Bourgain-Delbaen \mathcal{L}^{∞} sums of Banach spaces

Despoina Zisimopoulou

School of Applied Mathematics and Physical Sciences NTUA

5-day Workshop Banach space Theory Banff, Canada 4-9 March 2012

This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social

Fund.

- A Banach space is said to be prime if it is isomorphic to each one of its infinite dimensional complemented subspaces.
- A. Pelczynski The spaces ℓ_p , for $1 \le p < \infty$ and c_0 are prime spaces.
- J. Lindenstrauss has shown that ℓ_{∞} is prime.
- A wider class is that of primary Banach spaces, that have the property that whenever $X \simeq Y \oplus Z$, then either $Y \simeq X$ or $Z \simeq X$.
- Some examples of primary spaces are $C[0,1], L^p(0,1)$.

- A Banach space is said to be prime if it is isomorphic to each one of its infinite dimensional complemented subspaces.
- A. Pelczynski The spaces ℓ_p , for $1 \le p < \infty$ and c_0 are prime spaces.
- J. Lindenstrauss has shown that ℓ_{∞} is prime.
- A wider class is that of primary Banach spaces, that have the property that whenever $X \simeq Y \oplus Z$, then either $Y \simeq X$ or $Z \simeq X$.
- Some examples of primary spaces are $C[0,1], L^p(0,1)$.

- A Banach space is said to be prime if it is isomorphic to each one of its infinite dimensional complemented subspaces.
- A. Pelczynski The spaces ℓ_p , for $1 \le p < \infty$ and c_0 are prime spaces.
- J. Lindenstrauss has shown that ℓ_{∞} is prime.
- A wider class is that of primary Banach spaces, that have the property that whenever $X \simeq Y \oplus Z$, then either $Y \simeq X$ or $Z \simeq X$.
- Some examples of primary spaces are $C[0,1], L^p(0,1)$.

- A Banach space is said to be prime if it is isomorphic to each one of its infinite dimensional complemented subspaces.
- A. Pelczynski The spaces ℓ_p , for $1 \le p < \infty$ and c_0 are prime spaces.
- J. Lindenstrauss has shown that ℓ_{∞} is prime.
- A wider class is that of primary Banach spaces, that have the property that whenever $X \simeq Y \oplus Z$, then either $Y \simeq X$ or $Z \simeq X$.
- Some examples of primary spaces are C[0,1], $L^p(0,1)$.

- A Banach space is said to be prime if it is isomorphic to each one of its infinite dimensional complemented subspaces.
- A. Pelczynski The spaces ℓ_p , for $1 \le p < \infty$ and c_0 are prime spaces.
- J. Lindenstrauss has shown that ℓ_{∞} is prime.
- A wider class is that of primary Banach spaces, that have the property that whenever $X \simeq Y \oplus Z$, then either $Y \simeq X$ or $Z \simeq X$.
- Some examples of primary spaces are $C[0,1], L^p(0,1)$.

• S. A. Argyros and Th. Raikoftsalis introduced the notion of quasi prime and strictly quasi prime Banach spaces.

Definition

A Banach space X is said to be quasi prime if there exists a subspace Y of X such that X admits a unique non trivial decomposition as $Y \oplus X$. In the case that Y is not isomorphic to X then X is called strictly quasi prime.

A (1) > A (2) > A

• S. A. Argyros and Th. Raikoftsalis introduced the notion of quasi prime and strictly quasi prime Banach spaces.

Definition

A Banach space X is said to be quasi prime if there exists a subspace Y of X such that X admits a unique non trivial decomposition as $Y \oplus X$. In the case that Y is not isomorphic to X then X is called strictly quasi prime.

Quasi Prime Schauder sums

• The authors proved the existence of certain strictly quasi prime Banach spaces in the following result.

Theorem (S.A. Argyros and Th. Raikoftsalis)

The following holds:

For every $1 \leq p < \infty$ there exists a Banach space \mathfrak{X}_p which is strictly quasi prime and admits ℓ_p as a complemented subspace. There exists a strictly quasi prime Banach space \mathfrak{X}_0 containing c_0 as a complemented subspace.

Each space \$\mathcal{X}_p\$, \$\mathcal{X}_0\$ is a new type of Schauder sum of a sequence of Banach spaces, the HI Schauder sums that were introduced by S.A.Argyros and V. Felouzis.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Theorem (S.A. Argyros and Th. Raikoftsalis)

The following holds:

For every $1 \leq p < \infty$ there exists a Banach space \mathfrak{X}_p which is strictly quasi prime and admits ℓ_p as a complemented subspace. There exists a strictly quasi prime Banach space \mathfrak{X}_0 containing c_0 as a complemented subspace.

Each space \$\mathcal{X}_p\$, \$\mathcal{X}_0\$ is a new type of Schauder sum of a sequence of Banach spaces, the HI Schauder sums that were introduced by S.A.Argyros and V. Felouzis.

Theorem (S.A. Argyros and Th. Raikoftsalis)

The following holds:

For every $1 \leq p < \infty$ there exists a Banach space \mathfrak{X}_p which is strictly quasi prime and admits ℓ_p as a complemented subspace. There exists a strictly quasi prime Banach space \mathfrak{X}_0 containing c_0 as a complemented subspace.

Each space \$\mathcal{X}_p\$, \$\mathcal{X}_0\$ is a new type of Schauder sum of a sequence of Banach spaces, the HI Schauder sums that were introduced by S.A.Argyros and V. Felouzis.

Theorem (S.A. Argyros and Th. Raikoftsalis)

The following holds:

For every $1 \leq p < \infty$ there exists a Banach space \mathfrak{X}_p which is strictly quasi prime and admits ℓ_p as a complemented subspace. There exists a strictly quasi prime Banach space \mathfrak{X}_0 containing c_0 as a complemented subspace.

Each space \$\mathcal{X}_p\$, \$\mathcal{X}_0\$ is a new type of Schauder sum of a sequence of Banach spaces, the HI Schauder sums that were introduced by S.A.Argyros and V. Felouzis.

Theorem (S.A. Argyros and Th. Raikoftsalis)

The following holds:

For every $1 \leq p < \infty$ there exists a Banach space \mathfrak{X}_p which is strictly quasi prime and admits ℓ_p as a complemented subspace. There exists a strictly quasi prime Banach space \mathfrak{X}_0 containing c_0 as a complemented subspace.

• Each space \mathfrak{X}_p , \mathfrak{X}_0 is a new type of Schauder sum of a sequence of Banach spaces, the HI Schauder sums that were introduced by S.A.Argyros and V. Felouzis.

・ロト ・ 同ト ・ ヨト ・ ヨト ・

- We recall that if $(X, \|\cdot\|_*)$ is the Schauder sum of a sequence of Banach spaces $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$, denoted as $X = (\sum_{n=1}^{\infty} \oplus X_n)_*$, then
- There exist bounded projections $P_{[1,n]}: X \to X$ such that $x = \lim_{n \to \infty} P_{[1,n]}(x)$ for every $x \in X$.
- For any element $x \in X$, we define the range of x, ran x, as the minimal interval L of \mathbb{N} such that $x \in \sum_{n \in L} \oplus X_n$.
- We also say that a sequence $(x_k)_{k\in\mathbb{N}}$ in X is horizontally block, if the ran $x_k < \operatorname{ran} x_{k+1}$ (i.e. max ran $x_k < \min \operatorname{ran} x_{k+1}$) for every $k \in \mathbb{N}$.
- The Schauder sum X is shrinking if for every $x^* \in X^*$ $x^* = \lim_{n \to \infty} x^* \circ P_{[1,n]}.$

- We recall that if $(X, \|\cdot\|_*)$ is the Schauder sum of a sequence of Banach spaces $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$, denoted as $X = (\sum_{n=1}^{\infty} \oplus X_n)_*$, then
- There exist bounded projections $P_{[1,n]}: X \to X$ such that $x = \lim_{n \to \infty} P_{[1,n]}(x)$ for every $x \in X$.
- For any element $x \in X$, we define the range of x, ran x, as the minimal interval L of \mathbb{N} such that $x \in \sum_{n \in L} \oplus X_n$.
- We also say that a sequence $(x_k)_{k\in\mathbb{N}}$ in X is horizontally block, if the ran $x_k < \operatorname{ran} x_{k+1}$ (i.e. max ran $x_k < \min \operatorname{ran} x_{k+1}$) for every $k \in \mathbb{N}$.
- The Schauder sum X is shrinking if for every $x^* \in X^*$ $x^* = \lim_{n \to \infty} x^* \circ P_{[1,n]}.$

- We recall that if $(X, \|\cdot\|_*)$ is the Schauder sum of a sequence of Banach spaces $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$, denoted as $X = (\sum_{n=1}^{\infty} \oplus X_n)_*$, then
- There exist bounded projections $P_{[1,n]}: X \to X$ such that $x = \lim_{n \to \infty} P_{[1,n]}(x)$ for every $x \in X$.
- For any element $x \in X$, we define the range of x, ran x, as the minimal interval L of \mathbb{N} such that $x \in \sum_{n \in L} \oplus X_n$.
- We also say that a sequence $(x_k)_{k \in \mathbb{N}}$ in X is horizontally block, if the ran $x_k < \operatorname{ran} x_{k+1}$ (i.e. max ran $x_k < \min \operatorname{ran} x_{k+1}$) for every $k \in \mathbb{N}$.
- The Schauder sum X is shrinking if for every $x^* \in X^*$ $x^* = \lim_{n \to \infty} x^* \circ P_{[1,n]}.$

《日》 《曰》 《曰》 《曰》 《曰》

- We recall that if $(X, \|\cdot\|_*)$ is the Schauder sum of a sequence of Banach spaces $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$, denoted as $X = (\sum_{n=1}^{\infty} \oplus X_n)_*$, then
- There exist bounded projections $P_{[1,n]}: X \to X$ such that $x = \lim_{n \to \infty} P_{[1,n]}(x)$ for every $x \in X$.
- For any element $x \in X$, we define the range of x, ran x, as the minimal interval L of \mathbb{N} such that $x \in \sum_{n \in L} \oplus X_n$.
- We also say that a sequence $(x_k)_{k \in \mathbb{N}}$ in X is horizontally block, if the ran $x_k < \operatorname{ran} x_{k+1}$ (i.e. max ran $x_k < \min \operatorname{ran} x_{k+1}$) for every $k \in \mathbb{N}$.
- The Schauder sum X is shrinking if for every $x^* \in X^*$ $x^* = \lim_{n \to \infty} x^* \circ P_{[1,n]}.$

(本間) (本臣) (本臣) (臣)

- We recall that if $(X, \|\cdot\|_*)$ is the Schauder sum of a sequence of Banach spaces $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$, denoted as $X = (\sum_{n=1}^{\infty} \oplus X_n)_*$, then
- There exist bounded projections $P_{[1,n]}: X \to X$ such that $x = \lim_{n \to \infty} P_{[1,n]}(x)$ for every $x \in X$.
- For any element $x \in X$, we define the range of x, ran x, as the minimal interval L of \mathbb{N} such that $x \in \sum_{n \in L} \oplus X_n$.
- We also say that a sequence $(x_k)_{k \in \mathbb{N}}$ in X is horizontally block, if the ran $x_k < \operatorname{ran} x_{k+1}$ (i.e. max ran $x_k < \min \operatorname{ran} x_{k+1}$) for every $k \in \mathbb{N}$.
- The Schauder sum X is shrinking if for every $x^* \in X^*$ $x^* = \lim_{n \to \infty} x^* \circ P_{[1,n]}.$

- 本部下 소문下 소문下 - 臣

• S.A. Argyros and V. Felouzis using a Gowers Maurey type norm proved the following:

Theorem

Let $(X_n, \|\cdot\|_n)_{n \in \mathbb{N}}$ be a sequence of separable Banach spaces. Then, there exists a Banach space $\mathfrak{X} = (\sum_{n=1}^{\infty} \oplus X_n)_{gm}$ satisfying the following properties: The space \mathfrak{X} is the shrinking Schauder sum of the sequence

 $(X_n, \|\cdot\|)_{n\in\mathbb{N}}$ Every horizontally block sequence $(x_n)_{n\in\mathbb{N}}$ generates an HI subspace.

• A Banach space X is HI (Hereditarily indecomposable), if for every closed infinite dimensional subspace Y of X there do not exist closed infinite dimensional subspaces Y_1 , Y_2 of Y such that $Y = Y_1 \oplus Y_2$.

Theorem

Let $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$ be a sequence of separable Banach spaces. Then, there exists a Banach space $\mathfrak{X} = (\sum_{n=1}^{\infty} \oplus X_n)_{gm}$ satisfying the following properties:

The space \mathfrak{X} is the shrinking Schauder sum of the sequence $(X_n, \|\cdot\|)_{n\in\mathbb{N}}$ Every horizontally block sequence $(x_n)_{n\in\mathbb{N}}$ generates an HI subspace.

• A Banach space X is HI (Hereditarily indecomposable), if for every closed infinite dimensional subspace Y of X there do not exist closed infinite dimensional subspaces Y_1 , Y_2 of Y such that $Y = Y_1 \oplus Y_2$.

Theorem

Let $(X_n, \|\cdot\|_n)_{n \in \mathbb{N}}$ be a sequence of separable Banach spaces. Then, there exists a Banach space $\mathfrak{X} = (\sum_{n=1}^{\infty} \oplus X_n)_{gm}$ satisfying the following properties: The space \mathfrak{X} is the shrinking Schauder sum of the sequence $(X_n, \|\cdot\|)_{n \in \mathbb{N}}$ Every horizontally block sequence $(x_n)_{n \in \mathbb{N}}$ generates an HI subspace.

• A Banach space X is HI (Hereditarily indecomposable), if for every closed infinite dimensional subspace Y of X there do not exist closed infinite dimensional subspaces Y_1 , Y_2 of Y such that $Y = Y_1 \oplus Y_2$.

Theorem

Let $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$ be a sequence of separable Banach spaces. Then, there exists a Banach space $\mathfrak{X} = (\sum_{n=1}^{\infty} \oplus X_n)_{gm}$ satisfying the following properties: The space \mathfrak{X} is the shrinking Schauder sum of the sequence $(X_n, \|\cdot\|)_{n\in\mathbb{N}}$ Every horizontally block sequence $(x_n)_{n\in\mathbb{N}}$ generates an HI subspace.

• A Banach space X is HI (Hereditarily indecomposable), if for every closed infinite dimensional subspace Y of X there do not exist closed infinite dimensional subspaces Y_1 , Y_2 of Y such that $Y = Y_1 \oplus Y_2$.

Theorem

Let $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$ be a sequence of separable Banach spaces. Then, there exists a Banach space $\mathfrak{X} = (\sum_{n=1}^{\infty} \oplus X_n)_{gm}$ satisfying the following properties: The space \mathfrak{X} is the shrinking Schauder sum of the sequence $(X_n, \|\cdot\|)_{n\in\mathbb{N}}$ Every horizontally block sequence $(x_n)_{n\in\mathbb{N}}$ generates an HI subspace.

• A Banach space X is HI (Hereditarily indecomposable), if for every closed infinite dimensional subspace Y of X there do not exist closed infinite dimensional subspaces Y_1 , Y_2 of Y such that $Y = Y_1 \oplus Y_2$.

- Each space \mathfrak{X}_p , (resp. \mathfrak{X}_0) of the Argyros-Raikoftsalis result is the HI-Schauder sum of the corresponding ℓ_p (resp. c_0).
- Moreover, they investigated the finite powers of these spaces they proved:

Theorem (S.A. Argyros-Th. Raikoftsalis)

Let $\mathfrak{X} = \mathfrak{X}_p$ or \mathfrak{X}_0 and denote for each $n \in \mathbb{N}$ by \mathfrak{X}^n the space $\sum_{i=1}^n \oplus \mathfrak{X}(i)$ endowed with the supremum norm as an external one. Then, for every $n, m \in \mathbb{N}$ with $n \neq m$, the space \mathfrak{X}^n is not isomorphic to \mathfrak{X}^m . Moreover, the space \mathfrak{X}^n has at least n + 1, up to isomorphism, complemented subspaces.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Each space \mathfrak{X}_p , (resp. \mathfrak{X}_0) of the Argyros-Raikoftsalis result is the HI-Schauder sum of the corresponding ℓ_p (resp. c_0).
- Moreover, they investigated the finite powers of these spaces they proved:

Theorem (S.A. Argyros-Th. Raikoftsalis)

Let $\mathfrak{X} = \mathfrak{X}_p$ or \mathfrak{X}_0 and denote for each $n \in \mathbb{N}$ by \mathfrak{X}^n the space $\sum_{i=1}^n \oplus \mathfrak{X}(i)$ endowed with the supremum norm as an external one. Then, for every $n, m \in \mathbb{N}$ with $n \neq m$, the space \mathfrak{X}^n is not isomorphic to \mathfrak{X}^m . Moreover, the space \mathfrak{X}^n has at least n + 1, up to isomorphism, complemented subspaces.

- Each space \mathfrak{X}_p , (resp. \mathfrak{X}_0) of the Argyros-Raikoftsalis result is the HI-Schauder sum of the corresponding ℓ_p (resp. c_0).
- Moreover, they investigated the finite powers of these spaces they proved:

Theorem (S.A. Argyros-Th. Raikoftsalis)

Let $\mathfrak{X} = \mathfrak{X}_p$ or \mathfrak{X}_0 and denote for each $n \in \mathbb{N}$ by \mathfrak{X}^n the space $\sum_{i=1}^n \oplus \mathfrak{X}(i)$ endowed with the supremum norm as an external one. Then, for every $n, m \in \mathbb{N}$ with $n \neq m$, the space \mathfrak{X}^n is not isomorphic to \mathfrak{X}^m . Moreover, the space \mathfrak{X}^n has at least n + 1, up to isomorphism, complemented subspaces.

- It is open if the aforementioned space \mathfrak{X}^n has exactly n+1, up to isomorphism complemented subspaces.
- The above result is a consequence of studying the operators acting on the Gowers- Maurey type HI Schauder sum.

Theorem (S.A. Argyros- Th. Raikoftsalis)

Let $\mathfrak{X} = (\sum_{n=1}^{\infty} \oplus X_n)_{gm}$ be the HI Schauder sum of a sequence $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$ of separable Banach spaces. Assume that for every $(w_n)_{n\in\mathbb{N}}$ horizontally block sequence the space $W = (w_n)_{n\in\mathbb{N}}$ is totaly incomparable to each X_n . Then for every bounded and linear operator T on \mathfrak{X} there exists a scalar λ such that $T - \lambda I$ is horizontally strictly singular.

- It is open if the aforementioned space \mathfrak{X}^n has exactly n+1, up to isomorphism complemented subspaces.
- The above result is a consequence of studying the operators acting on the Gowers- Maurey type HI Schauder sum.

Theorem (S.A. Argyros- Th. Raikoftsalis)

Let $\mathfrak{X} = (\sum_{n=1}^{\infty} \oplus X_n)_{gm}$ be the HI Schauder sum of a sequence $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$ of separable Banach spaces. Assume that for every $(w_n)_{n\in\mathbb{N}}$ horizontally block sequence the space $W = (w_n)_{n\in\mathbb{N}}$ is totaly incomparable to each X_n . Then for every bounded and linear operator T on \mathfrak{X} there exists a scalar λ such that $T - \lambda I$ is horizontally strictly singular.

・ロト ・ 同ト ・ ヨト ・ ヨト ・

- It is open if the aforementioned space \mathfrak{X}^n has exactly n+1, up to isomorphism complemented subspaces.
- The above result is a consequence of studying the operators acting on the Gowers- Maurey type HI Schauder sum.

Theorem (S.A. Argyros- Th. Raikoftsalis)

Let $\mathfrak{X} = (\sum_{n=1}^{\infty} \oplus X_n)_{gm}$ be the HI Schauder sum of a sequence $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$ of separable Banach spaces. Assume that for every $(w_n)_{n\in\mathbb{N}}$ horizontally block sequence the space $W = \overline{(w_n)_{n\in\mathbb{N}}}$ is totaly incomparable to each X_n . Then for every bounded and linear operator T on \mathfrak{X} there exists a scalar λ such that $T - \lambda I$ is horizontally strictly singular.

イロト 不得下 イヨト イヨト 二日

- We say that an operator S on \mathfrak{X} is horizontally strictly singular if the restriction on an arbitrary (horizontally) block subspace of \mathfrak{X} is not an isomorphism.
- Since every horizontally block sequence in \mathfrak{X}_p is HI it is clear that the space that it generates is totally incomparable to ℓ_p and similarly every subspace of \mathfrak{X}_0 generated by a horizontally block subspace is totally incomparable to c_0 .
- Therefore, the bounded and linear operator acting on $\mathfrak{X} = \mathfrak{X}_p$ or \mathfrak{X}_0 satisfy the property stated on the above theorem.

(日) (四) (日) (日)

- We say that an operator S on \mathfrak{X} is horizontally strictly singular if the restriction on an arbitrary (horizontally) block subspace of \mathfrak{X} is not an isomorphism.
- Since every horizontally block sequence in \mathfrak{X}_p is HI it is clear that the space that it generates is totally incomparable to ℓ_p and similarly every subspace of \mathfrak{X}_0 generated by a horizontally block subspace is totally incomparable to c_0 .
- Therefore, the bounded and linear operator acting on $\mathfrak{X} = \mathfrak{X}_p$ or \mathfrak{X}_0 satisfy the property stated on the above theorem.

- We say that an operator S on \mathfrak{X} is horizontally strictly singular if the restriction on an arbitrary (horizontally) block subspace of \mathfrak{X} is not an isomorphism.
- Since every horizontally block sequence in \mathfrak{X}_p is HI it is clear that the space that it generates is totally incomparable to ℓ_p and similarly every subspace of \mathfrak{X}_0 generated by a horizontally block subspace is totally incomparable to c_0 .
- Therefore, the bounded and linear operator acting on $\mathfrak{X} = \mathfrak{X}_p$ or \mathfrak{X}_0 satisfy the property stated on the above theorem.

- On the Gowers-Maurey space \mathfrak{X}_{gm} every bounded and linear operator is a strictly singular perturbation of a scalar multiple of the identity.
- An operator is strictly singular if its restriction to any subspace is not an isomorphism.
- The Gowers-Maurey HI-Schauder sum is an example of showing how the "external" norm upon a Schauder sum affects the structure of the space.

- 4 同 ト - 4 三 ト - 4 三 ト

- On the Gowers-Maurey space \mathfrak{X}_{gm} every bounded and linear operator is a strictly singular perturbation of a scalar multiple of the identity.
- An operator is strictly singular if its restriction to any subspace is not an isomorphism.
- The Gowers-Maurey HI-Schauder sum is an example of showing how the "external" norm upon a Schauder sum affects the structure of the space.

- 4 週 ト - 4 三 ト - 4 三 ト

- On the Gowers-Maurey space \mathfrak{X}_{gm} every bounded and linear operator is a strictly singular perturbation of a scalar multiple of the identity.
- An operator is strictly singular if its restriction to any subspace is not an isomorphism.
- The Gowers-Maurey HI-Schauder sum is an example of showing how the "external" norm upon a Schauder sum affects the structure of the space.

- The main idea of this work is to construct for every $n \in \mathbb{N}$, a Banach space \mathbb{Z}^n that has exactly n + 1 complemented subspaces.
- We must mention that W.T. Gowers and B. Maurey proved a similar result using advanced tools, like K-Theory. In particular,
- W.T. Gowers and B. Maurey, Math. Ann., 1997 For every $p \in \mathbb{N}$ there exists a Banach space X_p that admits exactly p, up to isomorphism, complemented subspaces.
- The main idea of this work is to construct for every $n \in \mathbb{N}$, a Banach space \mathbb{Z}^n that has exactly n + 1 complemented subspaces.
- We must mention that W.T. Gowers and B. Maurey proved a similar result using advanced tools, like K-Theory. In particular,
- W.T. Gowers and B. Maurey, Math. Ann., 1997 For every $p \in \mathbb{N}$ there exists a Banach space X_p that admits exactly p, up to isomorphism, complemented subspaces.

- The main idea of this work is to construct for every $n \in \mathbb{N}$, a Banach space \mathbb{Z}^n that has exactly n + 1 complemented subspaces.
- We must mention that W.T. Gowers and B. Maurey proved a similar result using advanced tools, like K-Theory. In particular,
- W.T. Gowers and B. Maurey, Math. Ann., 1997 For every $p \in \mathbb{N}$ there exists a Banach space X_p that admits exactly p, up to isomorphism, complemented subspaces.

- 4 同 ト - 4 回 ト - 4 回 ト

- We want to have a more straightforward approach, motivated by the Argyros Raikoftsalis result. Namely, the main idea is to construct for a given sequence $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$ of separable Banach spaces, a Banach space \mathcal{Z} such that
- (1) $\mathcal{Z} = (\sum_{n=1}^{\infty} \oplus Z_n)_*$, where each Z_n is an augmentation of X_n .
- (2) For every bounded and linear operator T on \mathcal{Z} there exists a scalar λ such that $T - \lambda I$ is a horizontally compact operator.

《曰》 《聞》 《臣》 《臣》 三甲

The Goal

- We want to have a more straightforward approach, motivated by the Argyros Raikoftsalis result. Namely, the main idea is to construct for a given sequence $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$ of separable Banach spaces, a Banach space \mathcal{Z} such that
- (1) $\mathcal{Z} = (\sum_{n=1}^{\infty} \oplus Z_n)_*$, where each Z_n is an augmentation of X_n .
- (2) For every bounded and linear operator T on \mathcal{Z} there exists a scalar λ such that $T - \lambda I$ is a horizontally compact operator.

《曰》 《聞》 《臣》 《臣》 三甲

The Goal

- We want to have a more straightforward approach, motivated by the Argyros Raikoftsalis result. Namely, the main idea is to construct for a given sequence $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$ of separable Banach spaces, a Banach space \mathcal{Z} such that
- (1) $\mathcal{Z} = (\sum_{n=1}^{\infty} \oplus Z_n)_*$, where each Z_n is an augmentation of X_n .
- (2) For every bounded and linear operator T on \mathcal{Z} there exists a scalar λ such that $T - \lambda I$ is a horizontally compact operator.

The Goal

- A bounded and linear operator K on \mathcal{Z} is called horizontally compact if for every bounded block sequence $(z_n)_{n\in\mathbb{N}}$ in \mathcal{Z} , with respect to $(Z_n)_{n\in\mathbb{N}}$, $||K(z_n)|| \to 0$.
- Equivalently, for every $\varepsilon > 0$, there exists $k_{\varepsilon} \in \mathbb{N}$, such that $\|K \circ P_{(k_{\varepsilon},\infty)}(x)\| < \varepsilon \|x\|$ for every $x \in \mathbb{Z}$.
- The second condition that we want concerning the operators acting on \mathcal{Z} , is stronger than the corresponding of the Gowers-Maurey HI-Schauder sums.
- The finite powers of such a space \mathcal{Z} , for a specifically chosen sequence $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$ could satisfy the desired result.

イロト イポト イヨト イヨト

- A bounded and linear operator K on \mathcal{Z} is called horizontally compact if for every bounded block sequence $(z_n)_{n\in\mathbb{N}}$ in \mathcal{Z} , with respect to $(Z_n)_{n\in\mathbb{N}}$, $||K(z_n)|| \to 0$.
- Equivalently, for every $\varepsilon > 0$, there exists $k_{\varepsilon} \in \mathbb{N}$, such that $\|K \circ P_{(k_{\varepsilon},\infty)}(x)\| < \varepsilon \|x\|$ for every $x \in \mathcal{Z}$.
- The second condition that we want concerning the operators acting on \mathcal{Z} , is stronger than the corresponding of the Gowers-Maurey HI-Schauder sums.
- The finite powers of such a space \mathcal{Z} , for a specifically chosen sequence $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$ could satisfy the desired result.

《日》 《曰》 《曰》 《曰》 《曰》

- A bounded and linear operator K on \mathcal{Z} is called horizontally compact if for every bounded block sequence $(z_n)_{n\in\mathbb{N}}$ in \mathcal{Z} , with respect to $(Z_n)_{n\in\mathbb{N}}$, $||K(z_n)|| \to 0$.
- Equivalently, for every $\varepsilon > 0$, there exists $k_{\varepsilon} \in \mathbb{N}$, such that $\|K \circ P_{(k_{\varepsilon},\infty)}(x)\| < \varepsilon \|x\|$ for every $x \in \mathcal{Z}$.
- The second condition that we want concerning the operators acting on \mathcal{Z} , is stronger than the corresponding of the Gowers-Maurey HI-Schauder sums.
- The finite powers of such a space \mathcal{Z} , for a specifically chosen sequence $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$ could satisfy the desired result.

- A bounded and linear operator K on \mathcal{Z} is called horizontally compact if for every bounded block sequence $(z_n)_{n\in\mathbb{N}}$ in \mathcal{Z} , with respect to $(Z_n)_{n\in\mathbb{N}}$, $||K(z_n)|| \to 0$.
- Equivalently, for every $\varepsilon > 0$, there exists $k_{\varepsilon} \in \mathbb{N}$, such that $\|K \circ P_{(k_{\varepsilon},\infty)}(x)\| < \varepsilon \|x\|$ for every $x \in \mathcal{Z}$.
- The second condition that we want concerning the operators acting on \mathcal{Z} , is stronger than the corresponding of the Gowers-Maurey HI-Schauder sums.
- The finite powers of such a space \mathcal{Z} , for a specifically chosen sequence $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$ could satisfy the desired result.

• S.A. Argyros and R. Haydon using a BD-type method of construction proved the following result.

Theorem (S.A. Argyros-R.G. Haydon, Acta Math 2011)

There exists a hereditarily indecomposable Banach space \mathfrak{X}_k with the "scalar-plus-compact" property.

• We recall that a Banach space X has the "scalar-plus-compact" property if every linear and bounded operator T is a compact perturbation of a scalar multiple of the identity.

• S.A. Argyros and R. Haydon using a BD-type method of construction proved the following result.

Theorem (S.A. Argyros-R.G. Haydon, Acta Math 2011)

There exists a hereditarily indecomposable Banach space \mathfrak{X}_k with the "scalar-plus-compact" property.

• We recall that a Banach space X has the "scalar-plus-compact" property if every linear and bounded operator T is a compact perturbation of a scalar multiple of the identity.

• S.A. Argyros and R. Haydon using a BD-type method of construction proved the following result.

Theorem (S.A. Argyros-R.G. Haydon, Acta Math 2011)

There exists a hereditarily indecomposable Banach space \mathfrak{X}_k with the "scalar-plus-compact" property.

• We recall that a Banach space X has the "scalar-plus-compact" property if every linear and bounded operator T is a compact perturbation of a scalar multiple of the identity.

A (10) A (10) A (10)

- The definition of BD-*L*[∞]-Sums of Banach spaces uses the original BD- construction.
- Let (X_n, || · ||_n)_{n∈ℕ} be a sequence of separable Banach spaces. We say that a Banach space Z is a BD-L[∞]-sum of (X_n, || · ||_n)_{n∈ℕ} if there exists a sequence (Δ_n)_{n∈ℕ} of finite, pairwise disjoint subsets of ℕ and the following are satisfied:
- $\mathcal{Z} \subset \mathfrak{X}_{\infty} = (\sum_{n=1}^{\infty} \oplus (X_n \oplus \ell^{\infty}(\Delta_n)))_{\infty}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

- The definition of BD-*L*[∞]-Sums of Banach spaces uses the original BD- construction.
- Let (X_n, || · ||_n)_{n∈ℕ} be a sequence of separable Banach spaces. We say that a Banach space Z is a BD-L[∞]-sum of (X_n, || · ||_n)_{n∈ℕ} if there exists a sequence (Δ_n)_{n∈ℕ} of finite, pairwise disjoint subsets of ℕ and the following are satisfied:
- $\mathcal{Z} \subset \mathfrak{X}_{\infty} = (\sum_{n=1}^{\infty} \oplus (X_n \oplus \ell^{\infty}(\Delta_n)))_{\infty}.$

- The definition of BD-*L*[∞]-Sums of Banach spaces uses the original BD- construction.
- Let (X_n, || · ||_n)_{n∈ℕ} be a sequence of separable Banach spaces. We say that a Banach space Z is a BD-L[∞]-sum of (X_n, || · ||_n)_{n∈ℕ} if there exists a sequence (Δ_n)_{n∈ℕ} of finite, pairwise disjoint subsets of ℕ and the following are satisfied:

•
$$\mathcal{Z} \subset \mathfrak{X}_{\infty} = (\sum_{n=1}^{\infty} \oplus (X_n \oplus \ell^{\infty}(\Delta_n)))_{\infty}.$$

- There exists C > 0 and operators $i_k : \sum_{n=1}^k \oplus (X_n \oplus \ell^{\infty}(\Delta_n)) \to \mathbb{Z}$ with the following properties:
- $||i_k|| \leq C$ for every $k \in \mathbb{N}$.
- For every $x \in \sum_{n=1}^{k} \oplus (X_n \oplus \ell^{\infty}(\Delta_n)),$
 - $P_{[1,k]} \circ i_k(x) = x,$
 - $P_{(k,\infty)} \circ i_k(x) \in \sum_{n=k+1}^{\infty} \oplus \ell^{\infty}(\Delta_n).$
 - $i_l(P_{[1,l]} \circ i_k(x)) = i_k(x), \text{ for every } l \ge k.$
- Setting $Y_k = i_k [\sum_{n=1}^k \oplus (X_n \oplus \ell^{\infty}(\Delta_n))]$ for every $k \in \mathbb{N}$, $\mathcal{Z} = \overline{\bigcup_{k \in \mathbb{N}} Y_k}.$

- There exists C > 0 and operators $i_k : \sum_{n=1}^k \oplus (X_n \oplus \ell^{\infty}(\Delta_n)) \to \mathbb{Z}$ with the following properties:
- $||i_k|| \leq C$ for every $k \in \mathbb{N}$.
- For every $x \in \sum_{n=1}^{k} \oplus (X_n \oplus \ell^{\infty}(\Delta_n)),$
 - $P_{[1,k]} \circ i_k(x) = x,$
 - $P_{(k,\infty)} \circ i_k(x) \in \sum_{n=k+1}^{\infty} \oplus \ell^{\infty}(\Delta_n).$
 - $i_l(P_{[1,l]} \circ i_k(x)) = i_k(x), \text{ for every } l \ge k.$
- Setting $Y_k = i_k [\sum_{n=1}^k \oplus (X_n \oplus \ell^{\infty}(\Delta_n))]$ for every $k \in \mathbb{N}$, $\mathcal{Z} = \overline{\bigcup_{k \in \mathbb{N}} Y_k}.$

• There exists C > 0 and operators $i_k : \sum_{n=1}^k \bigoplus (X_n \oplus \ell^{\infty}(\Delta_n)) \to \mathbb{Z}$ with the following properties:

•
$$||i_k|| \leq C$$
 for every $k \in \mathbb{N}$.

• For every
$$x \in \sum_{n=1}^{k} \oplus (X_n \oplus \ell^{\infty}(\Delta_n)),$$

$$\begin{array}{l} \bullet P_{[1,k]} \circ i_k(x) = x, \\ \bullet P_{(k,\infty)} \circ i_k(x) \in \sum_{n=k+1}^{\infty} \oplus \ell^{\infty}(\Delta_n). \\ \bullet i_l(P_{[1,l]} \circ i_k(x)) = i_k(x), \text{ for every } l \geq k. \end{array}$$

• Setting
$$Y_k = i_k [\sum_{n=1}^k \oplus (X_n \oplus \ell^{\infty}(\Delta_n))]$$
 for every $k \in \mathbb{N}$,
 $\mathcal{Z} = \overline{\bigcup_{k \in \mathbb{N}} Y_k}.$

• There exists C > 0 and operators $i_k : \sum_{n=1}^k \bigoplus (X_n \oplus \ell^{\infty}(\Delta_n)) \to \mathbb{Z}$ with the following properties:

•
$$||i_k|| \leq C$$
 for every $k \in \mathbb{N}$.

• For every
$$x \in \sum_{n=1}^{k} \oplus (X_n \oplus \ell^{\infty}(\Delta_n)),$$

$$P_{[1,k]} \circ i_k(x) = x,$$

$$P_{(k,\infty)} \circ i_k(x) \in \sum_{n=k+1} \oplus \ell^+(\Delta_n).$$

$$i_l(P_{[1,l]} \circ i_k(x)) = i_k(x), \text{ for every } l \ge k.$$

• Setting
$$Y_k = i_k [\sum_{n=1}^k \oplus (X_n \oplus \ell^{\infty}(\Delta_n)] \text{ for every } k \in \mathbb{N},$$

 $\mathcal{Z} = \overline{\bigcup_{k \in \mathbb{N}} Y_k}.$

▲御▶ ▲理▶ ▲理▶ 二臣

• There exists C > 0 and operators $i_k : \sum_{n=1}^k \bigoplus (X_n \oplus \ell^{\infty}(\Delta_n)) \to \mathbb{Z}$ with the following properties:

•
$$||i_k|| \leq C$$
 for every $k \in \mathbb{N}$.

• For every
$$x \in \sum_{n=1}^{k} \oplus (X_n \oplus \ell^{\infty}(\Delta_n)),$$

$$P_{[1,k]} \circ i_k(x) = x, P_{(k,\infty)} \circ i_k(x) \in \sum_{n=k+1}^{\infty} \oplus \ell^{\infty}(\Delta_n). i_l(P_{[1,l]} \circ i_k(x)) = i_k(x), \text{ for every } l \ge k.$$

• Setting
$$Y_k = i_k [\sum_{n=1}^k \oplus (X_n \oplus \ell^{\infty}(\Delta_n)]$$
 for every $k \in \mathbb{N}$,
 $\mathcal{Z} = \overline{\bigcup_{k \in \mathbb{N}} Y_k}$.

• There exists C > 0 and operators $i_k : \sum_{n=1}^k \oplus (X_n \oplus \ell^{\infty}(\Delta_n)) \to \mathcal{Z}$ with the following properties:

•
$$||i_k|| \leq C$$
 for every $k \in \mathbb{N}$.

• For every
$$x \in \sum_{n=1}^{k} \oplus (X_n \oplus \ell^{\infty}(\Delta_n)),$$

$$\begin{array}{ll} \bullet & P_{[1,k]} \circ i_k(x) = x, \\ \bullet & P_{(k,\infty)} \circ i_k(x) \in \sum_{n=k+1}^{\infty} \oplus \ell^{\infty}(\Delta_n). \\ \bullet & i_l(P_{[1,l]} \circ i_k(x)) = i_k(x), \text{ for every } l \geq k. \end{array}$$

• Setting $Y_k = i_k [\sum_{n=1}^k \oplus (X_n \oplus \ell^{\infty}(\Delta_n))]$ for every $k \in \mathbb{N}$, $\mathcal{Z} = \overline{\bigcup_{k \in \mathbb{N}} Y_k}.$

▲御▶ ▲注▶ ▲注▶ - 注

• There exists C > 0 and operators $i_k : \sum_{n=1}^k \bigoplus (X_n \oplus \ell^{\infty}(\Delta_n)) \to \mathbb{Z}$ with the following properties:

•
$$||i_k|| \leq C$$
 for every $k \in \mathbb{N}$.

• For every
$$x \in \sum_{n=1}^{k} \oplus (X_n \oplus \ell^{\infty}(\Delta_n)),$$

$$\begin{array}{ll} \bullet & P_{[1,k]} \circ i_k(x) = x, \\ \bullet & P_{(k,\infty)} \circ i_k(x) \in \sum_{n=k+1}^{\infty} \oplus \ell^{\infty}(\Delta_n). \\ \bullet & i_l(P_{[1,l]} \circ i_k(x)) = i_k(x), \text{ for every } l \geq k. \end{array}$$

• Setting
$$Y_k = i_k [\sum_{n=1}^k \oplus (X_n \oplus \ell^{\infty}(\Delta_n))]$$
 for every $k \in \mathbb{N}$,
 $\mathcal{Z} = \overline{\bigcup_{k \in \mathbb{N}} Y_k}.$

・部・・モト・モー

- We briefly describe how we can obtain a BD- \mathcal{L}^{∞} sum.
- Let $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$ be a sequence of separable Banach spaces.
- As in the Bourgain-Delbaen space, we start by fixing two constants 0 < a ≤ 1 and 0 < b < ¹/₂.
- We choose $D_n = \{d_{n,1}^*, d_{n,2}^*, \ldots, d_{n,k}^*, \ldots\}$ a w^* dense subset of $B_{X_n^*}$ for every $n \in \mathbb{N}$, and denote by $D_{n,k}$ the first k-terms of D_n .

- We briefly describe how we can obtain a BD- \mathcal{L}^{∞} sum.
- Let $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$ be a sequence of separable Banach spaces.
- As in the Bourgain-Delbaen space, we start by fixing two constants 0 < a ≤ 1 and 0 < b < ¹/₂.
- We choose $D_n = \{d_{n,1}^*, d_{n,2}^*, \ldots, d_{n,k}^*, \ldots\}$ a w^* dense subset of $B_{X_n^*}$ for every $n \in \mathbb{N}$, and denote by $D_{n,k}$ the first k-terms of D_n .

- We briefly describe how we can obtain a BD- \mathcal{L}^{∞} sum.
- Let $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$ be a sequence of separable Banach spaces.
- As in the Bourgain-Delbaen space, we start by fixing two constants $0 < a \le 1$ and $0 < b < \frac{1}{2}$.
- We choose $D_n = \{d_{n,1}^*, d_{n,2}^*, \ldots, d_{n,k}^*, \ldots\}$ a w^* dense subset of $B_{X_n^*}$ for every $n \in \mathbb{N}$, and denote by $D_{n,k}$ the first k-terms of D_n .

- We briefly describe how we can obtain a BD- \mathcal{L}^{∞} sum.
- Let $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$ be a sequence of separable Banach spaces.
- As in the Bourgain-Delbaen space, we start by fixing two constants 0 < a ≤ 1 and 0 < b < ¹/₂.
- We choose $D_n = \{d_{n,1}^*, d_{n,2}^*, \ldots, d_{n,k}^*, \ldots\}$ a w^* dense subset of $B_{X_n^*}$ for every $n \in \mathbb{N}$, and denote by $D_{n,k}$ the first k-terms of D_n .

- The sets (∆_n)_{n∈ℕ} are defined recursively following the BD-method.
- Each element $\gamma \in \Delta_k$ is determined by a functional $c_{\gamma}^* : (\sum_{n=1}^{k-1} \oplus (X_n \oplus \ell^{\infty}(\Delta_n)))_{\infty} \to \mathbb{R}.$
- We set $\Gamma = \bigcup_{n \in \mathbb{N}} \Delta_n$ and $\Gamma_k = \bigcup_{n=1}^k \Delta_n$ for every $k \in \mathbb{N}$.

- The sets (∆_n)_{n∈ℕ} are defined recursively following the BD-method.
- Each element $\gamma \in \Delta_k$ is determined by a functional $c_{\gamma}^* : (\sum_{n=1}^{k-1} \oplus (X_n \oplus \ell^{\infty}(\Delta_n)))_{\infty} \to \mathbb{R}.$

• We set $\Gamma = \bigcup_{n \in \mathbb{N}} \Delta_n$ and $\Gamma_k = \bigcup_{n=1}^k \Delta_n$ for every $k \in \mathbb{N}$.

- The sets (∆_n)_{n∈ℕ} are defined recursively following the BD-method.
- Each element $\gamma \in \Delta_k$ is determined by a functional $c_{\gamma}^* : (\sum_{n=1}^{k-1} \oplus (X_n \oplus \ell^{\infty}(\Delta_n)))_{\infty} \to \mathbb{R}.$
- We set $\Gamma = \bigcup_{n \in \mathbb{N}} \Delta_n$ and $\Gamma_k = \bigcup_{n=1}^k \Delta_n$ for every $k \in \mathbb{N}$.

• For every $l \leq k$ we define linear operators $i_{l,k} : \sum_{n=1}^{l} \oplus (X_n \oplus \ell^{\infty}(\Delta_n)) \to \sum_{n=1}^{k} \oplus (X_n \oplus \ell^{\infty}(\Delta_n))$ such that:

• $i_{l,k} = i_{l,m} \circ i_{m,k}$ for every $l \le m \le k$ and

• $i_{k-1,k}(x) = x$ for every $x \in \sum_{n=1}^{k-1} \oplus X_n$, while

• $i_{k-1,k}(x)(\gamma) = \begin{cases} x(\gamma), \text{ if } \gamma \in \Gamma_{k-1} \\ c^*_{\gamma}(x), \text{ if } \gamma \in \Delta_k \end{cases}$.

- For every $l \leq k$ we define linear operators $i_{l,k} : \sum_{n=1}^{l} \oplus (X_n \oplus \ell^{\infty}(\Delta_n)) \to \sum_{n=1}^{k} \oplus (X_n \oplus \ell^{\infty}(\Delta_n))$ such that:
- $i_{l,k} = i_{l,m} \circ i_{m,k}$ for every $l \le m \le k$ and

•
$$i_{k-1,k}(x) = x$$
 for every $x \in \sum_{n=1}^{k-1} \oplus X_n$, while

•
$$i_{k-1,k}(x)(\gamma) = \begin{cases} x(\gamma), \text{ if } \gamma \in \Gamma_{k-1} \\ c_{\gamma}^*(x), \text{ if } \gamma \in \Delta_k \end{cases}$$

伺下 イヨト イヨト 三日

• For every $l \leq k$ we define linear operators $i_{l,k} : \sum_{n=1}^{l} \oplus (X_n \oplus \ell^{\infty}(\Delta_n)) \to \sum_{n=1}^{k} \oplus (X_n \oplus \ell^{\infty}(\Delta_n))$ such that:

•
$$i_{l,k} = i_{l,m} \circ i_{m,k}$$
 for every $l \le m \le k$ and

•
$$i_{k-1,k}(x) = x$$
 for every $x \in \sum_{n=1}^{k-1} \oplus X_n$, while

•
$$i_{k-1,k}(x)(\gamma) = \begin{cases} x(\gamma), \text{ if } \gamma \in \Gamma_{k-1} \\ c^*_{\gamma}(x), \text{ if } \gamma \in \Delta_k \end{cases}$$

• For every $l \leq k$ we define linear operators $i_{l,k}: \sum_{n=1}^{l} \oplus (X_n \oplus \ell^{\infty}(\Delta_n)) \to \sum_{n=1}^{k} \oplus (X_n \oplus \ell^{\infty}(\Delta_n))$ such that:

•
$$i_{l,k} = i_{l,m} \circ i_{m,k}$$
 for every $l \le m \le k$ and

•
$$i_{k-1,k}(x) = x$$
 for every $x \in \sum_{n=1}^{k-1} \oplus X_n$, while

•
$$i_{k-1,k}(x)(\gamma) = \begin{cases} x(\gamma), \text{ if } \gamma \in \Gamma_{k-1} \\ c_{\gamma}^*(x), \text{ if } \gamma \in \Delta_k \end{cases}$$

- Each Δ_k is the union of two finite pairwise disjoint subsets of \mathbb{N} , $\Delta_k = \Delta_k^0 \cup \Delta_k^1$.
- Assuming that $(\Delta_l)_{l \leq k}$ are defined, we determine the set Δ_{k+1} as follows:
- For every $\gamma \in \Delta_{k+1}^0$, there exists $d^* \in \bigcup_{l=1}^{k+1} D_{l,k}$ such that $c^*_{\gamma}(x) = d^*(x)$ for every $x \in \sum_{n=1}^k \oplus (X_n \oplus \ell^{\infty}(\Delta_n))$.
- For $\gamma \in \Delta_{k+1}^1$, and $x \in \sum_{n=1}^k \oplus (X_n \oplus \ell^\infty(\Delta_n))$ $c_{\gamma}^*(x) = ax(\eta) + b(x(\xi) - i_{l,k}P_{[1,l]}x(\xi))$, where $\eta \in \Gamma_l$ and $\xi \in \Gamma_k \setminus \Gamma_l$.

・ 同 ト ・ ヨ ト ・ ・ ヨ ト ……

- Each Δ_k is the union of two finite pairwise disjoint subsets of N, Δ_k = Δ⁰_k ∪ Δ¹_k.
- Assuming that $(\Delta_l)_{l \leq k}$ are defined, we determine the set Δ_{k+1} as follows:
- For every $\gamma \in \Delta_{k+1}^0$, there exists $d^* \in \bigcup_{l=1}^{k+1} D_{l,k}$ such that $c^*_{\gamma}(x) = d^*(x)$ for every $x \in \sum_{n=1}^k \oplus (X_n \oplus \ell^{\infty}(\Delta_n))$.
- For $\gamma \in \Delta_{k+1}^1$, and $x \in \sum_{n=1}^k \oplus (X_n \oplus \ell^\infty(\Delta_n))$ $c_{\gamma}^*(x) = ax(\eta) + b(x(\xi) - i_{l,k}P_{[1,l]}x(\xi))$, where $\eta \in \Gamma_l$ and $\xi \in \Gamma_k \setminus \Gamma_l$.

・得下 ・ヨト ・ヨトー

- Each Δ_k is the union of two finite pairwise disjoint subsets of \mathbb{N} , $\Delta_k = \Delta_k^0 \cup \Delta_k^1$.
- Assuming that $(\Delta_l)_{l \leq k}$ are defined, we determine the set Δ_{k+1} as follows:
- For every $\gamma \in \Delta_{k+1}^0$, there exists $d^* \in \bigcup_{l=1}^{k+1} D_{l,k}$ such that $c^*_{\gamma}(x) = d^*(x)$ for every $x \in \sum_{n=1}^k \oplus (X_n \oplus \ell^{\infty}(\Delta_n))$.
- For $\gamma \in \Delta_{k+1}^1$, and $x \in \sum_{n=1}^k \oplus (X_n \oplus \ell^{\infty}(\Delta_n))$ $c^*_{\gamma}(x) = ax(\eta) + b(x(\xi) - i_{l,k}P_{[1,l]}x(\xi))$, where $\eta \in \Gamma_l$ and $\xi \in \Gamma_k \setminus \Gamma_l$.

▲御▶ ▲注▶ ▲注▶ - 注
The construction of BD- \mathcal{L}^{∞} -Sums of Banach spaces

- Each Δ_k is the union of two finite pairwise disjoint subsets of \mathbb{N} , $\Delta_k = \Delta_k^0 \cup \Delta_k^1$.
- Assuming that $(\Delta_l)_{l \leq k}$ are defined, we determine the set Δ_{k+1} as follows:
- For every $\gamma \in \Delta_{k+1}^0$, there exists $d^* \in \bigcup_{l=1}^{k+1} D_{l,k}$ such that $c^*_{\gamma}(x) = d^*(x)$ for every $x \in \sum_{n=1}^k \oplus (X_n \oplus \ell^{\infty}(\Delta_n))$.
- For $\gamma \in \Delta_{k+1}^1$, and $x \in \sum_{n=1}^k \oplus (X_n \oplus \ell^\infty(\Delta_n))$ $c^*_{\gamma}(x) = ax(\eta) + b(x(\xi) - i_{l,k}P_{[1,l]}x(\xi))$, where $\eta \in \Gamma_l$ and $\xi \in \Gamma_k \setminus \Gamma_l$.

・部・・モー・ 中国・ 日日

- The BD- method yields that $i_{k,m}$ are uniformly bounded by a constant C > 0 and therefore we can define $i_k = \lim_{m \to \infty} i_{k,m}$.
- The operators i_k are uniformly bounded and setting $Z_n = i_n[X_n \oplus \ell^{\infty}(\Delta_n)]$ we have that $(Z_n)_{n \in \mathbb{N}}$ is a decomposition of the space.

- 4 回 トーイ ヨ トー・

- The BD- method yields that $i_{k,m}$ are uniformly bounded by a constant C > 0 and therefore we can define $i_k = \lim_{m \to \infty} i_{k,m}$.
- The operators i_k are uniformly bounded and setting $Z_n = i_n [X_n \oplus \ell^{\infty}(\Delta_n)]$ we have that $(Z_n)_{n \in \mathbb{N}}$ is a decomposition of the space.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

$\operatorname{AH-}\mathcal{L}^{\infty}$ sums

• Using the Argyros-Haydon BD-type of construction in the above concept, we prove the following

Theorem

Let $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$ be a sequence of separable Banach spaces. Then there exists a Banach space \mathcal{Z} with the following properties:

 \mathcal{Z} is the BD- \mathcal{L}^{∞} sum of $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$,

Z admits a shrinking Schauder decomposition, $Z = \sum_{k=1}^{\infty} \oplus Z_k$. Every horizontally block sequence $(z_n)_{n \in \mathbb{N}}$ generates an HI subspace.

 \mathcal{Z}^* may be identified with $(\sum_{n=1}^{\infty} \oplus Z_n^*)_1$.

Theorem

Let $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$ be a sequence of separable Banach spaces. Then there exists a Banach space \mathcal{Z} with the following properties:

 \mathcal{Z} is the BD- \mathcal{L}^{∞} sum of $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$,

 \mathcal{Z} admits a shrinking Schauder decomposition, $\mathcal{Z} = \sum_{k=1}^{\infty} \oplus Z_k$ Every horizontally block sequence $(z_n)_{n \in \mathbb{N}}$ generates an HI subspace.

 \mathcal{Z}^* may be identified with $(\sum_{n=1}^{\infty} \oplus Z_n^*)_1$.

Theorem

Let $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$ be a sequence of separable Banach spaces. Then there exists a Banach space \mathcal{Z} with the following properties:

 \mathcal{Z} is the BD- \mathcal{L}^{∞} sum of $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$,

Z admits a shrinking Schauder decomposition, $Z = \sum_{k=1}^{\infty} \oplus Z_k$. Every horizontally block sequence $(z_n)_{n \in \mathbb{N}}$ generates an HI subspace.

 \mathcal{Z}^* may be identified with $(\sum_{n=1}^{\infty} \oplus Z_n^*)_1$.

Theorem

Let $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$ be a sequence of separable Banach spaces. Then there exists a Banach space \mathcal{Z} with the following properties:

 \mathcal{Z} is the BD- \mathcal{L}^{∞} sum of $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$,

 \mathcal{Z} admits a shrinking Schauder decomposition, $\mathcal{Z} = \sum_{k=1}^{\infty} \oplus Z_k$. Every horizontally block sequence $(z_n)_{n \in \mathbb{N}}$ generates an HI subspace.

 \mathcal{Z}^* may be identified with $(\sum_{n=1}^{\infty} \oplus Z_n^*)_1$.

Theorem

Let $(X_n, \|\cdot\|_n)_{n \in \mathbb{N}}$ be a sequence of separable Banach spaces. Then there exists a Banach space \mathcal{Z} with the following properties:

 \mathcal{Z} is the BD- \mathcal{L}^{∞} sum of $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$,

 \mathcal{Z} admits a shrinking Schauder decomposition, $\mathcal{Z} = \sum_{k=1}^{\infty} \oplus Z_k$. Every horizontally block sequence $(z_n)_{n \in \mathbb{N}}$ generates an HI subspace.

 \mathcal{Z}^* may be identified with $(\sum_{n=1}^{\infty} \oplus Z_n^*)_1$.

Theorem

Let $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$ be a sequence of separable Banach spaces. Then there exists a Banach space \mathcal{Z} with the following properties:

 \mathcal{Z} is the BD- \mathcal{L}^{∞} sum of $(X_n, \|\cdot\|_n)_{n\in\mathbb{N}}$,

 \mathcal{Z} admits a shrinking Schauder decomposition, $\mathcal{Z} = \sum_{k=1}^{\infty} \oplus Z_k$. Every horizontally block sequence $(z_n)_{n \in \mathbb{N}}$ generates an HI subspace.

 \mathcal{Z}^* may be identified with $(\sum_{n=1}^{\infty} \oplus Z_n^*)_1$.

- The properties of \mathcal{Z} are strongly based on the existence of special features that are preserved by the Argyros-Haydon HI method of construction.
- We denote by Z_p (resp. Z₀) the AH-L[∞] sum of the corresponding ℓ_p (resp. c₀).
- Then, $\mathcal{Z}_p = \sum_{k=1}^{\infty} \oplus Z_k$, where $Z_k = i_n [\ell_p \oplus \ell^{\infty}(\Delta_k)]$.
- Each Z_k is isomorphic to $(\ell_p \oplus \ell^{\infty}(\Delta_k))_{\infty}$ which is C_k isomorphic to ℓ_p with $C_k \to \infty$. Therefore, we cannot have
 an isometry.
- For every $k \in \mathbb{N}$, $P_{[1,k]}(\mathcal{Z}_p) \simeq \ell_p$ and $P_{[1,k]}(\mathcal{Z}_0) \simeq c_0$.

- The properties of \mathcal{Z} are strongly based on the existence of special features that are preserved by the Argyros-Haydon HI method of construction.
- We denote by Z_p (resp. Z₀) the AH-L[∞] sum of the corresponding ℓ_p (resp. c₀).
- Then, $\mathcal{Z}_p = \sum_{k=1}^{\infty} \oplus Z_k$, where $Z_k = i_n[\ell_p \oplus \ell^{\infty}(\Delta_k)]$.
- Each Z_k is isomorphic to $(\ell_p \oplus \ell^{\infty}(\Delta_k))_{\infty}$ which is C_k isomorphic to ℓ_p with $C_k \to \infty$. Therefore, we cannot have
 an isometry.
- For every $k \in \mathbb{N}$, $P_{[1,k]}(\mathcal{Z}_p) \simeq \ell_p$ and $P_{[1,k]}(\mathcal{Z}_0) \simeq c_0$.

- The properties of \mathcal{Z} are strongly based on the existence of special features that are preserved by the Argyros-Haydon HI method of construction.
- We denote by Z_p (resp. Z₀) the AH-L[∞] sum of the corresponding ℓ_p (resp. c₀).
- Then, $\mathcal{Z}_p = \sum_{k=1}^{\infty} \oplus Z_k$, where $Z_k = i_n [\ell_p \oplus \ell^{\infty}(\Delta_k)]$.
- Each Z_k is isomorphic to $(\ell_p \oplus \ell^{\infty}(\Delta_k))_{\infty}$ which is C_k isomorphic to ℓ_p with $C_k \to \infty$. Therefore, we cannot have
 an isometry.
- For every $k \in \mathbb{N}$, $P_{[1,k]}(\mathcal{Z}_p) \simeq \ell_p$ and $P_{[1,k]}(\mathcal{Z}_0) \simeq c_0$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

- The properties of \mathcal{Z} are strongly based on the existence of special features that are preserved by the Argyros-Haydon HI method of construction.
- We denote by Z_p (resp. Z₀) the AH-L[∞] sum of the corresponding ℓ_p (resp. c₀).
- Then, $\mathcal{Z}_p = \sum_{k=1}^{\infty} \oplus Z_k$, where $Z_k = i_n[\ell_p \oplus \ell^{\infty}(\Delta_k)]$.
- Each Z_k is isomorphic to $(\ell_p \oplus \ell^{\infty}(\Delta_k))_{\infty}$ which is C_k isomorphic to ℓ_p with $C_k \to \infty$. Therefore, we cannot have
 an isometry.
- For every $k \in \mathbb{N}$, $P_{[1,k]}(\mathcal{Z}_p) \simeq \ell_p$ and $P_{[1,k]}(\mathcal{Z}_0) \simeq c_0$.

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- The properties of \mathcal{Z} are strongly based on the existence of special features that are preserved by the Argyros-Haydon HI method of construction.
- We denote by Z_p (resp. Z₀) the AH-L[∞] sum of the corresponding ℓ_p (resp. c₀).
- Then, $\mathcal{Z}_p = \sum_{k=1}^{\infty} \oplus Z_k$, where $Z_k = i_n[\ell_p \oplus \ell^{\infty}(\Delta_k)]$.
- Each Z_k is isomorphic to $(\ell_p \oplus \ell^{\infty}(\Delta_k))_{\infty}$ which is C_k isomorphic to ℓ_p with $C_k \to \infty$. Therefore, we cannot have
 an isometry.
- For every $k \in \mathbb{N}$, $P_{[1,k]}(\mathcal{Z}_p) \simeq \ell_p$ and $P_{[1,k]}(\mathcal{Z}_0) \simeq c_0$.

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• The following are proved:

- For every 1 ≤ p < ∞ the space Z_p is strictly quasi prime and admits ℓ_p as a complemented subspace.
- The space \mathcal{Z}_0 is strictly quasi prime containing c_0 as a complemented subspace.
- Let $\mathcal{Z} = \mathcal{Z}_p$ or \mathcal{Z}_0 . Then, for every bounded and linear operator T on \mathcal{Z} , there exists scalar λ such that $T \lambda I$ is horizontally compact.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- The following are proved:
- For every 1 ≤ p < ∞ the space Z_p is strictly quasi prime and admits ℓ_p as a complemented subspace.
- The space \mathcal{Z}_0 is strictly quasi prime containing c_0 as a complemented subspace.
- Let $\mathcal{Z} = \mathcal{Z}_p$ or \mathcal{Z}_0 . Then, for every bounded and linear operator T on \mathcal{Z} , there exists scalar λ such that $T \lambda I$ is horizontally compact.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- The following are proved:
- For every 1 ≤ p < ∞ the space Z_p is strictly quasi prime and admits ℓ_p as a complemented subspace.
- The space \mathcal{Z}_0 is strictly quasi prime containing c_0 as a complemented subspace.
- Let $\mathcal{Z} = \mathcal{Z}_p$ or \mathcal{Z}_0 . Then, for every bounded and linear operator T on \mathcal{Z} , there exists scalar λ such that $T \lambda I$ is horizontally compact.

・ 同 ト ・ ヨ ト ・ ヨ ト

- The following are proved:
- For every 1 ≤ p < ∞ the space Z_p is strictly quasi prime and admits ℓ_p as a complemented subspace.
- The space \mathcal{Z}_0 is strictly quasi prime containing c_0 as a complemented subspace.
- Let $\mathcal{Z} = \mathcal{Z}_p$ or \mathcal{Z}_0 . Then, for every bounded and linear operator T on \mathcal{Z} , there exists scalar λ such that $T \lambda I$ is horizontally compact.

- In terms of studying the operators acting on Z_p and Z_0 we use a special type of block sequences, the Rapidly Increasing sequences (RIS). Following the AH -method of construction we prove the following:
- Let $\mathcal{Z} = \mathcal{Z}_p$ or \mathcal{Z}_0 .
- Let Y is a Banach space and $T : \mathbb{Z} \to Y$ is a bounded and linear operator such that $||T(x_n)|| \to 0$ for every RIS $(x_n)_{n \in \mathbb{N}}$, then $||T(x_n)|| \to 0$ for every bounded (horizontally) block sequence $(x_n)_{n \in \mathbb{N}}$ in \mathbb{Z} .
- If $T : \mathbb{Z} \to \mathbb{Z}$ is a linear and bounded operator, then $\operatorname{dist}(Tx_n, \mathbb{R}x_n) \to 0$ for every RIS $(x_n)_{n \in \mathbb{N}}$ in \mathbb{Z} .

《日》 《曰》 《曰》 《曰》 《曰》

- In terms of studying the operators acting on Z_p and Z_0 we use a special type of block sequences, the Rapidly Increasing sequences (RIS). Following the AH -method of construction we prove the following:
- Let $\mathcal{Z} = \mathcal{Z}_p$ or \mathcal{Z}_0 .
- Let Y is a Banach space and $T : \mathbb{Z} \to Y$ is a bounded and linear operator such that $||T(x_n)|| \to 0$ for every RIS $(x_n)_{n \in \mathbb{N}}$, then $||T(x_n)|| \to 0$ for every bounded (horizontally) block sequence $(x_n)_{n \in \mathbb{N}}$ in \mathbb{Z} .
- If $T : \mathbb{Z} \to \mathbb{Z}$ is a linear and bounded operator, then $\operatorname{dist}(Tx_n, \mathbb{R}x_n) \to 0$ for every RIS $(x_n)_{n \in \mathbb{N}}$ in \mathbb{Z} .

《日》 《曰》 《曰》 《曰》 《曰》

- In terms of studying the operators acting on Z_p and Z_0 we use a special type of block sequences, the Rapidly Increasing sequences (RIS). Following the AH -method of construction we prove the following:
- Let $\mathcal{Z} = \mathcal{Z}_p$ or \mathcal{Z}_0 .
- Let Y is a Banach space and $T : \mathbb{Z} \to Y$ is a bounded and linear operator such that $||T(x_n)|| \to 0$ for every RIS $(x_n)_{n \in \mathbb{N}}$, then $||T(x_n)|| \to 0$ for every bounded (horizontally) block sequence $(x_n)_{n \in \mathbb{N}}$ in \mathbb{Z} .
- If $T : \mathbb{Z} \to \mathbb{Z}$ is a linear and bounded operator, then $\operatorname{dist}(Tx_n, \mathbb{R}x_n) \to 0$ for every RIS $(x_n)_{n \in \mathbb{N}}$ in \mathbb{Z} .

- In terms of studying the operators acting on Z_p and Z_0 we use a special type of block sequences, the Rapidly Increasing sequences (RIS). Following the AH -method of construction we prove the following:
- Let $\mathcal{Z} = \mathcal{Z}_p$ or \mathcal{Z}_0 .
- Let Y is a Banach space and $T : \mathbb{Z} \to Y$ is a bounded and linear operator such that $||T(x_n)|| \to 0$ for every RIS $(x_n)_{n \in \mathbb{N}}$, then $||T(x_n)|| \to 0$ for every bounded (horizontally) block sequence $(x_n)_{n \in \mathbb{N}}$ in \mathbb{Z} .
- If $T : \mathbb{Z} \to \mathbb{Z}$ is a linear and bounded operator, then $\operatorname{dist}(Tx_n, \mathbb{R}x_n) \to 0$ for every RIS $(x_n)_{n \in \mathbb{N}}$ in \mathbb{Z} .

- Therefore, for a given RIS $(x_n)_{n \in \mathbb{N}}$, there exist a sequence of scalars (λ_n) such that $||Tx_n \lambda_n x_n|| \to 0$.
- It is proved easily that the scalars λ_n converge to a scalar λ that does not depend to the initially chosen RIS.
- By the above, $T \lambda I$ is horizontally compact.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Therefore, for a given RIS $(x_n)_{n \in \mathbb{N}}$, there exist a sequence of scalars (λ_n) such that $||Tx_n \lambda_n x_n|| \to 0$.
- It is proved easily that the scalars λ_n converge to a scalar λ that does not depend to the initially chosen RIS.
- By the above, $T \lambda I$ is horizontally compact.

- Therefore, for a given RIS $(x_n)_{n \in \mathbb{N}}$, there exist a sequence of scalars (λ_n) such that $||Tx_n \lambda_n x_n|| \to 0$.
- It is proved easily that the scalars λ_n converge to a scalar λ that does not depend to the initially chosen RIS.
- By the above, $T \lambda I$ is horizontally compact.

- In order to show that Z_p and Z_0 is strictly quasi prime we use arguments of the Argyros Raikoftsalis work.
- Next we describe the basic steps in the case of \mathbb{Z}_p . (Similarly for \mathbb{Z}_0^n).
- Assuming that $\mathcal{Z}_p = Y_1 \oplus Y_2$, then either Y_1 or Y_2 does not contain an HI subspace.
- If Y_1 is such a subspace we prove that Y_1 is isomorphic to a complemented subspace of $P_{[1,k_0]}[\mathcal{Z}_p]$ and
- ℓ_p is isomorphic to a complemented subspace of Y_2 .
- Since $P_{[1,k_0]}[\mathcal{Z}_p]$ is isomorphic to ℓ_p we conclude that $Y_1 \simeq \ell_p$ and $Y_2 \simeq \ell_p \oplus W \simeq \ell_p \oplus \ell_p \oplus W \simeq \ell_p \oplus Y_2 \simeq \mathcal{Z}_p$.

- In order to show that Z_p and Z_0 is strictly quasi prime we use arguments of the Argyros Raikoftsalis work.
- Next we describe the basic steps in the case of \mathbb{Z}_p . (Similarly for \mathbb{Z}_0^n).
- Assuming that $\mathcal{Z}_p = Y_1 \oplus Y_2$, then either Y_1 or Y_2 does not contain an HI subspace.
- If Y_1 is such a subspace we prove that Y_1 is isomorphic to a complemented subspace of $P_{[1,k_0]}[\mathcal{Z}_p]$ and
- ℓ_p is isomorphic to a complemented subspace of Y_2 .
- Since $P_{[1,k_0]}[\mathcal{Z}_p]$ is isomorphic to ℓ_p we conclude that $Y_1 \simeq \ell_p$ and $Y_2 \simeq \ell_p \oplus W \simeq \ell_p \oplus \ell_p \oplus W \simeq \ell_p \oplus Y_2 \simeq \mathcal{Z}_p$.

(日) (周) (日) (日) (日)

- In order to show that Z_p and Z_0 is strictly quasi prime we use arguments of the Argyros Raikoftsalis work.
- Next we describe the basic steps in the case of \mathbb{Z}_p . (Similarly for \mathbb{Z}_0^n).
- Assuming that $\mathcal{Z}_p = Y_1 \oplus Y_2$, then either Y_1 or Y_2 does not contain an HI subspace.
- If Y_1 is such a subspace we prove that Y_1 is isomorphic to a complemented subspace of $P_{[1,k_0]}[\mathcal{Z}_p]$ and
- ℓ_p is isomorphic to a complemented subspace of Y_2 .
- Since $P_{[1,k_0]}[\mathcal{Z}_p]$ is isomorphic to ℓ_p we conclude that $Y_1 \simeq \ell_p$ and $Y_2 \simeq \ell_p \oplus W \simeq \ell_p \oplus \ell_p \oplus W \simeq \ell_p \oplus Y_2 \simeq \mathcal{Z}_p$.

(日) (周) (日) (日) (日)

- In order to show that Z_p and Z_0 is strictly quasi prime we use arguments of the Argyros Raikoftsalis work.
- Next we describe the basic steps in the case of \mathbb{Z}_p . (Similarly for \mathbb{Z}_0^n).
- Assuming that $\mathcal{Z}_p = Y_1 \oplus Y_2$, then either Y_1 or Y_2 does not contain an HI subspace.
- If Y_1 is such a subspace we prove that Y_1 is isomorphic to a complemented subspace of $P_{[1,k_0]}[\mathcal{Z}_p]$ and
- ℓ_p is isomorphic to a complemented subspace of Y_2 .
- Since $P_{[1,k_0]}[\mathcal{Z}_p]$ is isomorphic to ℓ_p we conclude that $Y_1 \simeq \ell_p$ and $Y_2 \simeq \ell_p \oplus W \simeq \ell_p \oplus \ell_p \oplus W \simeq \ell_p \oplus Y_2 \simeq \mathcal{Z}_p$.

《日》 《御》 《글》 《글》 - 글

- In order to show that Z_p and Z_0 is strictly quasi prime we use arguments of the Argyros Raikoftsalis work.
- Next we describe the basic steps in the case of \mathbb{Z}_p . (Similarly for \mathbb{Z}_0^n).
- Assuming that $\mathcal{Z}_p = Y_1 \oplus Y_2$, then either Y_1 or Y_2 does not contain an HI subspace.
- If Y_1 is such a subspace we prove that Y_1 is isomorphic to a complemented subspace of $P_{[1,k_0]}[\mathcal{Z}_p]$ and
- ℓ_p is isomorphic to a complemented subspace of Y_2 .
- Since $P_{[1,k_0]}[\mathcal{Z}_p]$ is isomorphic to ℓ_p we conclude that $Y_1 \simeq \ell_p$ and $Y_2 \simeq \ell_p \oplus W \simeq \ell_p \oplus \ell_p \oplus W \simeq \ell_p \oplus Y_2 \simeq \mathcal{Z}_p$.

《日》 《曰》 《曰》 《曰》 《曰》

- In order to show that Z_p and Z_0 is strictly quasi prime we use arguments of the Argyros Raikoftsalis work.
- Next we describe the basic steps in the case of \mathbb{Z}_p . (Similarly for \mathbb{Z}_0^n).
- Assuming that $\mathcal{Z}_p = Y_1 \oplus Y_2$, then either Y_1 or Y_2 does not contain an HI subspace.
- If Y_1 is such a subspace we prove that Y_1 is isomorphic to a complemented subspace of $P_{[1,k_0]}[\mathcal{Z}_p]$ and
- ℓ_p is isomorphic to a complemented subspace of Y_2 .
- Since $P_{[1,k_0]}[\mathcal{Z}_p]$ is isomorphic to ℓ_p we conclude that $Y_1 \simeq \ell_p$ and $Y_2 \simeq \ell_p \oplus W \simeq \ell_p \oplus \ell_p \oplus W \simeq \ell_p \oplus Y_2 \simeq \mathcal{Z}_p$.

《日》 《曰》 《曰》 《曰》 《曰》

The Main Result

• Studying the finite powers of $\mathcal{Z} = \mathcal{Z}_p$ or \mathcal{Z}_0 we prove

$\operatorname{Theorem}$

The space $\mathcal{Z}^n = \sum_{i=1}^n \oplus \mathcal{Z}$ endowed with the external supremum norm, we prove admits n + 1- pairwise not isomorphic complemented subspaces.

• As in the Argyros- Raikoftsalis construction, we already have that \mathcal{Z}^n is not isomorphic to \mathcal{Z}^m for every $n \neq m$ which implies that \mathcal{Z}^n has at least n + 1, pairwise not isomorphic complemented subspaces.

The Main Result

• Studying the finite powers of $\mathcal{Z} = \mathcal{Z}_p$ or \mathcal{Z}_0 we prove

Theorem

The space $\mathcal{Z}^n = \sum_{i=1}^n \oplus \mathcal{Z}$ endowed with the external supremum norm, we prove admits n + 1- pairwise not isomorphic complemented subspaces.

• As in the Argyros- Raikoftsalis construction, we already have that \mathcal{Z}^n is not isomorphic to \mathcal{Z}^m for every $n \neq m$ which implies that \mathcal{Z}^n has at least n + 1, pairwise not isomorphic complemented subspaces.

The Main Result

• Studying the finite powers of $\mathcal{Z} = \mathcal{Z}_p$ or \mathcal{Z}_0 we prove

Theorem

The space $\mathcal{Z}^n = \sum_{i=1}^n \oplus \mathcal{Z}$ endowed with the external supremum norm, we prove admits n + 1- pairwise not isomorphic complemented subspaces.

• As in the Argyros- Raikoftsalis construction, we already have that \mathcal{Z}^n is not isomorphic to \mathcal{Z}^m for every $n \neq m$ which implies that \mathcal{Z}^n has at least n + 1, pairwise not isomorphic complemented subspaces.

Complemented subspaces of Z_p^n

- Since Z_p and Z_0 are strictly quasi prime we have that $Z_p^n \simeq \ell_p \oplus Z_p^n$ and similarly $Z_0^n \simeq \ell_p \oplus Z_0^n$.
- Therefore, we are interested for the non trivial complemented subspaces of \mathbb{Z}_p^n (resp. \mathbb{Z}_0^n) that are not isomorphic to ℓ_p (resp. c_0).
- We prove that if W is a complemented subspace of \mathbb{Z}_p^n (resp. \mathbb{Z}_0^n) that is not isomorphic to ℓ_p (resp. c_0). Then, there exists a non empty set $L \subset \{1, \ldots, n\}$ such that W is isomorphic to $\sum_{i \in L} \oplus \mathbb{Z}_p(i)$.
- We give a small description of the proof, in the case of \mathbb{Z}_p^n (similarly for \mathbb{Z}_0^n).

イロト イポト イヨト イヨト

Complemented subspaces of Z_p^n

- Since Z_p and Z_0 are strictly quasi prime we have that $Z_p^n \simeq \ell_p \oplus Z_p^n$ and similarly $Z_0^n \simeq \ell_p \oplus Z_0^n$.
- Therefore, we are interested for the non trivial complemented subspaces of \mathcal{Z}_p^n (resp. \mathcal{Z}_0^n) that are not isomorphic to ℓ_p (resp. c_0).
- We prove that if W is a complemented subspace of \mathbb{Z}_p^n (resp. \mathbb{Z}_0^n) that is not isomorphic to ℓ_p (resp. c_0). Then, there exists a non empty set $L \subset \{1, \ldots, n\}$ such that W is isomorphic to $\sum_{i \in L} \oplus \mathbb{Z}_p(i)$.
- We give a small description of the proof, in the case of \mathbb{Z}_p^n (similarly for \mathbb{Z}_0^n).

イロト イポト イヨト イヨト
- Since Z_p and Z_0 are strictly quasi prime we have that $Z_p^n \simeq \ell_p \oplus Z_p^n$ and similarly $Z_0^n \simeq \ell_p \oplus Z_0^n$.
- Therefore, we are interested for the non trivial complemented subspaces of \mathcal{Z}_p^n (resp. \mathcal{Z}_0^n) that are not isomorphic to ℓ_p (resp. c_0).
- We prove that if W is a complemented subspace of \mathbb{Z}_p^n (resp. \mathbb{Z}_0^n) that is not isomorphic to ℓ_p (resp. c_0). Then, there exists a non empty set $L \subset \{1, \ldots, n\}$ such that W is isomorphic to $\sum_{i \in L} \oplus \mathbb{Z}_p(i)$.
- We give a small description of the proof, in the case of \mathbb{Z}_p^n (similarly for \mathbb{Z}_0^n).

《日》 《御》 《글》 《글》 - 글

- Since Z_p and Z_0 are strictly quasi prime we have that $Z_p^n \simeq \ell_p \oplus Z_p^n$ and similarly $Z_0^n \simeq \ell_p \oplus Z_0^n$.
- Therefore, we are interested for the non trivial complemented subspaces of \mathcal{Z}_p^n (resp. \mathcal{Z}_0^n) that are not isomorphic to ℓ_p (resp. c_0).
- We prove that if W is a complemented subspace of \mathbb{Z}_p^n (resp. \mathbb{Z}_0^n) that is not isomorphic to ℓ_p (resp. c_0). Then, there exists a non empty set $L \subset \{1, \ldots, n\}$ such that W is isomorphic to $\sum_{i \in L} \oplus \mathbb{Z}_p(i)$.
- We give a small description of the proof, in the case of \mathbb{Z}_p^n (similarly for \mathbb{Z}_0^n).

《日》 《御》 《글》 《글》 - 글

- Let $P: \mathbb{Z}_p^n \to \mathbb{Z}_p^n$ such that $W = P[\mathbb{Z}_p^n]$. Then, P can be written into the form $P = (\lambda_{i,j}I_{i,j} + K_{i,j})_{1 \le i,j \le n}$, for some scalars $\lambda_{i,j}$ and horizontally compact operators $K_{i,j}: \mathbb{Z}_{(j)} \to \mathbb{Z}_{(i)}$.
- We prove that the matrix $\Lambda = (\lambda_{i,j})_{1 \le i,j \le n}$ is a projection on \mathbb{R}^n and let $A : \mathbb{R}^n \to \mathbb{R}^n$ be an inventible matrix of the form $A = (a_{i,j})_{1 \le i,j \le n}$ such that $A\Lambda A^{-1} = (\tilde{\lambda}_{i,j})_{1 \le i,j \le n}$ with $\tilde{\lambda}_{i,j} = \begin{cases} 0, & \text{if } i \ne j \\ 0 \text{ or } 1, & \text{if } i = j. \end{cases}$
- Considering the inventible operator $\tilde{A} = (a_{i,j}I_{i,j})_{1 \le i,j \le n}$ on \mathcal{Z}_p^n , we set $\tilde{P} = \tilde{A}P\tilde{A}^{-1}$ and the following hold:

- 김씨는 김 국가 김 국가 문자

- Let $P: \mathbb{Z}_p^n \to \mathbb{Z}_p^n$ such that $W = P[\mathbb{Z}_p^n]$. Then, P can be written into the form $P = (\lambda_{i,j}I_{i,j} + K_{i,j})_{1 \le i,j \le n}$, for some scalars $\lambda_{i,j}$ and horizontally compact operators $K_{i,j}: \mathbb{Z}_{(j)} \to \mathbb{Z}_{(i)}$.
- We prove that the matrix $\Lambda = (\lambda_{i,j})_{1 \le i,j \le n}$ is a projection on \mathbb{R}^n and let $A : \mathbb{R}^n \to \mathbb{R}^n$ be an inventible matrix of the form $A = (a_{i,j})_{1 \le i,j \le n}$ such that $A\Lambda A^{-1} = (\tilde{\lambda}_{i,j})_{1 \le i,j \le n}$ with $\tilde{\lambda}_{i,j} = \begin{cases} 0, & \text{if } i \ne j \\ 0 \text{ or } 1, & \text{if } i = j. \end{cases}$
- Considering the inventible operator $\tilde{A} = (a_{i,j}I_{i,j})_{1 \le i,j \le n}$ on \mathcal{Z}_p^n , we set $\tilde{P} = \tilde{A}P\tilde{A}^{-1}$ and the following hold:

- Let $P: \mathbb{Z}_p^n \to \mathbb{Z}_p^n$ such that $W = P[\mathbb{Z}_p^n]$. Then, P can be written into the form $P = (\lambda_{i,j}I_{i,j} + K_{i,j})_{1 \le i,j \le n}$, for some scalars $\lambda_{i,j}$ and horizontally compact operators $K_{i,j}: \mathbb{Z}_{(j)} \to \mathbb{Z}_{(i)}$.
- We prove that the matrix $\Lambda = (\lambda_{i,j})_{1 \le i,j \le n}$ is a projection on \mathbb{R}^n and let $A : \mathbb{R}^n \to \mathbb{R}^n$ be an inventible matrix of the form $A = (a_{i,j})_{1 \le i,j \le n}$ such that $A\Lambda A^{-1} = (\tilde{\lambda}_{i,j})_{1 \le i,j \le n}$ with $\tilde{\lambda}_{i,j} = \begin{cases} 0, & \text{if } i \ne j \\ 0 \text{ or } 1, & \text{if } i = j. \end{cases}$
- Considering the inventible operator $\tilde{A} = (a_{i,j}I_{i,j})_{1 \le i,j \le n}$ on \mathcal{Z}_p^n , we set $\tilde{P} = \tilde{A}P\tilde{A}^{-1}$ and the following hold:

- 김씨는 김 국가 김 국가 문자

- \tilde{P} is a projection on \mathcal{Z}_p^n , $W \simeq \tilde{P}[\mathcal{Z}_p^n]$ and $\tilde{P} = (\tilde{\lambda}_{i,j}I_{i,j} + \tilde{K}_{i,j})_{i,j}$, where $\tilde{K}_{i,j} : \mathcal{Z}_{p(j)} \to \mathcal{Z}_{p(i)}$ remain horizontally compact.
- Thus, for every $\varepsilon > 0$, there exists $k_{\varepsilon} \in \mathbb{N}$ such that $\|\tilde{K}_{i,j} \circ P_{(k_{\varepsilon},\infty)}|_{\mathcal{Z}_{p(j)}}\| < \varepsilon$ for every i, j.
- Setting $L = \{i : \tilde{\lambda}_{i,i} \neq 0\}$, we show that $L \neq \emptyset$ and $W \simeq (\sum_{i \in L} \oplus \mathcal{Z}_p) \oplus Y$, where $Y \simeq \ell_p$.
- Since $\mathbb{Z}_p \simeq \mathbb{Z}_p \oplus \ell_p$, the result follows.

(本部) (本語) (本語) (二百

- \tilde{P} is a projection on \mathbb{Z}_p^n , $W \simeq \tilde{P}[\mathbb{Z}_p^n]$ and $\tilde{P} = (\tilde{\lambda}_{i,j}I_{i,j} + \tilde{K}_{i,j})_{i,j}$, where $\tilde{K}_{i,j} : \mathbb{Z}_{p(j)} \to \mathbb{Z}_{p(i)}$ remain horizontally compact.
- Thus, for every $\varepsilon > 0$, there exists $k_{\varepsilon} \in \mathbb{N}$ such that $\|\tilde{K}_{i,j} \circ P_{(k_{\varepsilon},\infty)}|_{\mathcal{Z}_{p(j)}}\| < \varepsilon$ for every i, j.
- Setting $L = \{i : \tilde{\lambda}_{i,i} \neq 0\}$, we show that $L \neq \emptyset$ and $W \simeq (\sum_{i \in L} \oplus \mathcal{Z}_p) \oplus Y$, where $Y \simeq \ell_p$.
- Since $\mathbb{Z}_p \simeq \mathbb{Z}_p \oplus \ell_p$, the result follows.

(本部) (本語) (本語) (二百

- \tilde{P} is a projection on \mathcal{Z}_p^n , $W \simeq \tilde{P}[\mathcal{Z}_p^n]$ and $\tilde{P} = (\tilde{\lambda}_{i,j}I_{i,j} + \tilde{K}_{i,j})_{i,j}$, where $\tilde{K}_{i,j} : \mathcal{Z}_{p(j)} \to \mathcal{Z}_{p(i)}$ remain horizontally compact.
- Thus, for every $\varepsilon > 0$, there exists $k_{\varepsilon} \in \mathbb{N}$ such that $\|\tilde{K}_{i,j} \circ P_{(k_{\varepsilon},\infty)}|_{\mathcal{Z}_{p(j)}}\| < \varepsilon$ for every i, j.
- Setting $L = \{i : \tilde{\lambda}_{i,i} \neq 0\}$, we show that $L \neq \emptyset$ and $W \simeq (\sum_{i \in L} \oplus \mathcal{Z}_p) \oplus Y$, where $Y \simeq \ell_p$.
- Since $\mathbb{Z}_p \simeq \mathbb{Z}_p \oplus \ell_p$, the result follows.

(四) (日) (日) (日) (日)

- \tilde{P} is a projection on \mathbb{Z}_p^n , $W \simeq \tilde{P}[\mathbb{Z}_p^n]$ and $\tilde{P} = (\tilde{\lambda}_{i,j}I_{i,j} + \tilde{K}_{i,j})_{i,j}$, where $\tilde{K}_{i,j} : \mathbb{Z}_{p(j)} \to \mathbb{Z}_{p(i)}$ remain horizontally compact.
- Thus, for every $\varepsilon > 0$, there exists $k_{\varepsilon} \in \mathbb{N}$ such that $\|\tilde{K}_{i,j} \circ P_{(k_{\varepsilon},\infty)}|_{\mathcal{Z}_{p(j)}}\| < \varepsilon$ for every i, j.
- Setting $L = \{i : \tilde{\lambda}_{i,i} \neq 0\}$, we show that $L \neq \emptyset$ and $W \simeq (\sum_{i \in L} \oplus \mathbb{Z}_p) \oplus Y$, where $Y \simeq \ell_p$.
- Since $\mathcal{Z}_p \simeq \mathcal{Z}_p \oplus \ell_p$, the result follows.

(日本) (日本) (日本) 日本

$BD-\mathcal{L}^{\infty}$ sums of a sequence of Banach spaces

Thank You!

Despoina Zisimopoulou Bourgain-Delbaen \mathcal{L}^{∞} sums of Banach spaces