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Particle system

Initial equations

Birnir (2007) analyzed the following equations:(
cos(φk (t + ∆t))
sin(φk (t + ∆t))

)
=

1
N

N∑
j=1

(
cos(φj(t))
sin(φj(t))

)
(1)

Note that equation (1) is the same for all k . It is then clear that
the direction of each fish in each time iteration becomes the
average of all the directions.
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Particle system

Polar coordinates and inertia

In polar coordinates we have

zk = rkeiθk (2)

and
żk = vkeiφk (3)

and we add inertia β = 1/α to the latter equation:

βz̈k + żk = vkeiφk (4)
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Particle system

Equations with inertia
Birnir arrived at the following equations for the speeds and
direction angle:

v̇k =
α

N2

N∑
i=1

vi

N∑
j=1

cos(φj − φk )− αvk (5)

vk φ̇k =
α

N2

N∑
i=1

vi

N∑
j=1

sin(φj − φk ) (6)

and for the position:

ṙk = vk cos(φk − θk ) (7)

rk θ̇k = vk sin(φk − θk ), (8)
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Particle system

Solutions

Birnir (2007) found several solutions.
i) migratory solutions, φk = Φ

ii) stationary solutions, φk = ωk

for all k , where ωk is the k -th root of unity. The speeds behave
as follows:

i) vk → ν

ii) vk → 0
We can actually find a family of stationary solutions.
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Particle system

Order parameter

Now, we introduce the usual order parameter,

reiψ :=
1
N

N∑
j=1

eiφj (9)

where r(t) ∈ [0,1] measures the coherence of the population
and ψ(t) ∈]− π, π] is the average phase.
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Particle system

Simplified equations

v̇k =
α

N

N∑
i=1

vi r cos(ψ − φk )− αvk (10)

vk φ̇k =
α

N

N∑
i=1

vi r sin(ψ − φk ). (11)

With v̄ := 1
N
∑N

i=1 vi the above equations simplify even further:

v̇k = αv̄ r cos(ψ − φk )− αvk (12)

vk φ̇k = αv̄ r sin(ψ − φk ). (13)
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Particle system

Behavior of average speed
Now, by summing up the equations for v̇k and using identities
from the order parameters, we can arrive at the following
equations:

˙̄v = αv̄

(
r

1
N

N∑
k=1

cos(ψ − φk )− 1

)
= αv̄(r2 − 1). (14)

Similarly, equation for the direction angle turns into

vk φ̇k = αv̄ r sin(ψ − φk ). (15)
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Particle system

Future work

We have now shown that the system of equations tends to a
stationary solution unless the particles are perfectly aligned!

I There exists a whole family of solutions with vk → 0.
I The system included no random noise.
I Want to add noise to the system and investigate whether

we can obtain the same structure of solutions with
v̄ = ν > 0.
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Biofilms

Biofilms

Joint work with

Prof. Ana Carpio and David Rodriguez
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Biofilms

Biofilms

Biofilms appear in various forms:
I Deadly diseases (cystic fibrosis, legionellosis.. . . )
I Infections in artificial joints, pacemakers, catheters, . . .
I Cause erosion on aircraft fuselage or metallic structures
I Contaminate water or food supplies
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Biofilms

Life cycle
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Model

Model setting

Use a cellular automata model for the biofilm growth
I Bacteria grows in a rectangular pipe
I Water flows with a controllable Reynolds number
I Influx of nutrients controlled
I Discrete in time and space
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Model

Pseudomonas putida

We observe the species Pseudomonas putida and try to obtain
its behavior.

(Experiments done by David Rodriguez at UCM)
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Model

The following mechanism affect the behavior of cells:
I Cell division and spreading
I Cell erosion at surface due to shear stress
I Production of extracellular polymeric substances (EPS)
I Influx of cells which adhere to the surface

Determined at each time step by a set of simple probabilistic
rules.
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Model

Biofilm structure
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Model

Cell division and nutrient levels

We calculate the nutrient levels, c, of each cell according to the
following equation:

c(cell) =

√C −

√√√√√ k
2D

[
1
M

M∑
i=1

1
d2

i

]−1


2

(16)

where C is the nutrient levels of the incoming flow.
(From Hermanowicz 2001)
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Probabilistic rules

EPS

A cell starts to produce EPS according to the following
probability:

Peps = R(Re)
1

1 + c
(17)

where R is an increasing function of the Reynolds number,
modeling the effect of the incoming flow.

I If a cell produces EPS then it does not divide.
I Also affects the biofilm’s cohesion, which makes it resistant

to erosion.
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Probabilistic rules

Cell division

Cells divide according to the (non dimensionalized) Monod law:

Prep =
c

1 + c
(18)

The new cell pushes cells in the direction of shortest distance
to the boundary layer.
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Probabilistic rules

Cell erosion

Cells on the surface can erode due to the flow with probability
Pe:

Pe =
1

1 + σ
τ

(19)

Here τ(cell) denotes the flow force on the cell and σ(cell) is the
cohesion of the surrounding biofilm. (Hermanowicz 2001))
* Both factors are determined by the structure of the
neighboring cells. See appendix for details.
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Probabilistic rules

Influx of cells

The influx of water carries cells, which can adhere to the
substratum.

I N is the number of cells carried by the flow
We let νN number of cells adhere to random locations on the
biofilm or substratum.
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Results

Rugosity

We also investigated the effect of rugous surfaces.

Enables biofilms to grow against currents when otherwise they
would be wiped out.
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Results

Patterns

With varying parameter values, the model is able to reproduce
observed behavior

I flat biofilm
I streamers
I ripples
I mushrooms

Baldvin Einarsson UCSB UCM

Fish and Bacteria



Part I Part II

Results

Movies

4 movies
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Results

Thank you!
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Appendix

Cell erosion

The force exerted on a cell due to the flow, τ(cell), is calculated
according to

τ = R(Re) (1− βχ1) (1− f ) (20)

where

f =
1
17

8∑
i=2

ωiχi . (21)

The dimensionless factor β measures the vertical erosion due
to the flow. The functions χi are 1 if neighbor i is present, 0
otherwise. The ωi ’s are weights.

Baldvin Einarsson UCSB UCM

Fish and Bacteria



Part I Part II

Appendix

Cell cohesion
The cohesion of the neighborhood of each cell is calculated as

σ =
σ0

8

8∑
i=1

σi , (22)

where σ0 is a parameter (here 1), and

σi =


0 if cell i is present
α if cell i is present but does not produce EPS matrix
1 if cell i produces EPS matrix

(23)
For now, we let α = 1/2.
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