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Collective Behavior Models

Swarming by Nature or by design?

Fish schools and Birds flocks.
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Collective Behavior Models

Individual Based Models (Particle models)

Swarming = Aggregation of agents of similar size and body type generally moving in
a coordinated way.

Highly developed social organization: insects (locusts, ants, bees ...), fishes, birds,
micro-organisms (myxo-bacteria, ...) and artificial robots for unmanned vehicle
operation.

Interaction regions between individualsa

aAoki, Helmerijk et al., Barbaro, Birnir et al.

Repulsion Region: Rk.

Attraction Region: Ak.

Orientation Region: Ok.
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Collective Behavior Models

2nd Order Model: Newton’s like equations

D’Orsogna, Bertozzi et al. model (PRL 2006):
dxi

dt
= vi,

m
dvi

dt
= (α− β |vi|2)vi −

∑
j 6=i

∇U(|xi − xj|).

Model assumptions:

Self-propulsion and friction terms
determines an asymptotic speed of√
α/β.

Attraction/Repulsion modeled by an
effective pairwise potential U(x).

U(r) = −CAe−r/`A + CRe−r/`R .

One can also use Bessel functions in 2D
and 3D to produce such a potential.

C = CR/CA > 1, ` = `R/`A < 1 and
C`2 < 1:
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Collective Behavior Models

Model with an asymptotic speed

Typical patterns: milling, double milling or flocking:
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Collective Behavior Models

Velocity consensus model

Cucker-Smale Model (IEEE Automatic Control 2007):
dxi

dt
= vi,

dvi

dt
=

N∑
j=1

aij (vj − vi) ,

with the communication rate, γ ≥ 0:

aij = a(|xi − xj|) =
1

(1 + |xi − xj|2)γ
.

Asymptotic flocking: γ < 1/2; Cucker-Smale.
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Variations

Leadership, Geometrical Constraints, and Cone of Influence

Cucker-Smale with local influence regions:
dxi

dt
= vi ,

dvi

dt
=
∑

j∈Σi(t)

a(|xi − xj|)(vj − vi) ,

where Σi(t) ⊂ {1, . . . ,N} is the set of dependence, given by

Σi(t) :=

{
1 ≤ ` ≤ N :

(x` − xi) · vi

|x` − xi||vi|
≥ α

}
.

Cone of Vision:
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Variations

Roosting Forces

Adding a roosting area to the model:
dxi

dt
= vi,

dvi

dt
= (α− β |vi|2)vi −

∑
j 6=i

∇U(|xi − xj|)− v⊥i ∇xi

[
φ(xi) · v⊥i

]
.

with the roosting potential φ given by φ(x) :=
b
4

(
|x|

RRoost

)4

.

Roosting effect: milling flocks N = 400,Rroost = 20.
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Variations

Adding Noise

Self-Propelling/Friction/Interaction with Noise Particle Model:
ẋi = vi,

dvi =

(α− β |vi|2)vi −∇xi

∑
j 6=i

U(|xi − xj|)

 dt +
√

2σ dΓi(t) ,

where Γi(t) are N independent copies of standard Wiener processes with values in
Rd and σ > 0 is the noise strength. The Cucker–Smale Particle Model with Noise:

dxi = vidt ,

dvi =

N∑
j=1

a(|xj − xi|)(vj − vi) dt +

√√√√2σ
m∑

j=1

a(|xj − xi|) dΓi(t) .
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Fixed Speed models

Vicsek’s model

Assume N particles moving at unit speed: reorientation & diffusion:
dXi

t = V i
t dt,

dV i
t =
√

2 P(V i
t ) ◦ dBi

t − P(V i
t )

 1
N

N∑
j=1

K(Xi
t−Xj

t)(V i
t − V j

t )

 dt.

Here P(v) is the projection operator on the tangent space at v/|v| to the unit sphere
in Rd, i.e.,

P(v) = I − v⊗ v
|v|2 .

Noise in the Stratatonovich sense: imposed by the rigorous construction of the
Brownian motion on a manifold. Rigorous derivation: Bolley-Cañizo-Carrillo.

Main issue: phase transition? Degond-Liu-Frouvelle.
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Fixed Speed models

Particle-Particle Interaction

Assumption: agents interact binary (like molecules in a Boltzmann gas):
Carlen-Degond-Wennberg.

CL model (choose the leader): each time that a interaction happens, with certain
probability, one agent decides to follow the other instantaneously.

BDG model (Bertin-Droz-Grégoire): each time that a interaction happens, with
certain probability, both agents decide to follow their average velocity
instantaneously.

Propagation of chaos: finite versus infinite number of particles. In the N →∞ limit,
they lead to Boltzmann like models.
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Vlasov-like Models

Mesoscopic models

Model with asymptotic velocity + Attraction/Repulsion:

∂f
∂t

+ v · ∇xf + divv[(α− β|v|2)v f ]− divv [(∇xU ? ρ)f ] = 0.

Velocity consensus Model:

∂f
∂t

+ v · ∇xf = ∇v ·
[(∫

R2d

v− w
(1 + |x− y|2)γ f (y,w, t) dy dw

)
︸ ︷︷ ︸

:=ξ(f )(x,v,t)

f (x, v, t)
]

Orientation, Attraction and Repulsion:

∂f
∂t

+ v · ∇xf − divv [(∇xU ? ρ)f ] = ∇v · [ξ(f )(x, v, t)f (x, v, t)] .
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Vlasov-like Models

Definition of the distance
Transporting measures:

Given T : Rd −→ Rd mesurable, we say that ν = T#µ, if ν[K] := µ[T−1(K)] for all
mesurable sets K ⊂ Rd, equivalently∫

Rd
ϕ dν =

∫
Rd

(ϕ ◦ T) dµ for all ϕ ∈ Co(Rd) .

Random variables:

Say that X is a random variable with law given by µ, is to say
X : (Ω,A,P) −→ (Rd,Bd) is a mesurable map such that X#P = µ, i.e.,∫

Rd
ϕ(x) dµ =

∫
Ω

(ϕ ◦ X) dP = E [ϕ(X)] .

Kantorovich-Rubinstein-Wasserstein Distance p = 1, 2:
Wp

p (µ, ν) = inf(X,Y) {E [|X − Y|p]}
where (X, Y) are all possible couples of random variables with µ and ν as respective

laws.



icreauab

Motivations Kinetic Models and measure solutions Qualitative Properties Conclusions

Vlasov-like Models

Definition of the distance
Transporting measures:

Given T : Rd −→ Rd mesurable, we say that ν = T#µ, if ν[K] := µ[T−1(K)] for all
mesurable sets K ⊂ Rd, equivalently∫

Rd
ϕ dν =

∫
Rd

(ϕ ◦ T) dµ for all ϕ ∈ Co(Rd) .

Random variables:

Say that X is a random variable with law given by µ, is to say
X : (Ω,A,P) −→ (Rd,Bd) is a mesurable map such that X#P = µ, i.e.,∫

Rd
ϕ(x) dµ =

∫
Ω

(ϕ ◦ X) dP = E [ϕ(X)] .

Kantorovich-Rubinstein-Wasserstein Distance p = 1, 2:
Wp

p (µ, ν) = inf(X,Y) {E [|X − Y|p]}
where (X, Y) are all possible couples of random variables with µ and ν as respective

laws.



icreauab

Motivations Kinetic Models and measure solutions Qualitative Properties Conclusions

Vlasov-like Models

Definition of the distance
Transporting measures:

Given T : Rd −→ Rd mesurable, we say that ν = T#µ, if ν[K] := µ[T−1(K)] for all
mesurable sets K ⊂ Rd, equivalently∫

Rd
ϕ dν =

∫
Rd

(ϕ ◦ T) dµ for all ϕ ∈ Co(Rd) .

Random variables:

Say that X is a random variable with law given by µ, is to say
X : (Ω,A,P) −→ (Rd,Bd) is a mesurable map such that X#P = µ, i.e.,∫

Rd
ϕ(x) dµ =

∫
Ω

(ϕ ◦ X) dP = E [ϕ(X)] .

Kantorovich-Rubinstein-Wasserstein Distance p = 1, 2:
Wp

p (µ, ν) = inf(X,Y) {E [|X − Y|p]}
where (X, Y) are all possible couples of random variables with µ and ν as respective

laws.



icreauab

Motivations Kinetic Models and measure solutions Qualitative Properties Conclusions

Vlasov-like Models

Definition of the distance
Transporting measures:

Given T : Rd −→ Rd mesurable, we say that ν = T#µ, if ν[K] := µ[T−1(K)] for all
mesurable sets K ⊂ Rd, equivalently∫

Rd
ϕ dν =

∫
Rd

(ϕ ◦ T) dµ for all ϕ ∈ Co(Rd) .

Random variables:

Say that X is a random variable with law given by µ, is to say
X : (Ω,A,P) −→ (Rd,Bd) is a mesurable map such that X#P = µ, i.e.,∫

Rd
ϕ(x) dµ =

∫
Ω

(ϕ ◦ X) dP = E [ϕ(X)] .

Kantorovich-Rubinstein-Wasserstein Distance p = 1, 2:
Wp

p (µ, ν) = inf(X,Y) {E [|X − Y|p]}
where (X, Y) are all possible couples of random variables with µ and ν as respective

laws.



icreauab

Motivations Kinetic Models and measure solutions Qualitative Properties Conclusions

Vlasov-like Models

Definition of the distance
Transporting measures:

Given T : Rd −→ Rd mesurable, we say that ν = T#µ, if ν[K] := µ[T−1(K)] for all
mesurable sets K ⊂ Rd, equivalently∫

Rd
ϕ dν =

∫
Rd

(ϕ ◦ T) dµ for all ϕ ∈ Co(Rd) .

Random variables:

Say that X is a random variable with law given by µ, is to say
X : (Ω,A,P) −→ (Rd,Bd) is a mesurable map such that X#P = µ, i.e.,∫

Rd
ϕ(x) dµ =

∫
Ω

(ϕ ◦ X) dP = E [ϕ(X)] .

Kantorovich-Rubinstein-Wasserstein Distance p = 1, 2:
Wp

p (µ, ν) = inf(X,Y) {E [|X − Y|p]}
where (X, Y) are all possible couples of random variables with µ and ν as respective

laws.



icreauab

Motivations Kinetic Models and measure solutions Qualitative Properties Conclusions

Vlasov-like Models

Well-posedness in probability measures1

Existence, uniqueness and stability

Take a potential U ∈ C2
b(Rd), and f0 a measure on Rd × Rd with compact support.

There exists a solution f ∈ C([0,+∞);P1(Rd)) in the sense of solving the equation
through the characteristics: ft := Pt#f0 with Pt the flow map associated to the
equation.

Moreover, the solutions remains compactly supported for all time with a possibly
growing in time support.

Moreover, given any two solutions f and g with initial data f0 and g0, there is an
increasing function depending on the size of the support of the solutions and the
parameters, such that

W1(ft, gt) ≤ α(t) W1(f0, g0)

Hauray-Jabin 2011: mean field limit for Vlasov with potentials such that
|∇U| ≤ r−α, with α < 1.

1Dobrushin-Hepp-Neunzert, 1977-79 for the Vlasov.
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Moreover, given any two solutions f and g with initial data f0 and g0, there is an
increasing function depending on the size of the support of the solutions and the
parameters, such that

W1(ft, gt) ≤ α(t) W1(f0, g0)

Hauray-Jabin 2011: mean field limit for Vlasov with potentials such that
|∇U| ≤ r−α, with α < 1.

1Dobrushin-Hepp-Neunzert, 1977-79 for the Vlasov.
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Vlasov-like Models

Convergence of the particle method

Empirical measures: if xi, vi : [0, T)→ Rd, for i = 1, . . . ,N, is a solution to the
ODE system,

dxi

dt
= vi,

dvi

dt
=

propulsion-friction︷ ︸︸ ︷
(α− β |vi|2)vi −

attraction-repulsion︷ ︸︸ ︷∑
j6=i

mj∇U(|xi − xj|) +

orientation︷ ︸︸ ︷
N∑

j=1

mjaij (vj − vi) .

then the f : [0, T)→ P1(Rd) given by

fN(t) :=
N∑

i=1

miδ(xi(t),vi(t))

is the solution corresponding to initial atomic measures.

Convergence of approximations of measures by particles due to the stability at
any given time T as an alternative derivation of the kinetic models.
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Vlasov-like Models

Mean-Field Limit

Just take as many particles as needed in order to have

W1(ft, f N
t ) ≤ α(t) W1(f0, f N

0 )→ 0 as N →∞

by sampling the initial data in a suitable way.

The sequences of particle solutions becomes a Cauchy sequence with the distance W1

converging to the solution of the kinetic equation.
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Stochastic Mean-Field Limit

Stochastic Particle System

General Interacting Particle System with Noise:

N interacting R2d-valued processes (Xi
t ,V

i
t )t≥0 with 1 ≤ i ≤ N solution of

dXi
t = V i

t dt,

dV i
t =
√

2dBi
t − F(Xi

t ,V
i
t )dt − 1

N

N∑
j=1

H(Xi
t − Xj

t ,V
i
t − V j

t )dt,

with independent and commonly distributed initial data (Xi
0,V

i
0) with 1 ≤ i ≤ N.

Empirical Measure:

f̂ N
t =

1
N

N∑
i=1

δ(Xi
t ,V

i
t )
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Stochastic Mean-Field Limit

Coupling Method 1

Stochastic Particle System Associated to PDE:

N interacting processes (Xi
t,V

i
t)t≥0 solutions of the kinetic McKean-Vlasov type

equation on R2d:
dXi

t = V i
t dt

dV i
t =
√

2 dBi
t − F(Xi

t,V
i
t)dt − H ∗ ft(Xi

t,V
i
t)dt,

(Xi
0,V

i
0) = (Xi

0,V
i
0), ft = law(Xi

t,V
i
t).

The stochastic processes are independent and identically distributed according to

∂tft + v · ∇xft = ∆vft +∇v · ((F + H ∗ ft)ft), t > 0, x, v ∈ Rd.



icreauab

Motivations Kinetic Models and measure solutions Qualitative Properties Conclusions

Stochastic Mean-Field Limit

Coupling Method 1

Stochastic Particle System Associated to PDE:

N interacting processes (Xi
t,V

i
t)t≥0 solutions of the kinetic McKean-Vlasov type

equation on R2d:
dXi

t = V i
t dt

dV i
t =
√

2 dBi
t − F(Xi

t,V
i
t)dt − H ∗ ft(Xi

t,V
i
t)dt,

(Xi
0,V

i
0) = (Xi

0,V
i
0), ft = law(Xi

t,V
i
t).

The stochastic processes are independent and identically distributed according to

∂tft + v · ∇xft = ∆vft +∇v · ((F + H ∗ ft)ft), t > 0, x, v ∈ Rd.



icreauab

Motivations Kinetic Models and measure solutions Qualitative Properties Conclusions

Stochastic Mean-Field Limit

Coupling Method 1

Stochastic Particle System Associated to PDE:

N interacting processes (Xi
t,V

i
t)t≥0 solutions of the kinetic McKean-Vlasov type

equation on R2d:
dXi

t = V i
t dt

dV i
t =
√

2 dBi
t − F(Xi

t,V
i
t)dt − H ∗ ft(Xi

t,V
i
t)dt,

(Xi
0,V

i
0) = (Xi

0,V
i
0), ft = law(Xi

t,V
i
t).

The stochastic processes are independent and identically distributed according to

∂tft + v · ∇xft = ∆vft +∇v · ((F + H ∗ ft)ft), t > 0, x, v ∈ Rd.



icreauab

Motivations Kinetic Models and measure solutions Qualitative Properties Conclusions

Stochastic Mean-Field Limit

Coupling Method 2

Conjecture: The N interacting processes (Xi
t ,V

i
t )t≥0 behave as N →∞ like the

processes (Xi
t,V

i
t)t≥0 associated to the PDE.

More precisely, the objective is to estimate the convergence as N →∞ of

E
[
|Xi

t − Xi
t|2 + |V i

t − V i
t|2
]
≤ ε(N)

Consequences

1. f (1)
t of any of the particles Xi

t at time t converges to ft as N goes to infinity:

W2
2 (f (1)

t , ft) ≤ E
[
|Xi

t − Xi
t|2 + |V i

t − V i
t|2
]
≤ ε(N) .
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Stochastic Mean-Field Limit

Coupling Method 3

Consequences

2. Propagation of chaos: The law f (k)
t of any k particles (Xi

t ,V
i
t ) converges to the

tensor product f⊗k
t as N goes to infinity:

W2
2 (f (k)

t , f⊗k
t ) ≤ kε(N).

3. Convergence of the empirical measure f̂ N
t to ft: if ϕ is a Lipschitz map on R2d,

then

E

[∣∣∣ 1
N

N∑
i=1

ϕ(Xi
t ,V

i
t )−

∫
R2d
ϕ dft

∣∣∣2]

≤ 2E

[
|ϕ(Xi

t ,V
i
t )− ϕ(Xi

t,V
i
t)|2 +

∣∣∣ 1
N

N∑
i=1

ϕ(Xi
t,V

i
t)−

∫
R2d
ϕ dft

∣∣∣2]

≤ ε(N) +
C
N
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Stochastic Mean-Field Limit

Main Result

Previous Results: If the functions involved F and H are globally Lipschitz then there
are classical results by Snitzman and Meleard, implying that

ε(N) = O
(

1
N

)
The typical F and H in our Cucker-Smale and D’Orsogna etal model are not globally
Lipschitz.

Hypotheses:

Assume that F and H with H(−x,−v) = −H(x, v), satisfy

−(v− w) · (F(x, v)− F(x,w)) ≤ A |v− w|2

|F(x, v)− F(y, v)| ≤ L min{|x− y|, 1}(1 + |v|p)

for all x, y, v,w in Rd, and analogously for H instead of F.
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Stochastic Mean-Field Limit

Main Result 2

Properties of the Stochastic Processes and PDE:

Assume that the particle system and the processes have global solutions on [0, T]
with initial data (Xi

0,V
i
0) such that the uniform moment condition holds:

sup
0≤t≤T

{∫
R4d
|H(x− y, v− w)|2dft(x, v)dft(y,w) +

∫
R2d

(|x|2 + ea|v|p
′

)dft(x, v)
}
< +∞

with ft = law(Xi
t,V

i
t) and some p′ > p.

Result:

For all 0 < ε < 1 there exists a constant C such that

E
[
|Xi

t − Xi
t|2 + |V i

t − V i
t|2
]
≤ C

N1−ε

for all 0 ≤ t ≤ T and N ≥ 1.
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Cucker-Smale model
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Cucker-Smale model

Asymptotic Flocking

Let us consider the Np-particle system:
dxi

dt
= vi , xi(0) = x0

i

dvi

dt
=

Np∑
j=1

mja(|xi − xj|) (vj − vi) , vi(0) = v0
i ,

.

Due to translation invariancy, w.l.o.g. the mean velocity is zero and thus the center of
mass is preserved along the evolution, i.e.,

Np∑
i=1

mivi(t) = 0 and
Np∑

i=1

mixi(t) = xc

for all t ≥ 0 and xc ∈ Rd.
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Cucker-Smale model

Asymptotic Flocking

Find a bound independent of
the number of particles for the
time it takes for all the particles
to travel at the mean velocity.
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Cucker-Smale model

Asymptotic Flocking
Unconditional Non-universal Asymptotic Flocking: C.-Fornasier-Rosado-Toscani

Given µ0 ∈M(R2d) compactly supported, then the unique measure-valued solution
to the CS kinetic model with γ ≤ 1/2, satisfies the following bounds on their
supports:

supp µ(t) ⊂ B(xc(0) + mt,Rx(t))× B(m,Rv(t))

for all t ≥ 0, with Rx(t) ≤ R̄ and Rv(t) ≤ R0 e−λt with R̄x depending only on the
initial support radius.
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Qualitative Properties: Model with asymptotic speed
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Qualitative Properties: Model with asymptotic speed

Macroscopic equations
Monokinetic Solutions

Assuming that there is a deterministic velocity for each position and time,
f (x, v, t) = ρ(x, t) δ(v− u(x, t)) is a distributional solution if and only if,

∂ρ

∂t
+ divx(ρu) = 0,

ρ
∂u
∂t

+ ρ (u·∇x)u = ρ (α− β|u|2)u− ρ (∇xU ? ρ).
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Qualitative Properties: Model with asymptotic speed

Particular solutions

Let us look for stationary solutions with an asymptotic speed value β|u(x, t)|2 = α.

Flocking

Traveling wave case, u = const such that β|u(x, t)|2 = α, then ρ(x, t) = ρ̃(x− ut),
and the density is determined by

ρ̃ (∇xU ? ρ̃) = 0,

from which
U ? ρ̃ = C, ρ̃ 6= 0,

in the support of ρ̃ if the support has not empty interior.

Complete set of solutions depending on regularity of the potential and stability are
open problems.
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Conclusions & Open Problems

Simple modelling of the three main mechanisms leads to complicated patterns.
More information from particular species should be included to make more
realistic models (Helmelrijk & collaborators, ...)

Millings can be understood as kinetic measure solutions concentrated on certain
velocities. Geometric constraints: velocities on a sphere. Stability of these
patterns?

Phase transition from ordered to disordered state driven by noise:
(Liu-Frouvelle, 2011) (Barbaro-Cañizo-C.-Degond, work in preparation).

References:
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