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Introduction

✔ Individuals perform better as a group than individually

✔ Relatively simple individuals can collectively perform complex tasks

✔ Benefits: cheaper, more robust, and more flexible systems

✔ Engineering applications: formation ctrl, search/rescue/surveillance/military

operations, demining, pollution clean-up, deep space/undersea exploration,

air traffic management, etc.

➙

Can we learn from biological swarms to develop engineering multi-agent systems?

· Istanbul Kemerburgaz University · The Ohio State University ·
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Agent Model

Consider a swarm of agents with dynamics based on Newton’s law of motion

ẋi = vi, v̇i = ui (1)

✔ xi ∈ R
n is the position of agent i

✔ vi ∈ R
n is its velocity

✔ ui ∈ R
n is its control (force) input

✔ x⊤ = [x⊤
1 , x

⊤
2 , ..., x

⊤
N ] ∈ R

Nn is the vector of agent positions

✔ v⊤ = [v⊤1 , v
⊤
2 , ..., v⊤N ] ∈ R

Nn is the vector of agent velocities

✔ (x, v) is the state of the swarm

✔ (xi, vi), i = 1, ..., N are the states of agents

✔ Unity mass agents.

· Istanbul Kemerburgaz University · The Ohio State University ·
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Assumption: The agents move simultaneously and know the relative positions of

the other agents in the swarm.

✔ Inter-agent interactions in the swarm are represented by a potential function

J : RNn → R.

✔ Interactions of the agents with the environment are represented by an

environment potential σ : Rn → R.

✔ The environment potential σ(·) is sometimes called the resource profile.

✔ We will consider

➙ Aggregation

➙ Formation control

➙ Social foraging

within the same framework.

✔ Design the agent control inputs ui and the potential function J(x) such that

desired behavior is achieved.

· Istanbul Kemerburgaz University · The Ohio State University ·
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Aggregation

✔ Fundamental behavior seen in swarms in nature

Problem: Design the agent control inputs ui such that aggregation is achieved.

✔ Design the potential J(x) such that it is minimized by aggregation

✔ Use a damping term to prevent oscillations

✔ Choose the control input ui of agent i in the form

ui = −kvi −∇xi
J(x) (2)

Aggregation Potential

Choose the potential of the form

J(x) =
N−1
∑

i=1

N
∑

j=i+1

[

Ja

(

‖xi − xj‖
)

− Jr

(

‖xi − xj‖
)

]

(3)

✔ Ja : R+ → R - attraction component, Jr : R+ → R - repulsion component

· Istanbul Kemerburgaz University · The Ohio State University ·
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Representing the gradients ∇yJa(‖y‖) and ∇yJr(‖y‖) as

∇yJa(‖y‖) = yga(‖y‖) and ∇yJr(‖y‖) = ygr(‖y‖)

and defining the attraction/repulsion function g(·) as

g(y) = −y
[

ga(‖y‖)− gr(‖y‖)
]

(4)

the control input of agent i becomes

ui = −kvi −
N
∑

j=1,j 6=i

[

ga(‖xi − xj‖)− gr(‖xi − xj‖)
]

(xi − xj) (5)

✔ ga : R+ → R
+ - long range attraction, gr : R+ → R

+ - short range

repulsion

✔ g(·) is odd and symmetric with respect to the origin

· Istanbul Kemerburgaz University · The Ohio State University ·
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Assumption 1: The potential function J(x) is such that the level sets

Ωc = {x|J(x) ≤ c} are compact, the corresponding attraction/repulsion

function g(·) is odd, and ga(·) and gr(·) are such that there exists a unique

distance δ at which we have ga(δ) = gr(δ). Moreover, we have

ga(‖y‖) > gr(‖y‖) for ‖y‖ > δ and gr(‖y‖) > ga(‖y‖) for ‖y‖ < δ.

✔ The minimum of Ja(‖xi − xj‖) occurs on or around ‖xi − xj‖ = 0

✔ The minimum of −Jr(‖xi − xj‖) occurs when ‖xi − xj‖ → ∞

✔ The minimum of Ja(‖xi − xj‖)− Jr(‖xi − xj‖) occurs at

‖xi − xj‖ = δ where attraction and repulsion balance

Example potential function which satisfies above is

J(x) =
N−1
∑

i=1

N
∑

j=i+1

[

a

2
‖xi − xj‖2 +

bc

2
exp

(

−‖xi − xj‖2
c

)]

(6)

where a, b, and c, b > a, are parameters to be chosen by the designer.

· Istanbul Kemerburgaz University · The Ohio State University ·
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The corresponding attraction/repulsion function is

g(y) = −y

[

a− b exp

(

−‖y‖2
c

)]

(7)

✔ Linear attraction and bounded repulsion
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(a) Potential function. (b) Attraction/repulsion function.

Figure 1: Plot of the potential functions in (6) (between two agents only) and the

corresponding attraction/repulsion function in (7) for a = 1, b = 10, and c = 1.
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Analysis of Swarm Motion

Define the centroid of the swarm as

x̄ =
1

N

N
∑

i=1

xi, v̄ =
1

N

N
∑

i=1

vi

Lemma 1: The centroid x̄ of the swarm consisting of agents with dynamics in (1)

and with control input in (5) with potential function J(x) which satisfies

Assumption 1 converges to a stationary point xc exponentially fast.

✔ xc depends only on the initial positions and velocities of the agents.

✔ It is possible to show that xc = x̄(0) + 1

k
v̄(0)

Denote the invariant set of equilibrium (or stationary) points for the swarm with

Ωe = {(x, v) : vi = 0 and ∇xi
J(x) = 0 ∀i} (8)

✔ (x, v) ∈ Ωe implies that all agents are stationary.

· Istanbul Kemerburgaz University · The Ohio State University ·
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Theorem 1: Consider a swarm consisting of agents with dynamics in (1) and with

control input in (5) with a potential function J(x) which satisfies Assumption 1.

For any (x(0), v(0)) ∈ R
2Nn, as t → ∞ we have (x(t), v(t)) → Ωe.

✔ The agents will eventually stop.

✔ ∇xi
J(x) = 0 is achieved for all agents.

✰ For flocking replace the velocity damping term with a velocity matching term

ui = −k

N
∑

j=1,j 6=i

(vi − vj)−∇xi
J(x) (9)

✰ For tracking a reference trajectory {ẍr, ẋr, xr} use controllers

ui = ẍr − kv(vi − ẋr)− kp(xi − xr)−∇xi
J(x) (10)

· Istanbul Kemerburgaz University · The Ohio State University ·
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Swarm Cohesion Analysis

✔ Will the swarm be cohesive?

✔ Is there a bound on the swarm size?

✔ From Theorem 1 we know that as t → ∞ we have

∇xi
J(x) =

N
∑

j=1,j 6=i

[

ga
(

‖xi − xj‖
)

− gr
(

‖xi − xj‖
)

]

(xi − xj) = 0

(11)

for all agents i.

✔ For the potential function in (6), equation (11) becomes

∇xi
J(x) =

N
∑

j=1,j 6=i

[

a− b exp

(

−‖xi − xj‖2
c

)]

(xi−xj) = 0 (12)

· Istanbul Kemerburgaz University · The Ohio State University ·
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✔ Using
∑N

j=1,j 6=i(xi − xj) = Nei and rearranging (12) can be written as

ei =
1

aN

N
∑

j=1,j 6=i

b exp

(

−‖xi − xj‖2
c

)

(xi − xj)

from which one obtains

‖ei‖ ≤ b

a

√

c

2
exp

(

−1

2

)

Theorem 2: Consider a swarm consisting of agents with dynamics in (1) and

with control input in (5) with a potential function J(x) given in (6) (which satisfies

Assumption 1, and has linear attraction and bounded repulsion). As time

progresses all agents in the swarm will converge to a hyperball

Bǫ(x̄) =

{

x : ‖x− x̄‖ ≤ ǫ =
b

a

√

c

2
exp

(

−1

2

)}

· Istanbul Kemerburgaz University · The Ohio State University ·
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Formation Control

Formation Control Problem: Design the agent control inputs ui such that the

swarm achieves a predefined geometrical shape.

✰ Pair specific inter-agent interactions.

✔ Choose the potential function J(x) as

J(x) = Jformation(x) =
N−1
∑

i=1

N
∑

j=i+1

[

Jija

(

‖xi−xj‖
)

−Jijr

(

‖xi−xj‖
)

]

(13)

✔ The corresponding control input in (5) is given by

ui = −kvi −
∑N

j=1,j 6=i

[

gija

(

‖xi − xj‖
)

− gijr

(

‖xi − xj‖
)

]

(xi − xj)

(14)

✔ J(x) satisfies Assumption 1.

· Istanbul Kemerburgaz University · The Ohio State University ·
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✔ For all (i, j) the pair dependent

gij(y) = −y
[

gija
(

y
)

− gijr
(

y
)

]

(15)

are such that attraction and repulsion balance at pair dependent equilibrium

distances δij .

✔ In the formation control framework the potential function in (6) becomes

J(x) =
N−1
∑

i=1

N
∑

j=i+1

[

aij

2
‖xi − xj‖2 +

bijcij

2
exp

(

−‖xi − xj‖2
cij

)]

(16)

where aij , bij , and cij , bij > aij are pair dependent.

✔ The control input for agent i is of the form

ui = −kvi−
N
∑

j=1,j 6=i

[

aij−bij exp

(

−‖xi − xj‖2
cij

)]

(xi−xj) (17)

· Istanbul Kemerburgaz University · The Ohio State University ·
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✔ The desired formation is specified a priori by formation constraints of the form

‖xi − xj‖ = dij

for all (i, j), j 6= i.

✔ Choose J(x) (the corresponding gij(·)) such that δij = dij for all (i, j).

✔ For J(x) in (16) one can choose bij = b, cij = c for all (i, j) and for some

constants b and c and calculate aij as aij = b exp
(

−d2

ij

c

)

.

Corollary 1: Consider a swarm consisting of agents with dynamics in (1) and

with control input in (14) with potential function J(x) which satisfies Assumption 1

and has pair dependent interactions. Assume that the pair dependent inter-agent

attraction/repulsion functions gij(·) are chosen such that the distances δij (at

which the inter-agent attractions and repulsions between pairs (i, j) balance)

satisfy δij = dij , where dij are the desired formation distances. Then, the

equilibrium at the desired formation is locally asymptotically stable.

· Istanbul Kemerburgaz University · The Ohio State University ·
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Social Foraging

Design agent controllers ui such that the swarm moves towards favorable regions

and avoids favorable regions of the environment while preserving cohesiveness.

✔ The environment is represented by a resource profile σ : Rn → R.

✔ The overall potential J̄(x) becomes

J̄(x) =

N
∑

i=1

σ(xi) + J(x) (18)

where J(x) is the aggregation potential.

The corresponding controller is given by

ui = −kvi −∇xi
σ(xi)−

∑N

j=1,j 6=i

[

ga

(

‖xi − xj‖
)

− gr

(

‖xi − xj‖
)

]

(xi − xj)

(19)

✔ The term −∇xi
σ(xi) guides agent i towards minima and away from

maxima of the resource profile σ(xi).

· Istanbul Kemerburgaz University · The Ohio State University ·



On the Stability of Swarms with Second Order Agent Dynamics 17

Theorem 3: Consider a foraging swarm consisting of agents with dynamics in (1)

and with control input in (19) with inter-agent interaction potential function J(x)

which satisfies Assumption 1. Assume that the resource profile σ(·) of the

environment is one of the following

• A valley-type quadratic profile (i.e., the profile in (22) below with Aσ > 0), or

• A valley-type Gaussian profile (i.e., the profile in (23) below with Aσ > 0)

Then, as t → ∞ we have (x(t), v(t)) → Ωe.

✔ The motion of the centroid is given by

˙̄x = v̄, ˙̄v = −kv̄ − 1

N

N
∑

i=1

∇xi
σ(xi) (20)

✔ The swarm centroid is “guided” by the average of the gradient of the resource

profile evaluated at the agent locations.

· Istanbul Kemerburgaz University · The Ohio State University ·
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Plane Resource Profile

✔ Plane resource profile described by an equation of the form

σ(y) = a⊤σ y + bσ (21)

where aσ ∈ R
n and bσ ∈ R.

✔ Its gradient at a point y ∈ R
n is given by: ∇yσ(y) = aσ

✔ The motion of the centroid of the swarm is described by

˙̄x = v̄, ˙̄v = −kv̄ − aσ

Lemma 2: Consider a foraging swarm consisting of agents with dynamics in (1)

and with control input in (19) with inter-agent interaction potential function J(x)

which satisfies Assumption 1. Assume that the resource profile σ(·) of the

environment is given by (21). Then, as t → ∞ the centroid of the swarm moves

along the negative gradient of the profile towards infinity with velocity

v̄(t) = − 1

k
aσ .

· Istanbul Kemerburgaz University · The Ohio State University ·
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✔ To analyze the relative dynamics define zi = xi − x̄ and ζi = vi − v̄.

✔ The relative agent dynamics can be expressed as

żi = ζi, ζ̇i = −kζi−
N
∑

j=1,j 6=i

[

a− b exp

(

−‖zi − zj‖2
c

)]

(zi−zj)

which is exactly the equation for aggregation.

Corollary 2: Consider a swarm consisting of agents with dynamics in (1) and

with control input in (19) with inter-agent interaction potential J(x) given in (6)

(which satisfies Assumption 1 with linear attraction and bounded repulsion).

Assume that the resource profile σ(·) of the environment is given by (21). As

time progresses all agents in the swarm will converge to a hyperball

Bǫ(x̄) =

{

x : ‖x− x̄‖ ≤ ǫ =
b

a

√

c

2
exp

(

−1

2

)}

· Istanbul Kemerburgaz University · The Ohio State University ·
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Quadratic Resource Profile

✔ Quadratic resource profile described by an equation of the form

σ(y) =
Aσ

2
‖y − cσ‖2 + bσ (22)

where Aσ ∈ R, bσ ∈ R, and cσ ∈ R
n.

✔ It has a global extremum at y = cσ .

✔ Its gradient at a point y ∈ R
n is given by: ∇yσ(y) = Aσ(y − cσ)

✔ The motion of the centroid x̄ can be calculated as

˙̄x = v̄, ˙̄v = −kv̄ −Aσ(x̄− cσ)

✔ Defining x̄c = x̄− cσ and v̄c = v̄ these can be expressed as




˙̄xc

˙̄vc



 =





0 1

−Aσ −k









x̄c

v̄c
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✔ x̄ = cσ and v̄ = 0 is an equilibrium point of this system.

✔ The eigenvalues of the system matrix are λ1,2 = −k±
√
k2−4Aσ

2
.

Lemma 3: Consider a foraging swarm consisting of agents with dynamics in (1)

and with control input in (19) with inter-agent interaction potential J(x) which

satisfies Assumption 1. Assume that the resource profile σ(·) of the environment

is given by (22). As t → ∞ we have

• If Aσ > 0, then x̄(t) → cσ (i.e., the centroid of the swarm converges to the

global minimum cσ of the profile), or

• If Aσ < 0 and x̄(0) 6= cσ , then x̄(t) → ∞ (i.e., the centroid of the swarm

diverges from the global maximum cσ of the profile).

✔ For Aσ > 0, the sign of k2 − 4Aσ will determine the characteristics of the

centroid motion.

➙ For 0 < Aσ < k2

4
its motion will be overdamped

· Istanbul Kemerburgaz University · The Ohio State University ·
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➙ For Aσ > k2

4
its motion will be underdamped.

Theorem 4: Consider a foraging swarm consisting of agents with dynamics in (1)

and with control input in (19) with inter-agent interaction potential J(x) in (6)

(which satisfies Assumption 1 and has linear attraction and bounded repulsion).

Assume that the resource profile σ(·) of the environment is given by (22) with

Aσ > 0. Then, as t → ∞ all agents i = 1, . . . , N , will enter

Bǫ(cσ) =

{

x : ‖x− cσ‖ ≤ ǫ =
b(N − 1)

aN +Aσ

√

c

2
exp

(

−1

2

)}

✔ The swarm will aggregate around the minimum of the resource profile.

· Istanbul Kemerburgaz University · The Ohio State University ·
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Gaussian Resource Profile

✔ Gaussian resource profile described by an equation of the form

σ(y) = −Aσ

2
exp

(

−‖y − cσ‖2
lσ

)

+ bσ (23)

where Aσ ∈ R, bσ ∈ R, lσ ∈ R
+, and cσ ∈ R

n.

✔ Its gradient at y ∈ R
n is: ∇yσ(y) =

Aσ

lσ
(y − cσ) exp

(

− ‖y−cσ‖2

lσ

)

✔ For all y ∈ R
n it is bounded and satisfies

‖∇yσ(y)‖ ≤ σ̄ =
|Aσ|√
2lσ

exp

(

−1

2

)

(24)

✔ The dynamics of the centroid can be obtained as

˙̄x = v̄, ˙̄v(t) = −kv̄ − Aσ

Nlσ

N
∑

i=1

(xi − cσ) exp

(

−‖xi − cσ‖2
lσ

)

· Istanbul Kemerburgaz University · The Ohio State University ·
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Lemma 4: Consider a foraging swarm consisting of agents with dynamics in (1)

and with control input in (19) with inter-agent interaction potential J(x) which

satisfies Assumption 1. Assume that the resource profile σ(·) of the environment

is given by (23) with Aσ > 0. Then, as t → ∞ we have

cσ ∈ conv{x1, ..., xN} where conv stands for the convex hull (i.e., the agents

encircle the minimum point of the profile cσ).

Theorem 5: Consider a foraging swarm consisting of agents with dynamics in (1)

and with control input in (19) with inter-agent interaction potential J(x) in (6)

(which satisfies Assumption 1 and has linear attraction and bounded repulsion).

Assume that the resource profile σ(·) of the environment is given by (23) with

Aσ > 0 (and whose gradient is bounded by σ̄ in (24)). Then, as t → ∞ we

have xi(t) → Bǫ(x̄(t)) for all i, where

Bǫ(x̄(t)) =

{

y(t) : ‖y(t)− x̄(t)‖ ≤ ǫ =
σ̄

Na
+

b

a

√

c

2
exp

(

−1

2

)}

· Istanbul Kemerburgaz University · The Ohio State University ·
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Simulation Examples

Aggregation
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(a) Agent paths. (b) Min, max, and average distances.

Figure 2: Aggregating swarm (zero initial velocities).
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Aggregation
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Figure 3: Aggregating swarm (random initial velocities).
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Formation Control
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Figure 4: Equilateral triangle formation by 6 agents.
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Social Foraging

Plane Profile
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(a) Agent paths. (b) Motion of the centroid.

Figure 5: Swarm motion in a plane profile.
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Social Foraging

Quadratic Profile
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Figure 6: Swarm motion in a quadratic profile with k2 − 4Aσ > 0 (real eigenval-

ues).
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Social Foraging

Quadratic Profile
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(a) Agent paths. (b) Motion of the centroid.

Figure 7: Swarm motion in a quadratic profile with k2 − 4Aσ < 0 (complex

eigenvalues).
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Social Foraging

Gaussian Profile
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(a) Agent paths. (b) Motion of the centroid.

Figure 8: Swarm motion in a Gaussian profile for k = 3.
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Social Foraging

Gaussian Profile

0 5 10 15 20
0

5

10

15

20

25
The paths of the agents

0 5 10 15 20 25 30
7

8

9

10

11

12

13

14

15

16

17
Motion of the centroid

time

(a) Agent paths. (b) Motion of the centroid.

Figure 9: Swarm motion in a Gaussian profile for k = 1.
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(a) The resource profile. (b) Agent paths.

Figure 10: Simulation for a multimodal Gaussian profile.
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Summary and Remarks

✔ Swarms composed of agents with double integrator dynamics

✔ Potential functions based approach

✔ Earlier results for swarms with single integrator dynamics recovered

✔ Aggregation

➙ Stability (cohesiveness) is achieved.

➙ Explicit bounds on the swarm size obtained.

✔ Formation control

➙ Desired geometric shape is achieved locally.

✔ Social foraging

➙ Plane, quadratic, Gaussian resource profiles.

➙ Convergence to more favorable regions shown.

➙ Cohesiveness preserved.
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