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The model

Here, we consider a particle system with Cucker-Smale alignment,
self-propulsion, friction, and noise
We study the corresponding PDE for these flocking dynamics:

∂t f + v∇x f = ∇v · ((v − uf )f )−∇v · (αv(1− |v |2)f ) + D∆v f ,

where

uf (t, x) =

∫
vf (t, x , v) dv∫
f (t, x , v) dv

The first term encourages the velocity to align with the mean velocity
The second term provides self-propulsion and friction, encouraging
unit velocities
The last term captures the influence of noise in the velocity
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The homogeneous problem

We simplify by looking at the homogeneous problem:

∂t f = ∇v · ((v − uf )f )−∇v ·
(
αv(1− |v |2)f

)
+ D∆v f

In this case, we consider f to be a function of only v , neglecting any
effects of spatial inhomogeneity
We work in the 1D case
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The stationary solutions
We consider stationary solutions of the form:

f (v) = 1
Z exp

(
−1
D

[
α |v |

4

4 + (1− α) |v |
2

2 − uf · v
])

We see that in order for the stationary solution to exist, uf must be a
root of the equation:

H(u) = 1
Z

∫
(v − u) exp

(
α
D ( v2

2 −
v4
4 )− v2

2D

)
exp(uv

D )dv

We prove the following
I There is a region of parameter space with only one such root, namely

u = 0
I There is another region of parameter space with at least three

stationary solutions, u = 0 and u = ±Cα,D 6= 0
This was independently proven by Julian Tugaut1

1J. Tugaut. Phase transitions of McKean-Vlasov processes in symmetric and
asymmetric multi-wells landscape, submitted 2011; S. Herrmann and J. Tugaut.
Non-uniqueness of stationary measures for self-stabilizing processes Stochastic
Processes and their Applications, 2010, vol. 120, issue 7, pages 1215-1246
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Our approach

Our goal is to show that the number of stationary solutions depends
on the values of α and D
We can show that for any α > 0:

I in the large D limit, there is only one stationary solution
I as D → 0, there are three stationary solutions

We aim to numerically demonstrate that:
I where the nonzero stationary solutions exist, they are stable while the

zero solution is unstable
I the zero solution is stable where it is the only solution
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Main idea of our proof

Our proof hinges on the behavior of H(u) as D varies:
I for small D, the slope of H is positive at u = 0, while the slope is

negative as u →∞

I for large D, dH
du is negative for all u.

Since we know that u = 0 is already a solution for all D, this shows
that there are at least three roots of H for small D, and only one root
for large D
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The case of small D at u = 0

Compute the derivative of H:
Letting Pu(v) = −α( v2

2 −
v4
4 )− v2

2D ,

H(u) = 1
Z

∫
(v − u) exp

(−1
D Pu(v)

)
dv

⇒dH
du (0) = 1

Z

[
−
∫

exp
(−1

D P0(v)
)
dv + 1

D

∫
v2 exp

(−1
D P0(v)

)
dv
]
.

Define I := −
∫
exp
(−1

D P0(v)
)
dv , II :=

∫
v2 exp

(−1
D P0(v)

)
dv

We use Laplace’s method to show that as D → 0, I ≥ 0 and II → 1,
proving that dH

du (0) > 0
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The case of u →∞

We derive an alternate expression for H(u) using integration by parts:

H(u) =

∫
R

(v − u) exp
(
− |v |

2

2D + uv
D

)
exp
(
−α

(
|v |4
4D −

|v |2
2D

))
dv

= α

∫
R

(v − v3) exp
(
−α
D

(
|v |4
4 −

|v |2
2

)
− |v |

2

2D

)
exp
(uv

D

)
dv

We then divide the integral into four pieces
For all D, as u →∞, the negative pieces compensate for the positive,
showing that H(u)→ −∞ as u →∞
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The case of D →∞

We show that H is strictly decreasing for D →∞

We similarly split the derivative into three pieces and show that the
negative pieces compensate for the positive
This shows that H can have at most one zero for large D
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Varying α and D

We have proven analytically that for small D, there are three
stationary solutions, while for large D, there is only one

We next consider where in parameter space each of these situations
occur
We vary α and D and count the number of roots of H
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Numerical exploration of the number of roots
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Numerically exploring the sign of the derivative
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The continuation method with the number of roots
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The next steps

Numerically verifying the stability of the stationary solutions

I In the case of small noise, we expect the nonzero velocities to be stable
I We expect that stability to shift to the zero velocity once the sign of

the derivative of H changes
I This result will show that the transition from three to one stationary

solution is indeed a phase transition

Explore the inhomogeneous case numerically
We have an entropy for this problem

I Can numerically compute this entropy
I Are working to analytically prove the stability of the stationary solutions
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