A review of 2nd order models for swarming

J. A. Carrillo

ICREA - Universitat Autònoma de Barcelona

BIRS, Banff, 2012

Motivations	
00000000000000000	

Kinetic Models and measure solutions

Qualitative Properties

Outline

Motivations

- Collective Behavior Models
- Variations
- · Fixed Speed models
- Kinetic Models and measure solutions
 - Vlasov-like Models
 - Stochastic Mean-Field Limit

3 Qualitative Properties

- Cucker-Smale model
- Qualitative Properties: Model with asymptotic speed

4 Conclusions

Motivations	Qualitative Properties	
• 00000 0000000		
Collective Behavior Models		

Outline

Motivations

- Collective Behavior Models
- Variations
- Fixed Speed models
- 2 Kinetic Models and measure solutions
 - Vlasov-like Models
 - Stochastic Mean-Field Limit

3 Qualitative Properties

- Cucker-Smale model
- Qualitative Properties: Model with asymptotic speed

4 Conclusions

 Motivations
 Kinetic Models and measure solutions
 Qualitative Properties
 Conclusio

 00000000000
 0000000000
 00000000
 00000000

 Collective Behavior Models
 0
 00000000

Swarming by Nature or by design?

Fish schools and Birds flocks.

 Kinetic Models and measure solutions

Qualitative Properties

Conclusions

Individual Based Models (Particle models)

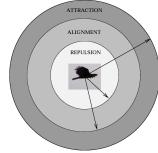
Swarming = Aggregation of agents of similar size and body type generally moving in a coordinated way.

Highly developed social organization: insects (locusts, ants, bees ...), fishes, birds, micro-organisms (myxo-bacteria, ...) and artificial robots for unmanned vehicle operation.

Interaction regions between individuals^a

^{*a*}Aoki, Helmerijk et al., Barbaro, Birnir et al.

- **Repulsion** Region: R_k .
- Attraction Region: A_k .
- Orientation Region: O_k.



 Kinetic Models and measure solutions

Qualitative Properties

Conclusions

Individual Based Models (Particle models)

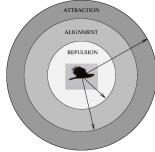
Swarming = Aggregation of agents of similar size and body type generally moving in a coordinated way.

Highly developed social organization: insects (locusts, ants, bees ...), fishes, birds, micro-organisms (myxo-bacteria, ...) and artificial robots for unmanned vehicle operation.

Interaction regions between individuals^a

^{*a*}Aoki, Helmerijk et al., Barbaro, Birnir et al.

- **Repulsion** Region: R_k .
- Attraction Region: A_k .
- Orientation Region: O_k.



 Kinetic Models and measure solutions

Qualitative Properties

Conclusions

Individual Based Models (Particle models)

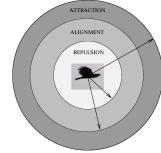
Swarming = Aggregation of agents of similar size and body type generally moving in a coordinated way.

Highly developed social organization: insects (locusts, ants, bees ...), fishes, birds, micro-organisms (myxo-bacteria, ...) and artificial robots for unmanned vehicle operation.

Interaction regions between individuals^a

^aAoki, Helmerijk et al., Barbaro, Birnir et al.

- **Repulsion** Region: R_k .
- Attraction Region: A_k .
- Orientation Region: O_k.



Kinetic Models and measure solutions

Qualitative Properties

2nd Order Model: Newton's like equations

D'Orsogna, Bertozzi et al. model (PRL 2006):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{i \neq i} \nabla U(|x_i - x_j|). \end{cases}$$

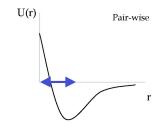
Model assumptions:

- Self-propulsion and friction terms determines an asymptotic speed of $\sqrt{\alpha/\beta}$.
- Attraction/Repulsion modeled by an effective pairwise potential U(x).

 $U(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$

One can also use Bessel functions in 2D and 3D to produce such a potential.

 $C = C_R/C_A > 1, \ \ell = \ell_R/\ell_A < 1$ and $C\ell^2 < 1$:



Kinetic Models and measure solutions

Qualitative Properties

2nd Order Model: Newton's like equations

D'Orsogna, Bertozzi et al. model (PRL 2006):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{j \neq i} \nabla U(|x_i - x_j|). \end{cases}$$

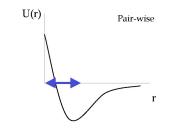
Model assumptions:

- Self-propulsion and friction terms determines an asymptotic speed of $\sqrt{\alpha/\beta}$.
- Attraction/Repulsion modeled by an effective pairwise potential *U*(*x*).

 $U(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$

One can also use Bessel functions in 2D and 3D to produce such a potential.

 $C = C_R/C_A > 1, \, \ell = \ell_R/\ell_A < 1$ and $C\ell^2 < 1$:



Kinetic Models and measure solutions

Qualitative Properties

2nd Order Model: Newton's like equations

D'Orsogna, Bertozzi et al. model (PRL 2006):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{j \neq i} \nabla U(|x_i - x_j|). \end{cases}$$

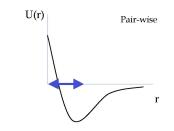
Model assumptions:

- Self-propulsion and friction terms determines an asymptotic speed of $\sqrt{\alpha/\beta}$.
- Attraction/Repulsion modeled by an effective pairwise potential U(x).

 $U(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$

One can also use Bessel functions in 2D and 3D to produce such a potential.

 $C = C_R/C_A > 1, \ \ell = \ell_R/\ell_A < 1$ and $C\ell^2 < 1$:



Kinetic Models and measure solutions

Qualitative Properties

2nd Order Model: Newton's like equations

D'Orsogna, Bertozzi et al. model (PRL 2006):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ m\frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{i \neq i} \nabla U(|x_i - x_j|). \end{cases}$$

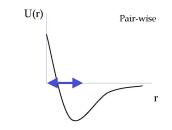
Model assumptions:

- Self-propulsion and friction terms determines an asymptotic speed of $\sqrt{\alpha/\beta}$.
- Attraction/Repulsion modeled by an effective pairwise potential *U*(*x*).

 $U(r) = -C_A e^{-r/\ell_A} + C_R e^{-r/\ell_R}.$

One can also use Bessel functions in 2D and 3D to produce such a potential.

$$C = C_R/C_A > 1, \ \ell = \ell_R/\ell_A < 1$$
 and $C\ell^2 < 1$:



Motivations	Qualitative Properties	
0000000000000		
Collective Behavior Models		

Model with an asymptotic speed

Typical patterns: milling, double milling or flocking:

Motivations		Qualitative Properties	
000000000000	000000000000	00000000	
Collective Behavior Models			
Velocity con	nsensus model		

Cucker-Smale Model (IEEE Automatic Control 2007):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ \frac{dv_i}{dt} = \sum_{j=1}^N a_{ij} (v_j - v_i), \end{cases}$$

with the communication rate, $\gamma \geq 0$:

$$a_{ij} = a(|x_i - x_j|) = \frac{1}{(1 + |x_i - x_j|^2)^{\gamma}}.$$

Asymptotic flocking: $\gamma < 1/2$; Cucker-Smale.

Motivations		Qualitative Properties	
000000000000	000000000000	00000000	
Collective Behavior Models			
Velocity con	nsensus model		

Cucker-Smale Model (IEEE Automatic Control 2007):

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ \frac{dv_i}{dt} = \sum_{j=1}^N a_{ij} (v_j - v_i), \end{cases}$$

with the communication rate, $\gamma \ge 0$:

$$a_{ij} = a(|x_i - x_j|) = \frac{1}{(1 + |x_i - x_j|^2)^{\gamma}}.$$

Asymptotic flocking: $\gamma < 1/2$; Cucker-Smale.

Motivations	Qualitative Properties	
000000000000000		
Variations		

Outline

Motivations

- Collective Behavior Models
- Variations
- Fixed Speed models
- 2 Kinetic Models and measure solutions
 - Vlasov-like Models
 - Stochastic Mean-Field Limit

3 Qualitative Properties

- Cucker-Smale model
- Qualitative Properties: Model with asymptotic speed

4 Conclusions

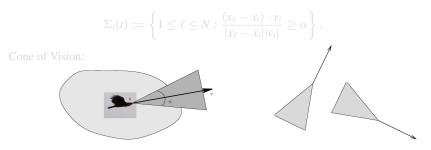
Motivations	Qualitative Properties	
0000000000000		
Variations		

Leadership, Geometrical Constraints, and Cone of Influence

Cucker-Smale with local influence regions:

$$egin{aligned} &rac{dx_i}{dt} = v_i \;, \ &rac{dv_i}{dt} = \sum_{j \in \Sigma_i(t)} a(|x_i - x_j|)(v_j - v_i) \;, \end{aligned}$$

where $\Sigma_i(t) \subset \{1, \ldots, N\}$ is the set of dependence, given by



Motivations	Qualitative Properties	
00000000000000		
Variations		

Leadership, Geometrical Constraints, and Cone of Influence

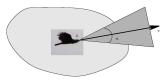
Cucker-Smale with local influence regions:

$$\begin{bmatrix} \frac{dx_i}{dt} = v_i ,\\ \frac{dv_i}{dt} = \sum_{j \in \Sigma_i(t)} a(|x_i - x_j|)(v_j - v_i) , \end{bmatrix}$$

where $\Sigma_i(t) \subset \{1, \ldots, N\}$ is the set of dependence, given by

$$\Sigma_i(t) := \left\{ 1 \le \ell \le N : \frac{(x_\ell - x_i) \cdot v_i}{|x_\ell - x_i| |v_i|} \ge \alpha \right\}.$$

Cone of Vision:

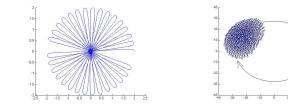


Motivations	Qualitative Properties	
00000000000000		
Variations		

Roosting Forces

Adding a roosting area to the model:

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ \frac{dv_i}{dt} = (\alpha - \beta |v_i|^2)v_i - \sum_{j \neq i} \nabla U(|x_i - x_j|) - v_i^{\perp} \nabla_{x_i} \left[\phi(x_i) \cdot v_i^{\perp}\right], \\ \text{with the roosting potential } \phi \text{ given by } \phi(x) := \frac{b}{4} \left(\frac{|x|}{R_{\text{Roost}}}\right)^4. \\ \text{Roosting effect: milling flocks } N = 400, R_{\text{roost}} = 20. \end{cases}$$



Motivations			
000000000000000000	00000000000	0000000	
Variations			
Adding Noi	se		

Self-Propelling/Friction/Interaction with Noise Particle Model:

$$\begin{cases} \dot{x}_i = v_i, \\ dv_i = \left[(\alpha - \beta |v_i|^2) v_i - \nabla_{x_i} \sum_{j \neq i} U(|x_i - x_j|) \right] dt + \sqrt{2\sigma} \, d\Gamma_i(t) \;, \end{cases}$$

where $\Gamma_i(t)$ are *N* independent copies of standard Wiener processes with values in \mathbb{R}^d and $\sigma > 0$ is the noise strength. The Cucker–Smale Particle Model with Noise:

$$\begin{cases} dx_i = v_i dt , \\ dv_i = \sum_{j=1}^N a(|x_j - x_i|)(v_j - v_i) dt + \sqrt{2\sigma \sum_{j=1}^m a(|x_j - x_i|)} d\Gamma_i(t) . \end{cases}$$

Motivations		Qualitative Properties	
00000000000000			
Variations			
Adding Noise	•		

Self-Propelling/Friction/Interaction with Noise Particle Model:

$$\begin{cases} \dot{x}_i = v_i, \\ dv_i = \left[(\alpha - \beta |v_i|^2) v_i - \nabla_{x_i} \sum_{j \neq i} U(|x_i - x_j|) \right] dt + \sqrt{2\sigma} \, d\Gamma_i(t) , \end{cases}$$

where $\Gamma_i(t)$ are *N* independent copies of standard Wiener processes with values in \mathbb{R}^d and $\sigma > 0$ is the noise strength. The Cucker–Smale Particle Model with Noise:

$$\begin{cases} dx_i = v_i dt , \\ dv_i = \sum_{j=1}^N a(|x_j - x_i|)(v_j - v_i) dt + \sqrt{2\sigma \sum_{j=1}^m a(|x_j - x_i|)} d\Gamma_i(t) . \end{cases}$$

Motivations	Qualitative Properties	
000000000000000000000000000000000000000		
Fixed Speed models		

Outline

Motivations

- Collective Behavior Models
- Variations
- Fixed Speed models

2 Kinetic Models and measure solutions

- Vlasov-like Models
- Stochastic Mean-Field Limit

3 Qualitative Properties

- Cucker-Smale model
- Qualitative Properties: Model with asymptotic speed

4 Conclusions

OOOOOOOOOOOO Fixed Speed models	00000000000	0000000	
Vicsek's mo	odel		

$$\begin{cases} dX_t^i = V_t^i dt, \\ dV_t^i = \sqrt{2} P(V_t^i) \circ dB_t^i - P(V_t^i) \left(\frac{1}{N} \sum_{j=1}^N K(X_t^i - X_t^j)(V_t^i - V_t^j)\right) dt. \end{cases}$$

Here P(v) is the projection operator on the tangent space at v/|v| to the unit sphere in \mathbb{R}^d , i.e.,

$$P(v) = I - \frac{v \otimes v}{|v|^2}.$$

Noise in the Stratatonovich sense: imposed by the rigorous construction of the Brownian motion on a manifold. Rigorous derivation: Bolley-Cañizo-Carrillo.

OOOOOOOOOOOOO Fixed Speed models	00000000000	0000000	
Vicsek's mo	odel		

$$\begin{cases} dX_t^i = V_t^i dt, \\ dV_t^i = \sqrt{2} P(V_t^i) \circ dB_t^i - P(V_t^i) \left(\frac{1}{N} \sum_{j=1}^N K(X_t^i - X_t^j)(V_t^i - V_t^j)\right) dt. \end{cases}$$

Here P(v) is the projection operator on the tangent space at v/|v| to the unit sphere in \mathbb{R}^d , i.e.,

$$P(v) = I - \frac{v \otimes v}{|v|^2} \,.$$

Noise in the Stratatonovich sense: imposed by the rigorous construction of the Brownian motion on a manifold. Rigorous derivation: Bolley-Cañizo-Carrillo.

Motivations	Kinetic Models and measure solutions	Qualitative Properties	
Fixed Speed models			
Vicsek's mo	odel		

$$\begin{cases} dX_t^i = V_t^i dt, \\ dV_t^i = \sqrt{2} P(V_t^i) \circ dB_t^i - P(V_t^i) \left(\frac{1}{N} \sum_{j=1}^N K(X_t^i - X_t^j)(V_t^i - V_t^j)\right) dt. \end{cases}$$

Here P(v) is the projection operator on the tangent space at v/|v| to the unit sphere in \mathbb{R}^d , i.e.,

$$P(v) = I - \frac{v \otimes v}{|v|^2} \,.$$

Noise in the Stratatonovich sense: imposed by the rigorous construction of the Brownian motion on a manifold. Rigorous derivation: Bolley-Cañizo-Carrillo.

Motivations ○○○○○○○○○○●○	Kinetic Models and measure solutions	Qualitative Properties	
Fixed Speed models			
Vicsek's mo	odel		

$$\begin{cases} dX_t^i = V_t^i dt, \\ dV_t^i = \sqrt{2} P(V_t^i) \circ dB_t^i - P(V_t^i) \left(\frac{1}{N} \sum_{j=1}^N K(X_t^i - X_t^j)(V_t^i - V_t^j)\right) dt. \end{cases}$$

Here P(v) is the projection operator on the tangent space at v/|v| to the unit sphere in \mathbb{R}^d , i.e.,

$$P(v) = I - \frac{v \otimes v}{|v|^2}.$$

Noise in the Stratatonovich sense: imposed by the rigorous construction of the Brownian motion on a manifold. Rigorous derivation: Bolley-Cañizo-Carrillo.

Motivations ○○○○○○○○○○●○	Kinetic Models and measure solutions	Qualitative Properties	
Fixed Speed models			
Vicsek's mo	odel		

$$\begin{cases} dX_t^i = V_t^i dt, \\ dV_t^i = \sqrt{2} P(V_t^i) \circ dB_t^i - P(V_t^i) \left(\frac{1}{N} \sum_{j=1}^N K(X_t^i - X_t^j)(V_t^i - V_t^j)\right) dt. \end{cases}$$

Here P(v) is the projection operator on the tangent space at v/|v| to the unit sphere in \mathbb{R}^d , i.e.,

$$P(v) = I - \frac{v \otimes v}{|v|^2}.$$

Noise in the Stratatonovich sense: imposed by the rigorous construction of the Brownian motion on a manifold. Rigorous derivation: Bolley-Cañizo-Carrillo.

 Motivations
 Kinetic Models and measure solutions
 Qualitative Properties
 Conclusions

 000000000
 00000000000
 000000000
 00000000

 Fixed Speed models
 0000000000
 0000000000

Particle-Particle Interaction

Assumption: agents interact binary (like molecules in a Boltzmann gas): Carlen-Degond-Wennberg.

CL model (choose the leader): each time that a interaction happens, with certain probability, one agent decides to follow the other instantaneously.

BDG model (Bertin-Droz-Grégoire): each time that a interaction happens, with certain probability, both agents decide to follow their average velocity instantaneously.

Motivations	Qualitative Properties	
0000000000000		
Fixed Speed models		

Particle-Particle Interaction

Assumption: agents interact binary (like molecules in a Boltzmann gas): Carlen-Degond-Wennberg.

CL model (choose the leader): each time that a interaction happens, with certain probability, one agent decides to follow the other instantaneously.

BDG model (Bertin-Droz-Grégoire): each time that a interaction happens, with certain probability, both agents decide to follow their average velocity instantaneously.

Motivations	Qualitative Properties	
0000000000000		
Fixed Speed models		

Particle-Particle Interaction

Assumption: agents interact binary (like molecules in a Boltzmann gas): Carlen-Degond-Wennberg.

CL model (choose the leader): each time that a interaction happens, with certain probability, one agent decides to follow the other instantaneously.

BDG model (Bertin-Droz-Grégoire): each time that a interaction happens, with certain probability, both agents decide to follow their average velocity instantaneously.

Motivations	Qualitative Properties	
0000000000000		
Fixed Speed models		

Particle-Particle Interaction

Assumption: agents interact binary (like molecules in a Boltzmann gas): Carlen-Degond-Wennberg.

CL model (choose the leader): each time that a interaction happens, with certain probability, one agent decides to follow the other instantaneously.

BDG model (Bertin-Droz-Grégoire): each time that a interaction happens, with certain probability, both agents decide to follow their average velocity instantaneously.

Motivations 0000000000000 Vlasov-like Models Kinetic Models and measure solutions

Qualitative Properties

Outline

Motivations

- Collective Behavior Models
- Variations
- Fixed Speed models

2 Kinetic Models and measure solutions • Vlasov-like Models

• Stochastic Mean-Field Limit

3 Qualitative Properties

- Cucker-Smale model
- Qualitative Properties: Model with asymptotic speed

4 Conclusions

	Kinetic Models and measure solutions	Qualitative Properties	
	00000000000		
Vlasov-like Models			
Mesoscopic	c models		

Model with asymptotic velocity + Attraction/Repulsion:

$$rac{\partial f}{\partial t} + v \cdot
abla_x f + \operatorname{div}_{v}[(lpha - eta |v|^2)vf] - \operatorname{div}_{v}[(
abla_x U \star
ho)f] = 0.$$

Velocity consensus Model:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f = \nabla_v \cdot \left[\underbrace{\left(\int_{\mathbb{R}^{2d}} \frac{v - w}{(1 + |x - y|^2)^{\gamma}} f(y, w, t) \, dy \, dw \right)}_{:=\xi(f)(x, v, t)} f(x, v, t) \right]$$

Orientation, Attraction and Repulsion:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f - \operatorname{div}_v \left[(\nabla_x U \star \rho) f \right] = \nabla_v \cdot \left[\xi(f)(x, v, t) f(x, v, t) \right].$$

	Kinetic Models and measure solutions	Qualitative Properties	
	00000000000		
Vlasov-like Models			
Mesoscopic	c models		

Model with asymptotic velocity + Attraction/Repulsion:

$$rac{\partial f}{\partial t} + v \cdot
abla_x f + \operatorname{div}_{v}[(lpha - eta |v|^2)vf] - \operatorname{div}_{v}[(
abla_x U \star
ho)f] = 0.$$

Velocity consensus Model:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f = \nabla_v \cdot \left[\underbrace{\left(\int_{\mathbb{R}^{2d}} \frac{v - w}{(1 + |x - y|^2)^{\gamma}} f(y, w, t) \, dy \, dw \right)}_{:=\xi(f)(x, v, t)} f(x, v, t) \right]$$

Orientation, Attraction and Repulsion:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f - \operatorname{div}_v \left[(\nabla_x U \star \rho) f \right] = \nabla_v \cdot \left[\xi(f)(x, v, t) f(x, v, t) \right].$$

	Kinetic Models and measure solutions	Qualitative Properties	
	00000000000		
Vlasov-like Models			
Mesoscopic	c models		

Model with asymptotic velocity + Attraction/Repulsion:

$$rac{\partial f}{\partial t} + v \cdot
abla_x f + \operatorname{div}_{v}[(lpha - eta |v|^2)vf] - \operatorname{div}_{v}[(
abla_x U \star
ho)f] = 0.$$

Velocity consensus Model:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f = \nabla_v \cdot \left[\underbrace{\left(\int_{\mathbb{R}^{2d}} \frac{v - w}{(1 + |x - y|^2)^{\gamma}} f(y, w, t) \, dy \, dw \right)}_{:=\xi(f)(x, v, t)} f(x, v, t) \right]$$

Orientation, Attraction and Repulsion:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_{x} f - \operatorname{div}_{v} \left[(\nabla_{x} U \star \rho) f \right] = \nabla_{v} \cdot \left[\xi(f)(x, v, t) f(x, v, t) \right].$$

Motivations	Kinetic Models and measure solutions	Qualitative Properties	
	00000000000		
Vlasov-like Models			
Definition of	of the distance		
Transporting	measures:		
Given $T : \mathbb{R}^d$ mesurable se	$\overset{d}{\longrightarrow} \mathbb{R}^d$ mesurable, we say that ν ets $K \subset \mathbb{R}^d$, equivalently	$= T \# \mu$, if $\nu[K] := \mu[T^{-1}($	K)] for all

Random variables:

Say that X is a random variable with law given by μ , is to say $X : (\Omega, \mathcal{A}, P) \longrightarrow (\mathbb{R}^d, \mathcal{B}_d)$ is a mesurable map such that $X \# P = \mu$, i.e.,

$$\int_{\mathbb{R}^d} \varphi(x) \, d\mu = \int_{\Omega} (\varphi \circ X) \, dP = \mathbb{E}\left[\varphi(X)\right].$$

Kantorovich-Rubinstein-Wasserstein Distance p = 1, 2: $W_p^p(\mu, \nu) = \inf_{(X,Y)} \{\mathbb{E}[|X - Y|^p]\}$

where (X, Y) are all possible couples of random variables with μ and ν as respective laws.

	00000000000		
Vlasov-like Models			
Definition of t			
Transporting me			
Given $T : \mathbb{R}^d$ —	$\rightarrow \mathbb{R}^d$ mesurable, we say	that $\nu = T \# \mu$, if $\nu[K] := \mu[T^{-1}(K)]$ for a	ıll

Given $T : \mathbb{R}^d \longrightarrow \mathbb{R}^d$ mesurable, we say that $\nu = T \# \mu$, if $\nu[K] := \mu[T^{-1}(K)]$ for all mesurable sets $K \subset \mathbb{R}^d$, equivalently

$$\int_{\mathbb{R}^d} \varphi \, d\nu = \int_{\mathbb{R}^d} (\varphi \circ T) \, d\mu \qquad \text{for all } \varphi \in C_o(\mathbb{R}^d) \, .$$

Random variables:

Say that *X* is a random variable with law given by μ , is to say $X : (\Omega, \mathcal{A}, P) \longrightarrow (\mathbb{R}^d, \mathcal{B}_d)$ is a mesurable map such that $X \# P = \mu$, i.e.,

$$\int_{\mathbb{R}^d} \varphi(x) \, d\mu = \int_{\Omega} (\varphi \circ X) \, dP = \mathbb{E}\left[\varphi(X)\right].$$

Kantorovich-Rubinstein-Wasserstein Distance p = 1, 2: $W_p^p(\mu, \nu) = \inf_{(X,Y)} \{\mathbb{E} [|X - Y|^p]\}$

where (X, Y) are all possible couples of random variables with μ and ν as respective laws.

	Riffette Wodels and measure solutions	Quantative Tropentes	
	00000000000		
Vlasov-like Models			
Definition of	the distance		
Transporting me	asures:		
		at $\nu = T \# \mu$, if $\nu[K] := \mu[T^{-1}(K)]$	()] for all
mesurable sets <i>k</i>	$X \subset \mathbb{R}^d$, equivalently		

$$\int_{\mathbb{R}^d} \varphi \, d\nu = \int_{\mathbb{R}^d} (\varphi \circ T) \, d\mu \qquad \text{for all } \varphi \in C_o(\mathbb{R}^d) \, .$$

Random variables:

Say that *X* is a random variable with law given by μ , is to say $X : (\Omega, \mathcal{A}, P) \longrightarrow (\mathbb{R}^d, \mathcal{B}_d)$ is a mesurable map such that $X \# P = \mu$, i.e.,

$$\int_{\mathbb{R}^d} \varphi(x) \, d\mu = \int_{\Omega} (\varphi \circ X) \, dP = \mathbb{E} \left[\varphi(X) \right].$$

Kantorovich-Rubinstein-Wasserstein Distance p = 1, 2: $W_p^p(\mu, \nu) = \inf_{(X,Y)} \{ \mathbb{E} [[X - Y]^p] \}$

where (X, Y) are all possible couples of random variables with μ and ν as respective laws.

	Relieve wooders and measure solutions	Quantative Properties	
	00000000000		
Vlasov-like Models			
Definition o	f the distance		
Transporting	measures:		
	$\longrightarrow \mathbb{R}^d$ mesurable, we say that ι is $K \subset \mathbb{R}^d$, equivalently	$\nu = T \# \mu$, if $\nu[K] := \mu[T^{-1}(K)]$	()] for all

$$\int_{\mathbb{R}^d} \varphi \, d\nu = \int_{\mathbb{R}^d} (\varphi \circ T) \, d\mu \quad \text{for all } \varphi \in C_o(\mathbb{R}^d) \, .$$

Random variables:

Say that *X* is a random variable with law given by μ , is to say $X : (\Omega, \mathcal{A}, P) \longrightarrow (\mathbb{R}^d, \mathcal{B}_d)$ is a mesurable map such that $X \# P = \mu$, i.e.,

$$\int_{\mathbb{R}^d} \varphi(x) \, d\mu = \int_{\Omega} (\varphi \circ X) \, dP = \mathbb{E} \left[\varphi(X) \right].$$

Kantorovich-Rubinstein-Wasserstein Distance p = 1, 2: $W_p^p(\mu, \nu) = \inf_{(X,Y)} \{ \mathbb{E} [|X - Y|^p] \}$

where (X, Y) are all possible couples of random variables with μ and ν as respective laws.

	Relieve wooders and measure solutions	Quantative Properties	
	00000000000		
Vlasov-like Models			
Definition o	f the distance		
Transporting	measures:		
	$\longrightarrow \mathbb{R}^d$ mesurable, we say that ι is $K \subset \mathbb{R}^d$, equivalently	$\nu = T \# \mu$, if $\nu[K] := \mu[T^{-1}(K)]$	()] for all

$$\int_{\mathbb{R}^d} \varphi \, d\nu = \int_{\mathbb{R}^d} (\varphi \circ T) \, d\mu \qquad \text{for all } \varphi \in C_o(\mathbb{R}^d) \, .$$

Random variables:

Say that *X* is a random variable with law given by μ , is to say $X : (\Omega, \mathcal{A}, P) \longrightarrow (\mathbb{R}^d, \mathcal{B}_d)$ is a mesurable map such that $X \# P = \mu$, i.e.,

$$\int_{\mathbb{R}^d} \varphi(x) \, d\mu = \int_{\Omega} (\varphi \circ X) \, dP = \mathbb{E} \left[\varphi(X) \right].$$

Kantorovich-Rubinstein-Wasserstein Distance p = 1, 2: $W_p^p(\mu, \nu) = \inf_{(X,Y)} \{ \mathbb{E} [|X - Y|^p] \}$

where (X, Y) are all possible couples of random variables with μ and ν as respective laws.

Vlasov-like Models

Kinetic Models and measure solutions

Well-posedness in probability measures¹

Existence, uniqueness and stability

Take a potential $U \in \mathcal{C}^2_h(\mathbb{R}^d)$, and f_0 a measure on $\mathbb{R}^d \times \mathbb{R}^d$ with compact support. There exists a solution $f \in \mathcal{C}([0, +\infty); \mathcal{P}_1(\mathbb{R}^d))$ in the sense of solving the equation through the characteristics: $f_t := P^t \# f_0$ with P^t the flow map associated to the equation.

¹ Dobrushin-Hepp-Neunzert, 1977-79 for the Vlasov.

Motivations 0000000000000 Vlasov-like Models Kinetic Models and measure solutions

Qualitative Properties

Well-posedness in probability measures¹

Existence, uniqueness and stability

Take a potential $U \in C_b^2(\mathbb{R}^d)$, and f_0 a measure on $\mathbb{R}^d \times \mathbb{R}^d$ with compact support. There exists a solution $f \in C([0, +\infty); \mathcal{P}_1(\mathbb{R}^d))$ in the sense of solving the equation through the characteristics: $f_t := P^t \# f_0$ with P^t the flow map associated to the equation.

Moreover, the solutions remains compactly supported for all time with a possibly growing in time support.

Moreover, given any two solutions f and g with initial data f_0 and g_0 , there is an increasing function depending on the size of the support of the solutions and the parameters, such that

 $W_1(f_t,g_t) \leq \alpha(t) W_1(f_0,g_0)$

Hauray-Jabin 2011: mean field limit for Vlasov with potentials such that $|\nabla U| \leq r^{-\alpha}$, with $\alpha < 1$.

¹ Dobrushin-Hepp-Neunzert, 1977-79 for the Vlasov.

Motivations 0000000000000 Vlasov-like Models Kinetic Models and measure solutions

Qualitative Properties

Conclusions

Well-posedness in probability measures¹

Existence, uniqueness and stability

Take a potential $U \in C_b^2(\mathbb{R}^d)$, and f_0 a measure on $\mathbb{R}^d \times \mathbb{R}^d$ with compact support. There exists a solution $f \in C([0, +\infty); \mathcal{P}_1(\mathbb{R}^d))$ in the sense of solving the equation through the characteristics: $f_t := P^t \# f_0$ with P^t the flow map associated to the equation.

Moreover, the solutions remains compactly supported for all time with a possibly growing in time support.

Moreover, given any two solutions f and g with initial data f_0 and g_0 , there is an increasing function depending on the size of the support of the solutions and the parameters, such that

 $W_1(f_t,g_t) \leq \alpha(t) W_1(f_0,g_0)$

Hauray-Jabin 2011: mean field limit for Vlasov with potentials such that $|\nabla U| \leq r^{-\alpha}$, with $\alpha < 1$.

¹ Dobrushin-Hepp-Neunzert, 1977-79 for the Vlasov.

Motivations 0000000000000 Vlasov-like Models Kinetic Models and measure solutions

Qualitative Properties

Conclusions

Well-posedness in probability measures¹

Existence, uniqueness and stability

Take a potential $U \in C_b^2(\mathbb{R}^d)$, and f_0 a measure on $\mathbb{R}^d \times \mathbb{R}^d$ with compact support. There exists a solution $f \in C([0, +\infty); \mathcal{P}_1(\mathbb{R}^d))$ in the sense of solving the equation through the characteristics: $f_t := P^t \# f_0$ with P^t the flow map associated to the equation.

Moreover, the solutions remains compactly supported for all time with a possibly growing in time support.

Moreover, given any two solutions f and g with initial data f_0 and g_0 , there is an increasing function depending on the size of the support of the solutions and the parameters, such that

 $W_1(f_t,g_t) \leq \alpha(t) W_1(f_0,g_0)$

Hauray-Jabin 2011: mean field limit for Vlasov with potentials such that $|\nabla U| \leq r^{-\alpha}$, with $\alpha < 1$.

¹ Dobrushin-Hepp-Neunzert, 1977-79 for the Vlasov.

Convergence of the particle method

• Empirical measures: if $x_i, v_i : [0, T) \to \mathbb{R}^d$, for i = 1, ..., N, is a solution to the ODE system,

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ \frac{dv_i}{dt} = \underbrace{(\alpha - \beta |v_i|^2)v_i}_{j \neq i} - \underbrace{\sum_{j \neq i}^{\text{attraction-repulsion}} m_j \nabla U(|x_i - x_j|)}_{j \neq i} + \underbrace{\sum_{j=1}^{N} m_j a_{ij} (v_j - v_i)}_{j = 1}. \end{cases}$$

then the $f:[0,T) \to \mathcal{P}_1(\mathbb{R}^d)$ given by

$$f_N(t) := \sum_{i=1}^N m_i \delta_{(x_i(t), v_i(t))}$$

is the solution corresponding to initial atomic measures.

Convergence of the particle method

• Empirical measures: if $x_i, v_i : [0, T) \to \mathbb{R}^d$, for i = 1, ..., N, is a solution to the ODE system,

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ \frac{dv_i}{dt} = \overbrace{(\alpha - \beta |v_i|^2)v_i}^{\text{propulsion-friction}} - \overbrace{\sum_{j \neq i}^{\text{attraction-repulsion}}}^{\text{attraction-repulsion}} + \overbrace{\sum_{j=1}^{N} m_j a_{ij} (v_j - v_i)}^{\text{orientation}}. \end{cases}$$

then the $f:[0,T) \to \mathcal{P}_1(\mathbb{R}^d)$ given by

$$f_N(t) := \sum_{i=1}^N m_i \delta_{(x_i(t), v_i(t))}$$

is the solution corresponding to initial atomic measures.

Convergence of the particle method

• Empirical measures: if $x_i, v_i : [0, T) \to \mathbb{R}^d$, for i = 1, ..., N, is a solution to the ODE system,

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ \frac{dv_i}{dt} = \overbrace{(\alpha - \beta |v_i|^2)v_i}^{\text{propulsion-friction}} - \overbrace{\sum_{j \neq i}^{\text{attraction-repulsion}}_{j \neq i} m_j \nabla U(|x_i - x_j|) + \overbrace{\sum_{j=1}^{N} m_j a_{ij} (v_j - v_i)}^{\text{orientation}}. \end{cases}$$

then the $f:[0,T) \to \mathcal{P}_1(\mathbb{R}^d)$ given by

$$f_N(t) := \sum_{i=1}^N m_i \delta_{(x_i(t), v_i(t))}$$

is the solution corresponding to initial atomic measures.

Convergence of the particle method

• Empirical measures: if $x_i, v_i : [0, T) \to \mathbb{R}^d$, for i = 1, ..., N, is a solution to the ODE system,

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ \frac{dv_i}{dt} = \underbrace{(\alpha - \beta |v_i|^2)v_i}_{j \neq i} - \underbrace{\sum_{j \neq i} m_j \nabla U(|x_i - x_j|)}_{j \neq i} + \underbrace{\sum_{j=1}^N m_j a_{ij}(v_j - v_i)}_{j=1}. \end{cases}$$

then the $f:[0,T) \to \mathcal{P}_1(\mathbb{R}^d)$ given by

$$f_N(t) := \sum_{i=1}^N m_i \delta_{(x_i(t), v_i(t))}$$

is the solution corresponding to initial atomic measures.

Convergence of the particle method

• Empirical measures: if $x_i, v_i : [0, T) \to \mathbb{R}^d$, for i = 1, ..., N, is a solution to the ODE system,

$$\begin{cases} \frac{dx_i}{dt} = v_i, \\ \frac{dv_i}{dt} = \underbrace{(\alpha - \beta |v_i|^2)v_i}_{j \neq i} - \underbrace{\sum_{j \neq i} m_j \nabla U(|x_i - x_j|)}_{j \neq i} + \underbrace{\sum_{j=1}^N m_j a_{ij}(v_j - v_i)}_{j = 1}. \end{cases}$$

then the $f:[0,T) \to \mathcal{P}_1(\mathbb{R}^d)$ given by

$$f_N(t) := \sum_{i=1}^N m_i \delta_{(x_i(t), v_i(t))}$$

is the solution corresponding to initial atomic measures.

	Kinetic Models and measure solutions	Qualitative Properties	
	000000000000		
Vlasov-like Models			
Mean-Field I	Limit		

Just take as many particles as needed in order to have

$$W_1(f_t, f_t^N) \le \alpha(t) W_1(f_0, f_0^N) \to 0$$
 as $N \to \infty$

by sampling the initial data in a suitable way.

The sequences of particle solutions becomes a Cauchy sequence with the distance W_1 converging to the solution of the kinetic equation.

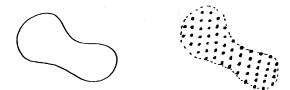
	Kinetic Models and measure solutions	Qualitative Properties	
000000000000	00000000000	0000000	
Vlasov-like Models			
Mean-Field I	Limit		

Just take as many particles as needed in order to have

 $W_1(f_t, f_t^N) \le \alpha(t) W_1(f_0, f_0^N) \to 0$ as $N \to \infty$

by sampling the initial data in a suitable way.

The sequences of particle solutions becomes a Cauchy sequence with the distance W_1 converging to the solution of the kinetic equation.



	Kinetic Models and measure solutions	Qualitative Properties	
000000000000	000000000000	0000000	
Stochastic Mean-Field Limit			

Outline

Motivations

- Collective Behavior Models
- Variations
- Fixed Speed models

Kinetic Models and measure solutions

- Vlasov-like Models
- Stochastic Mean-Field Limit

3 Qualitative Properties

- Cucker-Smale model
- Qualitative Properties: Model with asymptotic speed

4 Conclusions

	Kinetic Models and measure solutions	Qualitative Properties	
	000000000000		
Stochastic Mean-Field Limit			

Stochastic Particle System

General Interacting Particle System with Noise:

N interacting \mathbb{R}^{2d} -valued processes $(X_t^i, V_t^i)_{t\geq 0}$ with $1 \leq i \leq N$ solution of

$$\begin{cases} dX_t^i = V_t^i dt, \\ dV_t^i = \sqrt{2} dB_t^i - F(X_t^i, V_t^i) dt - \frac{1}{N} \sum_{j=1}^N H(X_t^i - X_t^j, V_t^i - V_t^j) dt, \end{cases}$$

with independent and commonly distributed initial data (X_0^i, V_0^i) with $1 \le i \le N$.

Empirical Measure:

$$\hat{f}_t^N = \frac{1}{N} \sum_{i=1}^N \delta_{(X_t^i, V_t^i)}$$

	Kinetic Models and measure solutions	Qualitative Properties					
	00000000000						
Stochastic Mean-Field Limit	Stochastic Mean-Field Limit						
Stochastic Particle System							

General Interacting Particle System with Noise:

N interacting \mathbb{R}^{2d} -valued processes $(X_t^i, V_t^i)_{t\geq 0}$ with $1 \leq i \leq N$ solution of

$$\begin{cases} dX_t^i = V_t^i dt, \\ dV_t^i = \sqrt{2} dB_t^i - F(X_t^i, V_t^i) dt - \frac{1}{N} \sum_{j=1}^N H(X_t^i - X_t^j, V_t^i - V_t^j) dt, \end{cases}$$

with independent and commonly distributed initial data (X_0^i, V_0^i) with $1 \le i \le N$.

Empirical Measure:

$$\hat{f}_t^N = \frac{1}{N} \sum_{i=1}^N \delta_{(X_t^i, V_t^i)}$$

	Kinetic Models and measure solutions	Qualitative Properties				
	00000000000					
Stochastic Mean-Field Limit						
Stochastic Particle System						

General Interacting Particle System with Noise:

N interacting \mathbb{R}^{2d} -valued processes $(X_t^i, V_t^i)_{t\geq 0}$ with $1 \leq i \leq N$ solution of

$$\begin{cases} dX_t^i = V_t^i dt, \\ dV_t^i = \sqrt{2} dB_t^i - F(X_t^i, V_t^i) dt - \frac{1}{N} \sum_{j=1}^N H(X_t^i - X_t^j, V_t^i - V_t^j) dt, \end{cases}$$

with independent and commonly distributed initial data (X_0^i, V_0^i) with $1 \le i \le N$.

Empirical Measure:

$$\hat{f}_t^N = \frac{1}{N} \sum_{i=1}^N \delta_{(X_t^i, V_t^i)}$$

	Kinetic Models and measure solutions	Qualitative Properties				
	0000000000000					
Stochastic Mean-Field Limit						
Coupling M	Coupling Method 1					

Stochastic Particle System Associated to PDE:

N interacting processes $(\overline{X}_t^l, \overline{V}_t^l)_{t\geq 0}$ solutions of the kinetic McKean-Vlasov type equation on \mathbb{R}^{2d} :

$$\begin{cases} d\overline{X}_t^i = \overline{V}_t^i dt \\ d\overline{V}_t^i = \sqrt{2} dB_t^i - F(\overline{X}_t^i, \overline{V}_t^i) dt - H * f_t(\overline{X}_t^i, \overline{V}_t^i) dt, \\ (\overline{X}_0^i, \overline{V}_0^i) = (X_0^i, V_0^i), \quad f_t = \operatorname{law}(\overline{X}_t^i, \overline{V}_t^i). \end{cases}$$

The stochastic processes are independent and identically distributed according to

 $\partial_t f_t + v \cdot \nabla_x f_t = \Delta_v f_t + \nabla_v \cdot ((F + H * f_t) f_t), \quad t > 0, x, v \in \mathbb{R}^d.$

	Kinetic Models and measure solutions	Qualitative Properties			
	000000000000				
Stochastic Mean-Field Limit					
Coupling Method 1					

Stochastic Particle System Associated to PDE:

N interacting processes $(\overline{X}_t^i, \overline{V}_t^i)_{t \ge 0}$ solutions of the kinetic McKean-Vlasov type equation on \mathbb{R}^{2d} :

$$\begin{cases} d\overline{X}_{t}^{i} = \overline{V}_{t}^{i} dt \\ d\overline{V}_{t}^{i} = \sqrt{2} dB_{t}^{i} - F(\overline{X}_{t}^{i}, \overline{V}_{t}^{i}) dt - H * f_{t}(\overline{X}_{t}^{i}, \overline{V}_{t}^{i}) dt, \\ (\overline{X}_{0}^{i}, \overline{V}_{0}^{i}) = (X_{0}^{i}, V_{0}^{i}), \quad f_{t} = \operatorname{law}(\overline{X}_{t}^{i}, \overline{V}_{t}^{i}). \end{cases}$$

The stochastic processes are independent and identically distributed according to

 $\partial_t f_t + v \cdot \nabla_x f_t = \Delta_v f_t + \nabla_v \cdot ((F + H * f_t) f_t), \quad t > 0, x, v \in \mathbb{R}^d.$

	Kinetic Models and measure solutions	Qualitative Properties				
	000000000000					
Stochastic Mean-Field Limit						
Coupling M	Coupling Method 1					

Stochastic Particle System Associated to PDE:

N interacting processes $(\overline{X}_t^i, \overline{V}_t^i)_{t \ge 0}$ solutions of the kinetic McKean-Vlasov type equation on \mathbb{R}^{2d} :

$$\begin{cases} d\overline{X}_{t}^{i} = \overline{V}_{t}^{i} dt \\ d\overline{V}_{t}^{i} = \sqrt{2} dB_{t}^{i} - F(\overline{X}_{t}^{i}, \overline{V}_{t}^{i}) dt - H * f_{t}(\overline{X}_{t}^{i}, \overline{V}_{t}^{i}) dt, \\ (\overline{X}_{0}^{i}, \overline{V}_{0}^{i}) = (X_{0}^{i}, V_{0}^{i}), \quad f_{t} = \operatorname{law}(\overline{X}_{t}^{i}, \overline{V}_{t}^{i}). \end{cases}$$

The stochastic processes are independent and identically distributed according to

 $\partial_t f_t + v \cdot \nabla_x f_t = \Delta_v f_t + \nabla_v \cdot ((F + H * f_t) f_t), \quad t > 0, x, v \in \mathbb{R}^d.$

Motivations	Kinetic Models and measure solutions	Qualitative Properties	
	0000000000000		
Stochastic Mean-Field Limit			
Coupling M	lethod 2		

Conjecture: The *N* interacting processes $(X_t^i, V_t^i)_{t\geq 0}$ behave as $N \to \infty$ like the processes $(\overline{X}_t^i, \overline{V}_t^i)_{t\geq 0}$ associated to the PDE.

More precisely, the objective is to estimate the convergence as $N \rightarrow \infty$ of

 $\mathbb{E}ig[|X^i_t - \overline{X}^i_t|^2 + |V^i_t - \overline{V}^i_t|^2ig] \leq arepsilon(N)$

Consequences

1. $f_t^{(1)}$ of any of the particles X_t^i at time *t* converges to f_t as *N* goes to infinity: $W_2^2(f_t^{(1)}, f_t) \le \mathbb{E}\left[|X_t^i - \overline{X}_t^i|^2 + |V_t^i - \overline{V}_t^i|^2\right] \le \varepsilon(N)$.

	1 10		
Stochastic Mean-Field Limit			
	0000000000000		
	Kinetic Models and measure solutions	Qualitative Properties	

Coupling Method 2

Conjecture: The *N* interacting processes $(X_t^i, V_t^i)_{t\geq 0}$ behave as $N \to \infty$ like the processes $(\overline{X}_t^i, \overline{V}_t^i)_{t\geq 0}$ associated to the PDE.

More precisely, the objective is to estimate the convergence as $N \rightarrow \infty$ of

 $\mathbb{E}\left[|X_t^i - \overline{X}_t^i|^2 + |V_t^i - \overline{V}_t^i|^2\right] \le \varepsilon(N)$

Consequences

1. $f_t^{(1)}$ of any of the particles X_t^i at time *t* converges to f_t as *N* goes to infinity: $W_2^2(f_t^{(1)}, f_t) \le \mathbb{E}\left[|X_t^i - \overline{X}_t^i|^2 + |V_t^i - \overline{V}_t^i|^2\right] \le \varepsilon(N) \,.$

	Kinetic Models and measure solutions	Qualitative Properties	
	0000000000000		
Stochastic Mean-Field Limit			
Coupling M	lethod 2		

Conjecture: The *N* interacting processes $(X_t^i, V_t^i)_{t\geq 0}$ behave as $N \to \infty$ like the processes $(\overline{X}_t^i, \overline{V}_t^i)_{t\geq 0}$ associated to the PDE.

More precisely, the objective is to estimate the convergence as $N \to \infty$ of

 $\mathbb{E}\left[|X_t^i - \overline{X}_t^i|^2 + |V_t^i - \overline{V}_t^i|^2\right] \le \varepsilon(N)$

Consequences

1. $f_t^{(1)}$ of any of the particles X_t^i at time *t* converges to f_t as *N* goes to infinity: $W_2^2(f_t^{(1)}, f_t) \le \mathbb{E}[|X_t^i - \overline{X}_t^i|^2 + |V_t^i - \overline{V}_t^i|^2] \le \varepsilon(N)$.

	Kinetic Models and measure solutions	Qualitative Properties	
	00000000000000		
Stochastic Mean-Field Limit			

Coupling Method 3

Consequences

2. Propagation of chaos: The law $f_t^{(k)}$ of any k particles (X_t^i, V_t^i) converges to the tensor product $f_t^{\otimes k}$ as N goes to infinity:

 $W_2^2(f_t^{(k)}, f_t^{\otimes k}) \leq k\varepsilon(N).$

3. Convergence of the empirical measure \hat{f}_t^N to f_t : if φ is a Lipschitz map on \mathbb{R}^{2d} , then

$$\mathbb{E}\left[\left|\frac{1}{N}\sum_{i=1}^{N}\varphi(X_{t}^{i},V_{t}^{i})-\int_{\mathbb{R}^{2d}}\varphi\,df_{t}\right|^{2}\right]$$

$$\leq 2\,\mathbb{E}\left[\left|\varphi(X_{t}^{i},V_{t}^{i})-\varphi(\overline{X}_{t}^{i},\overline{V}_{t}^{i})\right|^{2}+\left|\frac{1}{N}\sum_{i=1}^{N}\varphi(\overline{X}_{t}^{i},\overline{V}_{t}^{i})-\int_{\mathbb{R}^{2d}}\varphi\,df_{t}\right|^{2}\right]$$

$$\leq \varepsilon(N)+\frac{C}{N}$$

	Kinetic Models and measure solutions	Qualitative Properties	
	0000000000000		
Stochastic Mean-Field Limit			

Coupling Method 3

Consequences

2. Propagation of chaos: The law $f_t^{(k)}$ of any k particles (X_t^i, V_t^i) converges to the tensor product $f_t^{\otimes k}$ as N goes to infinity:

 $W_2^2(f_t^{(k)}, f_t^{\otimes k}) \leq k\varepsilon(N).$

3. Convergence of the empirical measure \hat{f}_t^N to f_t : if φ is a Lipschitz map on \mathbb{R}^{2d} , then

$$\begin{split} & \mathbb{E}\left[\left|\frac{1}{N}\sum_{i=1}^{N}\varphi(X_{t}^{i},V_{t}^{i})-\int_{\mathbb{R}^{2d}}\varphi\,df_{t}\right|^{2}\right] \\ & \leq 2\,\mathbb{E}\left[\left|\varphi(X_{t}^{i},V_{t}^{i})-\varphi(\overline{X}_{t}^{i},\overline{V}_{t}^{i})\right|^{2}+\left|\frac{1}{N}\sum_{i=1}^{N}\varphi(\overline{X}_{t}^{i},\overline{V}_{t}^{i})-\int_{\mathbb{R}^{2d}}\varphi\,df_{t}\right|^{2}\right] \\ & \leq \varepsilon(N)+\frac{C}{N} \end{split}$$

	Kinetic Models and measure solutions	Qualitative Properties	
	0000000000000		
Stochastic Mean-Field Limit			
Main Result			

Previous Results: If the functions involved F and H are globally Lipschitz then there are classical results by Snitzman and Meleard, implying that

$$\varepsilon(N) = O\left(\frac{1}{N}\right)$$

The typical F and H in our Cucker-Smale and D'Orsogna et al model are not globally Lipschitz.

Hypotheses:

Assume that *F* and *H* with H(-x, -v) = -H(x, v), satisfy

$$-(v - w) \cdot (F(x, v) - F(x, w)) \le A |v - w|^2$$

|F(x, v) - F(y, v)| \le L min{|x - y|, 1}(1 + |v|^p)

for all x, y, v, w in \mathbb{R}^d , and analogously for *H* instead of *F*.

	Kinetic Models and measure solutions		
0000000000000	0000000000000	0000000	
Stochastic Mean-Field Limit			
Main Result			

Previous Results: If the functions involved F and H are globally Lipschitz then there are classical results by Snitzman and Meleard, implying that

$$\varepsilon(N) = O\left(\frac{1}{N}\right)$$

The typical *F* and *H* in our Cucker-Smale and D'Orsogna et al model are not globally Lipschitz.

Hypotheses:

Assume that *F* and *H* with H(-x, -v) = -H(x, v), satisfy

 $-(v - w) \cdot (F(x, v) - F(x, w)) \le A |v - w|^2$ |F(x, v) - F(y, v)| \le L min{|x - y|, 1}(1 + |v|^p)

for all x, y, v, w in \mathbb{R}^d , and analogously for *H* instead of *F*.

Motivations 0000000000000	Kinetic Models and measure solutions ○○○○○○○○○○○○●○	Qualitative Properties	
Stochastic Mean-Field Limit			
Main Result	t		

Previous Results: If the functions involved F and H are globally Lipschitz then there are classical results by Snitzman and Meleard, implying that

$$\varepsilon(N) = O\left(\frac{1}{N}\right)$$

The typical F and H in our Cucker-Smale and D'Orsogna et al model are not globally Lipschitz.

Hypotheses:

Assume that *F* and *H* with H(-x, -v) = -H(x, v), satisfy

$$-(v - w) \cdot (F(x, v) - F(x, w)) \le A |v - w|^2$$

|F(x, v) - F(y, v)| \le L min{|x - y|, 1}(1 + |v|^p)

for all x, y, v, w in \mathbb{R}^d , and analogously for *H* instead of *F*.

	Kinetic Models and measure solutions	Qualitative Properties	
	00000000000		
Stochastic Mean-Field Limit			
Main Resul	t 2		

Properties of the Stochastic Processes and PDE:

Assume that the particle system and the processes have global solutions on [0, T] with initial data (X_0^i, V_0^i) such that the uniform moment condition holds:

$$\sup_{0 \le t \le T} \left\{ \int_{\mathbb{R}^{4d}} |H(x-y,v-w)|^2 df_t(x,v) df_t(y,w) + \int_{\mathbb{R}^{2d}} (|x|^2 + e^{a|v|^{p'}}) df_t(x,v) \right\} < +\infty$$

with
$$f_t = law(\overline{X}_t^i, \overline{V}_t^i)$$
 and some $p' > p$.

Result:

For all $0 < \epsilon < 1$ there exists a constant *C* such that

$$\mathbb{E}\big[|X_t^i - \overline{X}_t^i|^2 + |V_t^i - \overline{V}_t^i|^2\big] \le \frac{C}{N^{1-\epsilon}}$$

for all $0 \le t \le T$ and $N \ge 1$.

	Kinetic Models and measure solutions	Qualitative Properties	
	00000000000		
Stochastic Mean-Field Limit			
Main Resul	t 2		

Properties of the Stochastic Processes and PDE:

Assume that the particle system and the processes have global solutions on [0, T] with initial data (X_0^i, V_0^i) such that the uniform moment condition holds:

$$\sup_{0 \le t \le T} \left\{ \int_{\mathbb{R}^{4d}} |H(x-y,v-w)|^2 df_t(x,v) df_t(y,w) + \int_{\mathbb{R}^{2d}} (|x|^2 + e^{a|v|^{p'}}) df_t(x,v) \right\} < +\infty$$

with
$$f_t = law(\overline{X}_t^i, \overline{V}_t^i)$$
 and some $p' > p$.

Result:

For all $0 < \epsilon < 1$ there exists a constant *C* such that

$$\mathbb{E}\left[|X_t^i - \overline{X}_t^i|^2 + |V_t^i - \overline{V}_t^i|^2\right] \le \frac{C}{N^{1-\epsilon}}$$

for all $0 \le t \le T$ and $N \ge 1$.

	Qualitative Properties	
	• 000 0000	
Cucker-Smale model		

Outline

Motivations

- Collective Behavior Models
- Variations
- Fixed Speed models
- 2 Kinetic Models and measure solutions
 - Vlasov-like Models
 - Stochastic Mean-Field Limit

3 Qualitative Properties

- Cucker-Smale model
- Qualitative Properties: Model with asymptotic speed

Conclusions

Motivations 00000000000000	Kinetic Models and measure solutions	Qualitative Properties	
Cucker-Smale model			
Asymptotic	Flocking		

Let us consider the N_p -particle system:

$$\begin{cases} \frac{dx_i}{dt} = v_i & , \ x_i(0) = x_i^0 \\ \frac{dv_i}{dt} = \sum_{j=1}^{N_p} m_j a(|x_i - x_j|) (v_j - v_i) & , \ v_i(0) = v_i^0, \end{cases}$$

Due to translation invariancy, w.l.o.g. the mean velocity is zero and thus the center of mass is preserved along the evolution, i.e.,

$$\sum_{i=1}^{N_p} m_i v_i(t) = 0$$
 and

 $\sum_{i=1}^{N_p} m_i x_i(t) = x_c$

for all $t \ge 0$ and $x_c \in \mathbb{R}^d$.

Motivations 00000000000000	Kinetic Models and measure solutions	Qualitative Properties			
Cucker-Smale model					
Asymptotic Flocking					

Let us consider the N_p -particle system:

$$\begin{cases} \frac{dx_i}{dt} = v_i & , \ x_i(0) = x_i^0 \\ \frac{dv_i}{dt} = \sum_{j=1}^{N_p} m_j a(|x_i - x_j|) (v_j - v_i) & , \ v_i(0) = v_i^0, \end{cases}$$

Due to translation invariancy, w.l.o.g. the mean velocity is zero and thus the center of mass is preserved along the evolution, i.e.,

$$\sum_{i=1}^{N_p} m_i v_i(t) = 0$$
 and $\sum_{i=1}^{N_p} m_i x_i(t) = x_c$

for all $t \ge 0$ and $x_c \in \mathbb{R}^d$.

Motivations 000000000000000 Kinetic Models and measure solutions

Qualitative Properties

Conclusions

Cucker-Smale model

Asymptotic Flocking

Find a bound independent of the number of particles for the time it takes for all the particles to travel at the mean velocity.



Motivations	Kinetic Models and measure solutions	Qualitative Properties	
		00000000	
Cucker-Smale model			

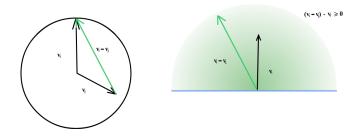
Asymptotic Flocking

Unconditional Non-universal Asymptotic Flocking: C.-Fornasier-Rosado-Toscani

Given $\mu_0 \in \mathcal{M}(\mathbb{R}^{2d})$ compactly supported, then the unique measure-valued solution to the CS kinetic model with $\gamma \leq 1/2$, satisfies the following bounds on their supports:

 $\operatorname{supp} \mu(t) \subset B(x_c(0) + mt, R^x(t)) \times B(m, R^v(t))$

for all $t \ge 0$, with $R^{x}(t) \le \overline{R}$ and $R^{v}(t) \le R_0 e^{-\lambda t}$ with \overline{R}^{x} depending only on the initial support radius.



		Qualitative Properties		
		0000000		
Oualitative Properties: Model with asymptotic speed				

Outline

Motivations

- Collective Behavior Models
- Variations
- Fixed Speed models
- 2 Kinetic Models and measure solutions
 - Vlasov-like Models
 - Stochastic Mean-Field Limit

3 Qualitative Properties

- Cucker-Smale model
- Qualitative Properties: Model with asymptotic speed

4 Conclusions

Macroscopic equations

Monokinetic Solutions

Assuming that there is a deterministic velocity for each position and time, $f(x, v, t) = \rho(x, t) \,\delta(v - u(x, t)) \text{ is a distributional solution if and only if,} \begin{cases} \frac{\partial \rho}{\partial t} + \operatorname{div}_x(\rho u) = 0, \\ \rho \frac{\partial u}{\partial t} + \rho (u \cdot \nabla_x)u = \rho (\alpha - \beta |u|^2)u - \rho (\nabla_x U \star \rho). \end{cases}$

		Qualitative Properties	
		00000000	
Qualitative Properties: Model with asymptotic speed			

Let us look for stationary solutions with an asymptotic speed value $\beta |u(x, t)|^2 = \alpha$.

Flocking

Particular solutions

Traveling wave case, u = const such that $\beta |\mathbf{u}(\mathbf{x}, t)|^2 = \alpha$, then $\rho(x, t) = \tilde{\rho}(x - ut)$, and the density is determined by

 $\tilde{\rho}\left(\nabla_{\mathbf{x}}U\star\tilde{\rho}\right)=0,$

from which

 $U\star\tilde{\rho}=C,\quad\tilde{\rho}\neq0,$

in the support of $\tilde{\rho}$ if the support has not empty interior.

		Qualitative Properties			
		00000000			
Qualitative Properties: Model with asymptotic speed					
Particular solutions					

Let us look for stationary solutions with an asymptotic speed value $\beta |u(x,t)|^2 = \alpha$.

Flocking

Traveling wave case, u = const such that $\beta |\mathbf{u}(\mathbf{x}, t)|^2 = \alpha$, then $\rho(x, t) = \tilde{\rho}(x - ut)$, and the density is determined by

 $\tilde{\rho}\left(\nabla_{\mathbf{x}}U\star\tilde{\rho}\right)=0,$

from which

$$U \star \tilde{\rho} = C, \quad \tilde{\rho} \neq 0,$$

in the support of $\tilde{\rho}$ if the support has not empty interior.

		Qualitative Properties	
		00000000	
Qualitative Properties: Model with asymptotic speed			

Particular solutions

Let us look for stationary solutions with an asymptotic speed value $\beta |u(x,t)|^2 = \alpha$.

Flocking

Traveling wave case, u = const such that $\beta |\mathbf{u}(\mathbf{x}, t)|^2 = \alpha$, then $\rho(x, t) = \tilde{\rho}(x - ut)$, and the density is determined by

 $\tilde{\rho}\left(\nabla_{\mathbf{x}}U\star\tilde{\rho}\right)=0,$

from which

$$U \star \tilde{\rho} = C, \quad \tilde{\rho} \neq 0,$$

in the support of $\tilde{\rho}$ if the support has not empty interior.

		Qualitative Properties			
		0000000			
Qualitative Properties: Model with asymptotic speed					
Particular solutions					

Let us look for stationary solutions with an asymptotic speed value $\beta |u(x, t)|^2 = \alpha$.

Milling

we set **u** in a rotatory state,

$$u=\pm\sqrt{\frac{\alpha}{\beta}}\,\frac{x^{\perp}}{|x|},$$

where $x = (x_1, x_2), x^{\perp} = (-x_2, x_1)$, and look for $\rho = \rho(|x|)$ radial, then

 $U \star \rho = D + \frac{\alpha}{\beta} \log |x|$, whenever $\rho \neq 0$.

A special family of singular solutions are given by $\rho(r) = c \, \delta(r - r_0)$.

		Qualitative Properties			
		0000000			
Qualitative Properties: Model with asymptotic speed					
Particular solutions					

Let us look for stationary solutions with an asymptotic speed value $\beta |u(x,t)|^2 = \alpha$.

Milling

we set **u** in a rotatory state,

$$u = \pm \sqrt{\frac{\alpha}{\beta}} \, \frac{x^{\perp}}{|x|},$$

where $x = (x_1, x_2), x^{\perp} = (-x_2, x_1)$, and look for $\rho = \rho(|x|)$ radial, then

 $U \star \rho = D + \frac{\alpha}{\beta} \log |x|, \text{ whenever } \rho \neq 0.$

A special family of singular solutions are given by $\rho(r) = c \, \delta(r - r_0)$.

		Qualitative Properties			
		0000000			
Qualitative Properties: Model with asymptotic speed					
Particular solutions					

Let us look for stationary solutions with an asymptotic speed value $\beta |u(x,t)|^2 = \alpha$.

Milling

we set **u** in a rotatory state,

$$u = \pm \sqrt{\frac{\alpha}{\beta}} \, \frac{x^{\perp}}{|x|}$$

where $x = (x_1, x_2), x^{\perp} = (-x_2, x_1)$, and look for $\rho = \rho(|x|)$ radial, then

 $U \star \rho = D + \frac{\alpha}{\beta} \log |x|, \text{ whenever } \rho \neq 0.$

A special family of singular solutions are given by $\rho(r) = c \, \delta(r - r_0)$.

Qualitative Properties

Conclusions & Open Problems

- Simple modelling of the three main mechanisms leads to complicated patterns. More information from particular species should be included to make more realistic models (Helmelrijk & collaborators, ...)
- Millings can be understood as kinetic measure solutions concentrated on certain velocities. Geometric constraints: velocities on a sphere. Stability of these patterns?
- Phase transition from ordered to disordered state driven by noise: (Liu-Frouvelle, 2011) (Barbaro-Cañizo-C.-Degond, work in preparation).
- References:
 - C.-D'Orsogna-Panferov (KRM 2008).
 - C.-Fornasier-Rosado-Toscani (SIMA 2010).
 - Sc.-Fornasier-Toscani-Vecil (Birkhäuser 2011)
 - C.-Klar-Martin-Tiwari (M3AS 2010).
 - Cañizo-C.-Rosado (M3AS 2011).
 - **6** Bolley-Cañizo-C. (M3AS 2011 & AML 2011).

Qualitative Properties

Conclusions & Open Problems

- Simple modelling of the three main mechanisms leads to complicated patterns. More information from particular species should be included to make more realistic models (Helmelrijk & collaborators, ...)
- Millings can be understood as kinetic measure solutions concentrated on certain velocities. Geometric constraints: velocities on a sphere. Stability of these patterns?
- Phase transition from ordered to disordered state driven by noise: (Liu-Frouvelle, 2011) (Barbaro-Cañizo-C.-Degond, work in preparation).

• References:

- C.-D'Orsogna-Panferov (KRM 2008).
- C.-Fornasier-Rosado-Toscani (SIMA 2010).
- Sc.-Fornasier-Toscani-Vecil (Birkhäuser 2011)
- C.-Klar-Martin-Tiwari (M3AS 2010).
- Sean Canizo-C.-Rosado (M3AS 2011).
- **OBOLICY OF CAME OF CAUSTIC AND STREAM OF CAME OF CAUSTIC AND STREAM OF CAUSTIC AND STRE**

Qualitative Properties

Conclusions & Open Problems

- Simple modelling of the three main mechanisms leads to complicated patterns. More information from particular species should be included to make more realistic models (Helmelrijk & collaborators, ...)
- Millings can be understood as kinetic measure solutions concentrated on certain velocities. Geometric constraints: velocities on a sphere. Stability of these patterns?
- Phase transition from ordered to disordered state driven by noise: (Liu-Frouvelle, 2011) (Barbaro-Cañizo-C.-Degond, work in preparation).

• References:

- C.-D'Orsogna-Panferov (KRM 2008).
- C.-Fornasier-Rosado-Toscani (SIMA 2010).
- Sc.-Fornasier-Toscani-Vecil (Birkhäuser 2011)
- C.-Klar-Martin-Tiwari (M3AS 2010).
- Cañizo-C.-Rosado (M3AS 2011).
- **6** Bolley-Cañizo-C. (M3AS 2011 & AML 2011).

Qualitative Properties

Conclusions & Open Problems

- Simple modelling of the three main mechanisms leads to complicated patterns. More information from particular species should be included to make more realistic models (Helmelrijk & collaborators, ...)
- Millings can be understood as kinetic measure solutions concentrated on certain velocities. Geometric constraints: velocities on a sphere. Stability of these patterns?
- Phase transition from ordered to disordered state driven by noise: (Liu-Frouvelle, 2011) (Barbaro-Cañizo-C.-Degond, work in preparation).

• References:

- C.-D'Orsogna-Panferov (KRM 2008).
- C.-Fornasier-Rosado-Toscani (SIMA 2010).
- C.-Fornasier-Toscani-Vecil (Birkhäuser 2011)
- C.-Klar-Martin-Tiwari (M3AS 2010).
- Scañizo-C.-Rosado (M3AS 2011).
- Bolley-Cañizo-C. (M3AS 2011 & AML 2011).

Qualitative Properties

Conclusions & Open Problems

- Simple modelling of the three main mechanisms leads to complicated patterns. More information from particular species should be included to make more realistic models (Helmelrijk & collaborators, ...)
- Millings can be understood as kinetic measure solutions concentrated on certain velocities. Geometric constraints: velocities on a sphere. Stability of these patterns?
- Phase transition from ordered to disordered state driven by noise: (Liu-Frouvelle, 2011) (Barbaro-Cañizo-C.-Degond, work in preparation).
- References:
 - C.-D'Orsogna-Panferov (KRM 2008).
 - O.-Fornasier-Rosado-Toscani (SIMA 2010).
 - Sc.-Fornasier-Toscani-Vecil (Birkhäuser 2011)
 - C.-Klar-Martin-Tiwari (M3AS 2010).
 - Cañizo-C.-Rosado (M3AS 2011).
 - Bolley-Cañizo-C. (M3AS 2011 & AML 2011).