support R is chosen such that kR is the first nonzero
zero of J, /5 ».



Some properties

R
p(r) = Tri(r) = c(a, n)/o ()" (r, ")p(r)dr,

The kernel c(q, n)(r')"~1I(r, r') is nonnegative.
Tg is a linear, strongly positive, compact operator that maps the
space of continuous functions C([0, 1], R) into itself.

Krein-Rutman theorem for existence and uniqueness: For
fixed R, there exists a positive eigenfunction p such that

TrRp=Ap (4)

A(g, n, R) is the spectral radius of Tg; it is a simple eigenvalue and
there is no other eigenvalue with a positive eigenvector
(Perron—Frobenius theorem for nonnegative square matrices).

Moving-plane method for convex/concave solution p



Eigenvalue problem p = Tzp: Reduction to R =1
Define (A, p1) to be the solution to ( for r € [0, 1])

Tip1 = Ap1

Introduce p(r) = p1(r/R):

Tri(r) = R™ 72 p(r)

Ask that p is an eigenfunction of Tg corresponding to e-value 1:

1

R =\ a2

Power method for

M) = Tapr(x) = (n 4+ g — 2) /B o TR0
0,1

—(m Tlﬁ(m) m —(m —(m
P( ) = ma Alm) = HTIP( )H/HP( )||



Steady states: numerical results
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Left: Plot of the radius of the support R of the steady states as a
function of the exponent g, for various space dimensions n.

Right: Normalized radially symmetric steady states p(r) various values of
the exponent g in 3D.

Limiting behavior for ¢ — oo and ¢ — 2 — n?



Asymptotic Steady States: ¢ — oo

In one dimension:
1

Mo1(x) = (q - 1) / X = Y172y

For x < 0, the dominant contribution of the integral comes from
y =1,
' 2 ! 2
(@=1) [ be=ym0)dy ~ @ = Da) [ x-yidy
= (D1 —x)T T+ (1 +x)97)
Evaluating at x = —1:
A1 (—1) ~ pr(1)297L

Therefore, the asymptotic behavior the eigen-pair is

A=2L R=12. 1) = g (L) (=07 )




Asymptotic Steady States: ¢ — oo

0.6

Numerical 5 —— Numerical g=10
----- Coarse Approximation ------Asymptotic g=10
0.58 Refined Approximation Numerical g=20

Asymptotic g=20

0.56

Refined approximation of the eigenvalue in one dimension:
2~ -1) 2g-3
@1 [ A mmey ~ S [ gy = o

This gives A = 2972 or R = 2-(4-2)/(a-1),

The whole processes can be interpreted as the power iteration
starting from a constant density.



Asymptotic Steady States: ¢ — oo

In higher dimensions, similarly (r = |x|)

AL(x) ~ (n+ g — 2),31(1)/ Ix — y|92dy
B(0,1)

= 725‘7_’ n)p21(1) sin" 2 0(v/1 — r2sin®9 — rcos 0)"+q’2d9
Jo sin"=%60d6 Jo
Evaluating at x| =r =1,

nwp

A
o sin" 2 0do

/ sin""2 (| cos A — cos #)"92dh
0

pi(r) ~ C/ sin"20(\v/1 — r2sin 6 — r cos )" 92d
0



Asymptotic Steady States: ¢ — oo (n = 3)

Mp1 = (n+ q—2)/ Ix — y|" 9251 (y)dy

B(0,1)
0.56 1
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Left: The comparison of the radius of support: numerical versus

asymptotic
Right: The normalized steady states: numerical versus asymptotic

In all cases, the radius of support R — 1/2 and the steady state
concentrate on the edge of the support (but a very slow rate).



Asymptotic Steady States: ¢ —+2 —n

In one dimension, let g =1 + ¢,

1
A7) =[xy



Asymptotic Steady States: ¢ —+2 —n

In one dimension, let g =1 + ¢,

1
A7) =[xy

Using the identity

1
(1) + (1) = / x =yl 1y,
—1

the above equation can be written as

1
AB(x) — (1) +(1—x)T5°(x) = € / X))y

Asymptotic expansion:
Ae = Ao+ Are+ X + -

p(x) = 19(x) + edV(x) + 5 (x) + -



Asymptotic Steady States: ¢ —+2 —n

1
A (x) = ¢ / Ix =y )y

0(1): Ao =2

1
00 [ Iy =7 ) ~ #O00)dy = (n — n(1 =2 x)

The expansions:

O(e*) - / y = X7 ()) = 8V 0))dy = (A1 = In(1 = x*))pP (x))

n2 — X n2 X
:(M—I(l Adlats Uﬁ )

1 X —
- [ REE G0 - 5900)e

1y —x]



Asymptotic Steady States: ¢ —+2 —n

Ap"(x) =€ /_ 11 [x = Y| 5y )dy
The expansions:
01): A=2
O(e) : (/711 y = xI7H PO (y) = 5O (x)dy = (A — In(1 = x*))pV(x))
o(e?) : /jl y = xI7H A ()) = PV )))dy — (A1 = In(1 = x*))pM (x))

n2 — X n2 X
= (3o - L) o)

- [ A GO - 506

1y —x

The eigenvalue problem for (A1, 5(?)) is solved by inverse
iteration, with the eigevalue estimated by

1 1
M [ PO = [ n(1 =)0 () e



Asymptotic Steady States: ¢ —+2 —n

1
A (x) = ¢ / x =y )y

The expansions:
0(1): A =2

1
O(e) : [waxr%#Wm—ﬁ@u»w:(h—mugx%m@un

1
0(e) : Ll y =7V (1) = D)) dy — (M — In(1 — x))pM (x))
n2 — X n2 X
_ <A27 In?(1 );I (a+ )>p(°)(x))

- [ A GO~ 706

1 |y —x|
The 2nd order correction A\> can be obatined:
1 ~ 2 1 |n|ny| _ B )
© —_ [ Iy =X S0y - 50 (0150
2 /71 [p (x)] dx-[l b ] (PV(y) — p19(x))p'9 (x)dydx

N /,11 In3(1 — x) J2r In?(1 + x) [ﬁ(")(x)]2 "




Asymptotic Steady States: ¢ —+2 —n

. numerical
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Left: The eigenvalue from the numerics (star) and the asymptotic
expansion up to second order (dash).

Right: The steady states (normalized on [—1, 1]) when q is close to 1.

1/e

The radius of support R. = A /" shrinks exponentially fast to

ZEero.



Asymptotic Steady States: ¢ —+2 —n

Nonuniformity of the expansion near the boundary:

0.6 0.6
Numerical Numerical
Linear fit Square-root fit
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Left: The asymptotic expansion p near the origin is uniform,
75(0) ~ 0.5944 — 0.0936e.

Right: The asymptotic expansion p near the boundary |x| =1 is
non-uniform, 5$(1) ~ v/0.2530e.



Asymptotic Steady States: ¢ —+2 —n

In higher dimensions, the eigenvalue problem (g =2 —n+¢) is
expanded in the form

O = kXA =€ [ (70 = Fib)x =y ",

B(0,1)
where
k()= [ x—yI=Tdy.
B(0,1)
ke(r) = M/; Sin"fz 0( 1—r2 Sil’l2 0 — rcos 9)6d9

= kO(r) + ekD(r) + kP (r) + - -



Asymptotic Steady States: ¢ —+2 —n

B nwp
~ Jy sin"20d0

Expansion of K.:

ke(r) / sin"20(v/1 — r2sin®0 — r cos 0)°dé
0

kO (r) = nwp,
kO (r) = / sin""201In(\v/1 — r2sin?6 — rcos§)do
0

/2
=In(1 — r2)/ sin"20d#,
0

k@ (r) = nw,l sin"201n*(v/1 — r2sin 6 — rcos 0)do.
20d0 Jo

2f07r sin”



Asymptotic Steady States: ¢ —+2 —n

Equation at different orders:
O(1): Ao = nwn
: _1 N3O () — =750 (x) — 500
09 (i~ Znwnln(l— |xP)F) () = / ly = x|~ (x) — 5O (y))dy
B(0,1)
2) X7V () — V) dy — (A — S In(t — [x12) ) 5V (x) =
0@): [ TGO - )y~ (- greain(t = ) #0)

(%2 = K2(1x)) 770 - | o7 Al = HE00) = 7000



Asymptotic Steady States: ¢ — —1 (in 3D)
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Left: The eigenvalue from the numerics (dash) and the asymptotic
expansion up to second order (star).

Right: The steady states (normalized on [—1, 1]) when q is close to 1.

1/e

The radius of support R. = A /" shrinks exponentially fast to

ZEero.



Summary

» This nonlocal model does lead to biologically relevant steady
equilibria: finite densities, sharp boundary, long lifetime; other
power law kernels like K(x) ~ —%]X\p + %|X’q may not,
especially when p is not singular enough.

» The steady equilibria have some interesting asymptotic limits.

» These equilibria are expected to the global attractors and are
the minimizers of the energy

£l = 5 [ [ K= y)odntn)dyen.
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