A phase transition in a kinetic Cucker-Smale model with friction

Alethea Barbaro

UCLA

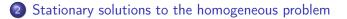
23 January 2012

Joint work with José Cañizo, José Antonio Carrillo, Pierre Degond

A. Barbaro (UCLA)

Phase transition in flocking model

23 January 2012 1 / 15



3 Numerical evidence of a phase transition

The model

- Here, we consider a particle system with Cucker-Smale alignment, self-propulsion, friction, and noise
- We study the corresponding PDE for these flocking dynamics:

The model

- Here, we consider a particle system with Cucker-Smale alignment, self-propulsion, friction, and noise
- We study the corresponding PDE for these flocking dynamics:

$$\partial_t f + v \nabla_x f = \nabla_v \cdot ((v - u_f)f) - \nabla_v \cdot (\alpha v (1 - |v|^2)f) + D\Delta_v f,$$

where

$$u_f(t,x) = \frac{\int vf(t,x,v) \, dv}{\int f(t,x,v) \, dv}$$

The model

- Here, we consider a particle system with Cucker-Smale alignment, self-propulsion, friction, and noise
- We study the corresponding PDE for these flocking dynamics:

$$\partial_t f + v \nabla_x f = \nabla_v \cdot ((v - u_f)f) - \nabla_v \cdot (\alpha v (1 - |v|^2)f) + D\Delta_v f,$$

where

$$u_f(t,x) = \frac{\int vf(t,x,v) \, dv}{\int f(t,x,v) \, dv}$$

- The first term encourages the velocity to align with the mean velocity
- The second term provides self-propulsion and friction, encouraging unit velocities
- The last term captures the influence of noise in the velocity

The homogeneous problem

• We simplify by looking at the homogeneous problem:

$$\partial_t f = \nabla_v \cdot ((v - u_f)f) - \nabla_v \cdot (\alpha v (1 - |v|^2)f) + D\Delta_v f$$

< **1** → <

The homogeneous problem

• We simplify by looking at the homogeneous problem:

$$\partial_t f = \nabla_v \cdot ((v - u_f)f) - \nabla_v \cdot (\alpha v (1 - |v|^2)f) + D\Delta_v f$$

- In this case, we consider f to be a function of only v, neglecting any effects of spatial inhomogeneity
- We work in the 1D case

The stationary solutions

• We consider stationary solutions of the form:

$$f(\mathbf{v}) = \frac{1}{\overline{Z}} \exp\left(\frac{-1}{D} \left[\alpha \frac{|\mathbf{v}|^4}{4} + (1-\alpha)\frac{|\mathbf{v}|^2}{2} - u_f \cdot \mathbf{v}\right]\right)$$

A. Barbaro (UCLA)

Phase transition in flocking model

¹ J. Tugaut. *Phase transitions of McKean-Vlasov processes in symmetric and asymmetric multi-wells landscape*, submitted 2011; S. Herrmann and J. Tugaut. *Non-uniqueness of stationary measures for self-stabilizing processes* Stochastic Processes and their Applications, 2010, vol. 120, issue 7, pages 1215-1246

The stationary solutions

• We consider stationary solutions of the form:

$$f(\mathbf{v}) = \frac{1}{Z} \exp\left(\frac{-1}{D} \left[\alpha \frac{|\mathbf{v}|^4}{4} + (1-\alpha)\frac{|\mathbf{v}|^2}{2} - u_f \cdot \mathbf{v}\right]\right)$$

• We see that in order for the stationary solution to exist, *u_f* must be a root of the equation:

$$H(u) = \frac{1}{Z} \int (v - u) \exp\left(\frac{\alpha}{D}\left(\frac{v^2}{2} - \frac{v^4}{4}\right) - \frac{v^2}{2D}\right) \exp\left(\frac{uv}{D}\right) dv$$

• We prove the following

A. Barbaro (UCLA)

¹J. Tugaut. *Phase transitions of McKean-Vlasov processes in symmetric and asymmetric multi-wells landscape*, submitted 2011; S. Herrmann and J. Tugaut. *Non-uniqueness of stationary measures for self-stabilizing processes* Stochastic Processes and their Applications, 2010, vol. 120, issue 7, pages 1215-1246

The stationary solutions

• We consider stationary solutions of the form:

$$f(\mathbf{v}) = \frac{1}{Z} \exp\left(\frac{-1}{D} \left[\alpha \frac{|\mathbf{v}|^4}{4} + (1-\alpha)\frac{|\mathbf{v}|^2}{2} - u_f \cdot \mathbf{v}\right]\right)$$

• We see that in order for the stationary solution to exist, *u_f* must be a root of the equation:

$$H(u) = \frac{1}{Z} \int (v - u) \exp\left(\frac{\alpha}{D}\left(\frac{v^2}{2} - \frac{v^4}{4}\right) - \frac{v^2}{2D}\right) \exp\left(\frac{uv}{D}\right) dv$$

- We prove the following
 - There is a region of parameter space with only one such root, namely u = 0
 - ► There is another region of parameter space with at least three stationary solutions, u = 0 and u = ±C_{α,D} ≠ 0
- This was independently proven by Julian Tugaut¹

¹J. Tugaut. Phase transitions of McKean-Vlasov processes in symmetric and asymmetric multi-wells landscape, submitted 2011; S. Herrmann and J. Tugaut. Non-uniqueness of stationary measures for self-stabilizing processes Stochastic Processes and their Applications, 2010, vol. 120, issue 7, pages 1215-1246 E = 2

A. Barbaro (UCLA)

Our approach

- Our goal is to show that the number of stationary solutions depends on the values of α and D
- We can show that for any $\alpha > 0$:
 - ▶ in the large *D* limit, there is only one stationary solution
 - as $D \rightarrow 0$, there are three stationary solutions

Our approach

- Our goal is to show that the number of stationary solutions depends on the values of α and D
- We can show that for any $\alpha > 0$:
 - ▶ in the large *D* limit, there is only one stationary solution
 - as $D \rightarrow 0$, there are three stationary solutions
- We aim to numerically demonstrate that:
 - where the nonzero stationary solutions exist, they are stable while the zero solution is unstable
 - the zero solution is stable where it is the only solution

Main idea of our proof

- Our proof hinges on the behavior of H(u) as D varies:
 - For small D, the slope of H is positive at u = 0, while the slope is negative as u → ∞

4 A N

Main idea of our proof

• Our proof hinges on the behavior of H(u) as D varies:

- For small D, the slope of H is positive at u = 0, while the slope is negative as u → ∞
- for large D, $\frac{dH}{du}$ is negative for all u.

Main idea of our proof

- Our proof hinges on the behavior of H(u) as D varies:
 - For small D, the slope of H is positive at u = 0, while the slope is negative as u → ∞
 - for large D, $\frac{dH}{du}$ is negative for all u.
- Since we know that u = 0 is already a solution for all D, this shows that there are at least three roots of H for small D, and only one root for large D

The case of small D at u = 0

Compute the derivative of *H*:

• Letting
$$P_u(v) = -\alpha(\frac{v^2}{2} - \frac{v^4}{4}) - \frac{v^2}{2D}$$
,

$$H(u) = \frac{1}{Z} \int (v - u) \exp\left(\frac{-1}{D} P_u(v)\right) dv$$

$$\Rightarrow \frac{dH}{du}(0) = \frac{1}{Z} \left[-\int \exp\left(\frac{-1}{D} P_0(v)\right) dv + \frac{1}{D} \int v^2 \exp\left(\frac{-1}{D} P_0(v)\right) dv \right].$$

э

イロト イポト イヨト イヨト

The case of small D at u = 0

Compute the derivative of *H*:

• Letting
$$P_u(v) = -\alpha(\frac{v^2}{2} - \frac{v^4}{4}) - \frac{v^2}{2D}$$
,

$$H(u) = \frac{1}{Z} \int (v - u) \exp\left(\frac{-1}{D} P_u(v)\right) dv$$

$$\Rightarrow \frac{dH}{du}(0) = \frac{1}{Z} \left[-\int \exp\left(\frac{-1}{D} P_0(v)\right) dv + \frac{1}{D} \int v^2 \exp\left(\frac{-1}{D} P_0(v)\right) dv \right].$$

• Define $I := -\int \exp\left(\frac{-1}{D}P_0(v)\right) dv$, $II := \int v^2 \exp\left(\frac{-1}{D}P_0(v)\right) dv$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 3

The case of small D at u = 0

Compute the derivative of H:

• Letting
$$P_u(v) = -\alpha(\frac{v^2}{2} - \frac{v^4}{4}) - \frac{v^2}{2D}$$
,

$$H(u) = \frac{1}{Z} \int (v - u) \exp\left(\frac{-1}{D} P_u(v)\right) dv$$

$$\Rightarrow \frac{dH}{du}(0) = \frac{1}{Z} \left[-\int \exp\left(\frac{-1}{D} P_0(v)\right) dv + \frac{1}{D} \int v^2 \exp\left(\frac{-1}{D} P_0(v)\right) dv \right].$$

- Define $I := -\int \exp\left(\frac{-1}{D}P_0(v)\right) dv$, $II := \int v^2 \exp\left(\frac{-1}{D}P_0(v)\right) dv$
- We use Laplace's method to show that as $D \to 0$, $l \ge 0$ and $II \to 1$, proving that $\frac{dH}{du}(0) > 0$

The case of $u \to \infty$

• We derive an alternate expression for H(u) using integration by parts:

$$H(u) = \int_{\mathbb{R}} (v - u) \exp\left(-\frac{|v|^2}{2D} + \frac{uv}{D}\right) \exp\left(-\alpha \left(\frac{|v|^4}{4D} - \frac{|v|^2}{2D}\right)\right) dv$$
$$= \alpha \int_{\mathbb{R}} (v - v^3) \exp\left(\frac{-\alpha}{D} \left(\frac{|v|^4}{4} - \frac{|v|^2}{2}\right) - \frac{|v|^2}{2D}\right) \exp\left(\frac{uv}{D}\right) dv$$

< 4 → <

The case of $u ightarrow \infty$

• We derive an alternate expression for H(u) using integration by parts:

$$H(u) = \int_{\mathbb{R}} (v - u) \exp\left(-\frac{|v|^2}{2D} + \frac{uv}{D}\right) \exp\left(-\alpha \left(\frac{|v|^4}{4D} - \frac{|v|^2}{2D}\right)\right) dv$$
$$= \alpha \int_{\mathbb{R}} (v - v^3) \exp\left(\frac{-\alpha}{D} \left(\frac{|v|^4}{4} - \frac{|v|^2}{2}\right) - \frac{|v|^2}{2D}\right) \exp\left(\frac{uv}{D}\right) dv$$

- We then divide the integral into four pieces
- For all D, as u → ∞, the negative pieces compensate for the positive, showing that H(u) → -∞ as u → ∞

The case of $D ightarrow \infty$

• We show that H is strictly decreasing for $D
ightarrow \infty$

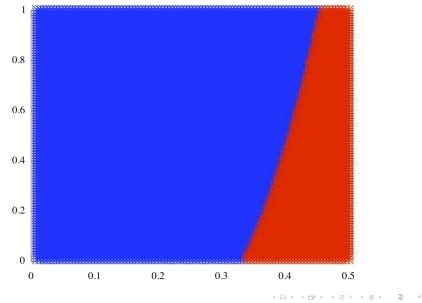
A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- We show that H is strictly decreasing for $D
 ightarrow \infty$
- We similarly split the derivative into three pieces and show that the negative pieces compensate for the positive
- This shows that H can have at most one zero for large D

• We have proven analytically that for small *D*, there are three stationary solutions, while for large *D*, there is only one

- We have proven analytically that for small *D*, there are three stationary solutions, while for large *D*, there is only one
- We next consider where in parameter space each of these situations occur
- We vary α and D and count the number of roots of H

Numerical exploration of the number of roots



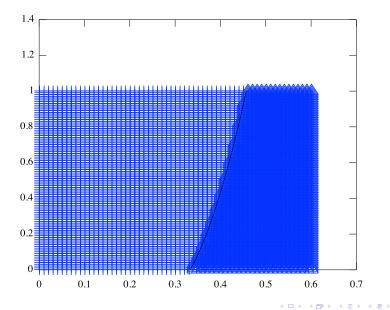
A. Barbaro (UCLA)

Phase transition in flocking model

23 January 2012

12 / 15

Numerically exploring the sign of the derivative

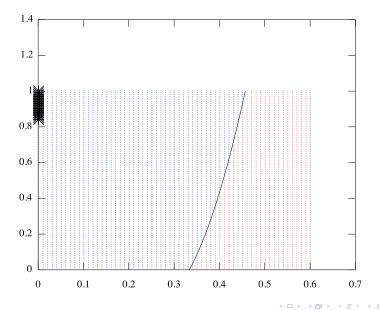


A. Barbaro (UCLA)

Phase transition in flocking model

23 January 2012

The continuation method with the number of roots



A. Barbaro (UCLA)

The next steps

• Numerically verifying the stability of the stationary solutions

< 17 ▶

э

∃ ⊳

The next steps

Numerically verifying the stability of the stationary solutions

- In the case of small noise, we expect the nonzero velocities to be stable
- We expect that stability to shift to the zero velocity once the sign of the derivative of *H* changes
- This result will show that the transition from three to one stationary solution is indeed a phase transition

The next steps

Numerically verifying the stability of the stationary solutions

- In the case of small noise, we expect the nonzero velocities to be stable
- We expect that stability to shift to the zero velocity once the sign of the derivative of H changes
- This result will show that the transition from three to one stationary solution is indeed a phase transition
- Explore the inhomogeneous case numerically
- We have an entropy for this problem
 - Can numerically compute this entropy
 - Are working to analytically prove the stability of the stationary solutions