Bourgain-Delbaen \mathcal{L}^{∞} sums of Banach spaces

Despoina Zisimopoulou

School of Applied Mathematics and Physical Sciences NTUA

5-day Workshop Banach space Theory
Banff, Canada
4-9 March 2012

This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund.

Quasi Prime Banach Spaces

- A Banach space is said to be prime if it is isomorphic to each one of its infinite dimensional complemented subspaces.
- A. Pelczynski The spaces ℓ_{p}, for $1 \leq p<\infty$ and c_{0} are prime spaces.
- J Tindenstrauss has shown that ℓ_{∞} is prime.
- A wider class is that of primary Banach spaces, that have the property that whenever $X \simeq Y \oplus Z$, then either $Y \simeq X$ or $Z \simeq X$.
- Some examples of primary spaces are $C[0,1], L^{p}(0,1)$.

Quasi Prime Banach Spaces

- A Banach space is said to be prime if it is isomorphic to each one of its infinite dimensional complemented subspaces.
- A. Pelczynski The spaces ℓ_{p}, for $1 \leq p<\infty$ and c_{0} are prime spaces.
- J. Lindenstrauss has shown that ℓ_{∞} is prime.
- A wider class is that of primary Banach spaces, that have the property that whenever $X \simeq Y \oplus Z$, then either $Y \simeq X$
- Some examples of primary spaces are $C[0,1], L^{p}(0,1)$.

Quasi Prime Banach Spaces

- A Banach space is said to be prime if it is isomorphic to each one of its infinite dimensional complemented subspaces.
- A. Pelczynski The spaces ℓ_{p}, for $1 \leq p<\infty$ and c_{0} are prime spaces.
- J. Lindenstrauss has shown that ℓ_{∞} is prime.
- A wider class is that of primary Banach spaces, that have the property that whenever $X \simeq Y \oplus Z$, then either $Y \simeq X$
- Some examples of primary spaces are $C[0,1], L^{p}(0,1)$.

Quasi Prime Banach Spaces

- A Banach space is said to be prime if it is isomorphic to each one of its infinite dimensional complemented subspaces.
- A. Pelczynski The spaces ℓ_{p}, for $1 \leq p<\infty$ and c_{0} are prime spaces.
- J. Lindenstrauss has shown that ℓ_{∞} is prime.
- A wider class is that of primary Banach spaces, that have the property that whenever $X \simeq Y \oplus Z$, then either $Y \simeq X$ or $Z \simeq X$.
- Some examples of primary spaces are $C[0,1], L^{p}(0,1)$.

Quasi Prime Banach Spaces

- A Banach space is said to be prime if it is isomorphic to each one of its infinite dimensional complemented subspaces.
- A. Pelczynski The spaces ℓ_{p}, for $1 \leq p<\infty$ and c_{0} are prime spaces.
- J. Lindenstrauss has shown that ℓ_{∞} is prime.
- A wider class is that of primary Banach spaces, that have the property that whenever $X \simeq Y \oplus Z$, then either $Y \simeq X$ or $Z \simeq X$.
- Some examples of primary spaces are $C[0,1], L^{p}(0,1)$.

Quasi Prime Banach Spaces

- S. A. Argyros and Th. Raikoftsalis introduced the notion of quasi prime and strictly quasi prime Banach spaces.

> Definition
> A Banach snace X is said to be quasi prime if there exists a subspace Y of X such that X admits a unique non trivial decomposition as $Y \oplus X$. In the case that Y is not isomorphic to X then X is called strictly quasi prime.

Quasi Prime Banach Spaces

- S. A. Argyros and Th. Raikoftsalis introduced the notion of quasi prime and strictly quasi prime Banach spaces.

Definition

A Banach space X is said to be quasi prime if there exists a subspace Y of X such that X admits a unique non trivial decomposition as $Y \oplus X$. In the case that Y is not isomorphic to X then X is called strictly quasi prime.

Quasi Prime Schauder sums

- The authors proved the existence of certain strictly quasi prime Banach spaces in the following result.

Theorem (S.A. Argyros and Th. Raikoftsalis)

The following holds:

- Each space $\mathfrak{X}_{p}, \mathfrak{X}_{0}$ is a new type of Schauder sum of a sequence of Banach spaces, the HI Schauder sums that were introduced by S.A.Argyros and V. Felouzis.

Quasi Prime Schauder sums

- The authors proved the existence of certain strictly quasi prime Banach spaces in the following result.

Theorem (S.A. Argyros and Th. Raikoftsalis)
 The following holds:
 For every $1 \leq p<\infty$ there exists a Banach space \mathfrak{X}_{p} which is strictly quasi prime and admits ℓ_{p} as a complemented subspace. There exists a strictly quasi prime Banach space \mathfrak{X}_{0} containing c_{0} as a complemented subspace.

- Each space $\mathfrak{X}_{p}, \mathfrak{X}_{0}$ is a new type of Schauder sum of a sequence of Banach spaces, the HI Schauder sums that were introduced by S.A.Argyros and V. Felouzis.

Quasi Prime Schauder sums

- The authors proved the existence of certain strictly quasi prime Banach spaces in the following result.

Theorem (S.A. Argyros and Th. Raikoftsalis)

The following holds:
For every $1 \leq p<\infty$ there exists a Banach space \mathfrak{X}_{p} which is strictly quasi prime and admits ℓ_{p} as a complemented subspace.
c_{0} as a complemented subspace.

- Each space $\mathfrak{X}_{p}, \mathfrak{X}_{0}$ is a new type of Schauder sum of a
sequence of Banach spaces, the HI Schauder sums that
were introduced by S.A.Argyros and V. Felouzis.

Quasi Prime Schauder sums

- The authors proved the existence of certain strictly quasi prime Banach spaces in the following result.

Theorem (S.A. Argyros and Th. Raikoftsalis)

The following holds:
For every $1 \leq p<\infty$ there exists a Banach space \mathfrak{X}_{p} which is strictly quasi prime and admits ℓ_{p} as a complemented subspace. There exists a strictly quasi prime Banach space \mathfrak{X}_{0} containing c_{0} as a complemented subspace.

- Each space $\mathfrak{X}_{p}, \mathfrak{X}_{0}$ is a new type of Schauder sum of a
sequence of Banach spaces, the HI Schauder sums that
were introduced by S.A.Argyros and V. Felouzis.

Quasi Prime Schauder sums

- The authors proved the existence of certain strictly quasi prime Banach spaces in the following result.

Theorem (S.A. Argyros and Th. Raikoftsalis)

The following holds:
For every $1 \leq p<\infty$ there exists a Banach space \mathfrak{X}_{p} which is strictly quasi prime and admits ℓ_{p} as a complemented subspace. There exists a strictly quasi prime Banach space \mathfrak{X}_{0} containing c_{0} as a complemented subspace.

- Each space $\mathfrak{X}_{p}, \mathfrak{X}_{0}$ is a new type of Schauder sum of a sequence of Banach spaces, the HI Schauder sums that were introduced by S.A.Argyros and V. Felouzis.
- We recall that if $\left(X,\|\cdot\|_{*}\right)$ is the Schauder sum of a sequence of Banach spaces $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$, denoted as $X=\left(\sum_{n=1}^{\infty} \oplus X_{n}\right)_{*}$, then
- There exist bounded projections $P_{[1, n]}: X \rightarrow X$ such that $x=\lim _{n \rightarrow \infty} P_{[1, n]}(x)$ for every $x \in X$.
- For any element $x \in X$, we define the range of $x, \operatorname{ran} x$, as the minimal interval L of \mathbb{N} such that $x \in \sum_{n \in L} \oplus X_{n}$.
- We also say that a sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ in X is horizontally block, if the $\operatorname{ran} x_{k}<\operatorname{ran} x_{k+1}$ (i.e. $\max \operatorname{ran} x_{k}<\min \operatorname{ran} x_{k+1}$) for every $k \in \mathbb{N}$.
- The Schauder sum X is shrinking if for every $x^{*} \in X^{*}$ $x^{*}=\lim _{n \rightarrow \infty} x^{*} \circ P_{[1, n]}$.
- We recall that if $\left(X,\|\cdot\|_{*}\right)$ is the Schauder sum of a sequence of Banach spaces $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$, denoted as $X=\left(\sum_{n=1}^{\infty} \oplus X_{n}\right)_{*}$, then
- There exist bounded projections $P_{[1, n]}: X \rightarrow X$ such that $x=\lim _{n \rightarrow \infty} P_{[1, n]}(x)$ for every $x \in X$.
- For any element $x \in X$, we define the range of $x, \operatorname{ran} x$, as the minimal interval L of \mathbb{N} such that $x \in \sum_{n \in L} \oplus X_{n}$. - We also say that a sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ in X is horizontally block, if the $\operatorname{ran} x_{k}<\operatorname{ran} x_{k+1}$ (i.e. $\max \operatorname{ran} x_{k}<\min \operatorname{ran} x_{k+1}$) for every $k \in \mathbb{N}$.
- The Schauder sum X is shrinking if for every $x^{*} \in X^{*}$ $x^{*}=\lim _{n \rightarrow \infty} x^{*} \circ P_{[1, n]}$.
- We recall that if $\left(X,\|\cdot\|_{*}\right)$ is the Schauder sum of a sequence of Banach spaces $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$, denoted as $X=\left(\sum_{n=1}^{\infty} \oplus X_{n}\right)_{*}$, then
- There exist bounded projections $P_{[1, n]}: X \rightarrow X$ such that $x=\lim _{n \rightarrow \infty} P_{[1, n]}(x)$ for every $x \in X$.
- For any element $x \in X$, we define the range of $x, \operatorname{ran} x$, as the minimal interval L of \mathbb{N} such that $x \in \sum_{n \in L} \oplus X_{n}$.
- We also say that a sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ in X is horizontally block, if the $\operatorname{ran} x_{k}<\operatorname{ran} x_{k+1}$ (i.e. $\max \operatorname{ran} x_{k}<\min \operatorname{ran} x_{k+1}$) for every $k \in \mathbb{N}$.
- We recall that if $\left(X,\|\cdot\|_{*}\right)$ is the Schauder sum of a sequence of Banach spaces $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$, denoted as $X=\left(\sum_{n=1}^{\infty} \oplus X_{n}\right)_{*}$, then
- There exist bounded projections $P_{[1, n]}: X \rightarrow X$ such that $x=\lim _{n \rightarrow \infty} P_{[1, n]}(x)$ for every $x \in X$.
- For any element $x \in X$, we define the range of x, ran x, as the minimal interval L of \mathbb{N} such that $x \in \sum_{n \in L} \oplus X_{n}$.
- We also say that a sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ in X is horizontally block, if the $\operatorname{ran} x_{k}<\operatorname{ran} x_{k+1}$ (i.e.
$\left.\max \operatorname{ran} x_{k}<\min \operatorname{ran} x_{k+1}\right)$ for every $k \in \mathbb{N}$.
- We recall that if $\left(X,\|\cdot\|_{*}\right)$ is the Schauder sum of a sequence of Banach spaces $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$, denoted as $X=\left(\sum_{n=1}^{\infty} \oplus X_{n}\right)_{*}$, then
- There exist bounded projections $P_{[1, n]}: X \rightarrow X$ such that $x=\lim _{n \rightarrow \infty} P_{[1, n]}(x)$ for every $x \in X$.
- For any element $x \in X$, we define the range of $x, \operatorname{ran} x$, as the minimal interval L of \mathbb{N} such that $x \in \sum_{n \in L} \oplus X_{n}$.
- We also say that a sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ in X is horizontally block, if the $\operatorname{ran} x_{k}<\operatorname{ran} x_{k+1}$ (i.e.
$\left.\max \operatorname{ran} x_{k}<\min \operatorname{ran} x_{k+1}\right)$ for every $k \in \mathbb{N}$.
- The Schauder sum X is shrinking if for every $x^{*} \in X^{*}$ $x^{*}=\lim _{n \rightarrow \infty} x^{*} \circ P_{[1, n]}$.

HI- Schauder sums

- S.A. Argyros and V. Felouzis using a Gowers Maurey type norm proved the following:

Theorem

Iet $(X,\|\cdot\| n)_{n \in \mathbb{N}}$ be a sequence of separable Banach spaces. Then, there exists a Banach space $\mathfrak{X}=\left(\sum_{n=1}^{\infty} \oplus X_{n}\right)$ gm satisfying the following properties:

- A Banach space X is HI (Hereditarily indecomposable), if for every closed infinite dimensional subspace Y of X there do not exist closed infinite dimensional subspaces Y_{1}, Y_{2} of Y such that $Y=Y_{1} \oplus Y_{2}$.

HI- Schauder sums

- S.A. Argyros and V. Felouzis using a Gowers Maurey type norm proved the following:

Theorem

Let $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$ be a sequence of separable Banach spaces. Then, there exists a Banach space $\mathfrak{X}=\left(\sum_{n=1}^{\infty} \oplus X_{n}\right)_{g m}$ satisfying the following properties:

Every horizontally block sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ generates an HI
subspace.

- A Banach space X is HI (Hereditarily indecomposable), if for every closed infinite dimensional subspace Y of X there do not exist closed infinite dimensional subspaces Y_{1}, Y_{2} of Y such that $Y=Y_{1} \oplus Y_{2}$.

HI- Schauder sums

- S.A. Argyros and V. Felouzis using a Gowers Maurey type norm proved the following:

Theorem

Let $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$ be a sequence of separable Banach spaces. Then, there exists a Banach space $\mathfrak{X}=\left(\sum_{n=1}^{\infty} \oplus X_{n}\right)_{g m}$ satisfying the following properties:

The space \mathfrak{X} is the shrinking Schauder sum of the sequence $\left(X_{n},\|\cdot\|\right)_{n \in \mathbb{N}}$
Every horizontally block sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ generates an HI
subspace.

- A Banach space X is HI (Hereditarily indecomposable), if for every closed infinite dimensional subspace Y of X there do not exist closed infinite dimensional subspaces Y_{1}, Y_{2} of Y such that $Y=Y_{1} \oplus Y_{2}$.

HI- Schauder sums

- S.A. Argyros and V. Felouzis using a Gowers Maurey type norm proved the following:

Theorem

Let $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$ be a sequence of separable Banach spaces. Then, there exists a Banach space $\mathfrak{X}=\left(\sum_{n=1}^{\infty} \oplus X_{n}\right)_{g m}$ satisfying the following properties:

The space \mathfrak{X} is the shrinking Schauder sum of the sequence $\left(X_{n},\|\cdot\|\right)_{n \in \mathbb{N}}$
Every horizontally block sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ generates an HI subspace.

- A Banach space X is HI (Hereditarily indecomposable), if
for every closed infinite dimensional subspace Y of X there do not exist closed infinite dimensional subspaces Y_{1}, Y_{2} of Y such that $Y=Y_{1} \oplus Y_{2}$.

HI- Schauder sums

- S.A. Argyros and V. Felouzis using a Gowers Maurey type norm proved the following:

Theorem

Let $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$ be a sequence of separable Banach spaces. Then, there exists a Banach space $\mathfrak{X}=\left(\sum_{n=1}^{\infty} \oplus X_{n}\right)_{g m}$ satisfying the following properties:

The space \mathfrak{X} is the shrinking Schauder sum of the sequence $\left(X_{n},\|\cdot\|\right)_{n \in \mathbb{N}}$
Every horizontally block sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ generates an HI subspace.

- A Banach space X is HI (Hereditarily indecomposable), if for every closed infinite dimensional subspace Y of X there do not exist closed infinite dimensional subspaces Y_{1}, Y_{2} of Y such that $Y=Y_{1} \oplus Y_{2}$.

HI- Schauder sums

- Each space \mathfrak{X}_{p}, (resp. \mathfrak{X}_{0}) of the Argyros-Raikoftsalis result is the HI-Schauder sum of the corresponding ℓ_{p} (resp. c_{0}).
- Moreover, they investigated the finite powers of these spaces they proved:

Theorem (S.A. Argyros-Th. Raikoftsalis)
 $\sum_{i=1}^{n} \oplus \mathfrak{X}(i)$ endowed with the supremum norm as an external
 isomorphic to \mathfrak{X}^{m}. Moreover, the space \mathfrak{X}^{n} has at least $n+1$, up to isomorphism, complemented subspaces.

HI- Schauder sums

- Each space \mathfrak{X}_{p}, (resp. \mathfrak{X}_{0}) of the Argyros-Raikoftsalis result is the HI-Schauder sum of the corresponding ℓ_{p} (resp. c_{0}).
- Moreover, they investigated the finite powers of these spaces they proved:

HI- Schauder sums

- Each space \mathfrak{X}_{p}, (resp. \mathfrak{X}_{0}) of the Argyros-Raikoftsalis result is the HI-Schauder sum of the corresponding ℓ_{p} (resp. c_{0}).
- Moreover, they investigated the finite powers of these spaces they proved:

Theorem (S.A. Argyros-Th. Raikoftsalis)

Let $\mathfrak{X}=\mathfrak{X}_{p}$ or \mathfrak{X}_{0} and denote for each $n \in \mathbb{N}$ by \mathfrak{X}^{n} the space $\sum_{i=1}^{n} \oplus \mathfrak{X}(i)$ endowed with the supremum norm as an external one. Then, for every $n, m \in \mathbb{N}$ with $n \neq m$, the space \mathfrak{X}^{n} is not isomorphic to \mathfrak{X}^{m}. Moreover, the space \mathfrak{X}^{n} has at least $n+1$, up to isomorphism, complemented subspaces.

HI- Schauder sums

- It is open if the aforementioned space \mathfrak{X}^{n} has exactly $n+1$, up to isomorphism complemented subspaces.
- The above result is a consequence of studying the operators acting on the Gowers- Maurey type HI Schauder sum.

HI- Schauder sums

- It is open if the aforementioned space \mathfrak{X}^{n} has exactly $n+1$, up to isomorphism complemented subspaces.
- The above result is a consequence of studying the operators acting on the Gowers- Maurey type HI Schauder sum.

HI- Schauder sums

- It is open if the aforementioned space \mathfrak{X}^{n} has exactly $n+1$, up to isomorphism complemented subspaces.
- The above result is a consequence of studying the operators acting on the Gowers- Maurey type HI Schauder sum.

Theorem (S.A. Argyros- Th. Raikoftsalis)

Let $\mathfrak{X}=\left(\sum_{n=1}^{\infty} \oplus X_{n}\right)_{g m}$ be the HI Schauder sum of a sequence $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$ of separable Banach spaces. Assume that for every $\left(w_{n}\right)_{n \in \mathbb{N}}$ horizontally block sequence the space $W=\overline{\left(w_{n}\right)_{n \in \mathbb{N}}}$ is totaly incomparable to each X_{n}. Then for every bounded and linear operator T on \mathfrak{X} there exists a scalar λ such that $T-\lambda I$ is horizontally strictly singular.

HI- Schauder sums

- We say that an operator S on \mathfrak{X} is horizontally strictly singular if the restriction on an arbitrary (horizontally) block subspace of \mathfrak{X} is not an isomorphism.
- Since every horizontally block sequence in \mathfrak{X}_{p} is HI it is clear that the space that it generates is totally incomparable to ℓ_{p} and similarly every subspace of \mathfrak{X}_{0} generated by a horizontally block subspace is totally incomparable to c_{0}.
- Therefore, the bounded and linear operator acting on $\mathfrak{X}=\mathfrak{X}_{p}$ or \mathfrak{X}_{0} satisfy the property stated on the above theorem.
- We say that an operator S on \mathfrak{X} is horizontally strictly singular if the restriction on an arbitrary (horizontally) block subspace of \mathfrak{X} is not an isomorphism.
- Since every horizontally block sequence in \mathfrak{X}_{p} is HI it is clear that the space that it generates is totally incomparable to ℓ_{p} and similarly every subspace of \mathfrak{X}_{0} generated by a horizontally block subspace is totally incomparable to c_{0}.
- Therefore, the bounded and linear operator acting on $\mathfrak{X}=\mathfrak{X}_{p}$ or \mathfrak{X}_{0} satisfy the property stated on the above theorem.
- We say that an operator S on \mathfrak{X} is horizontally strictly singular if the restriction on an arbitrary (horizontally) block subspace of \mathfrak{X} is not an isomorphism.
- Since every horizontally block sequence in \mathfrak{X}_{p} is HI it is clear that the space that it generates is totally incomparable to ℓ_{p} and similarly every subspace of \mathfrak{X}_{0} generated by a horizontally block subspace is totally incomparable to c_{0}.
- Therefore, the bounded and linear operator acting on $\mathfrak{X}=\mathfrak{X}_{p}$ or \mathfrak{X}_{0} satisfy the property stated on the above theorem.

HI- Schauder sums

- On the Gowers-Maurey space $\mathfrak{X}_{g m}$ every bounded and linear operator is a strictly singular perturbation of a scalar multiple of the identity.
- An operator is strictly singular if its restriction to any subspace is not an isomorphism.
- The Gowers-Maurey HI-Schauder sum is an example of showing how the "external" norm upon a Schauder sum affects the structure of the space.

HI- Schauder sums

- On the Gowers-Maurey space $\mathfrak{X}_{g m}$ every bounded and linear operator is a strictly singular perturbation of a scalar multiple of the identity.
- An operator is strictly singular if its restriction to any subspace is not an isomorphism.
- The Gowers-Maurey HI-Schauder sum is an example of showing how the "external" norm upon a Schauder sum affects the structure of the space.

HI- Schauder sums

- On the Gowers-Maurey space $\mathfrak{X}_{g m}$ every bounded and linear operator is a strictly singular perturbation of a scalar multiple of the identity.
- An operator is strictly singular if its restriction to any subspace is not an isomorphism.
- The Gowers-Maurey HI-Schauder sum is an example of showing how the "external" norm upon a Schauder sum affects the structure of the space.

The Goal

- The main idea of this work is to construct for every $n \in \mathbb{N}$, a Banach space \mathcal{Z}^{n} that has exactly $n+1$ complemented subspaces.
- We must mention that W.T. Gowers and B. Maurey proved a similar result using advanced tools, like K-Theory. In particular,
- W.T. Gowers and B. Maurey, Math. Ann., 1997 For every $p \in \mathbb{N}$ there exists a Banach space X_{p} that admits exactly p, up to isomorphism, complemented subspaces.
- The main idea of this work is to construct for every $n \in \mathbb{N}$, a Banach space \mathcal{Z}^{n} that has exactly $n+1$ complemented subspaces.
- We must mention that W.T. Gowers and B. Maurey proved a similar result using advanced tools, like K-Theory. In particular,
- W.T. Gowers and B. Maurey, Math. Ann., 1997 For every $p \in \mathbb{N}$ there exists a Banach space X_{p} that admits exactly p, up to isomorphism, complemented subspaces.
- The main idea of this work is to construct for every $n \in \mathbb{N}$, a Banach space \mathcal{Z}^{n} that has exactly $n+1$ complemented subspaces.
- We must mention that W.T. Gowers and B. Maurey proved a similar result using advanced tools, like K-Theory. In particular,
- W.T. Gowers and B. Maurey, Math. Ann., 1997 For every $p \in \mathbb{N}$ there exists a Banach space X_{p} that admits exactly p, up to isomorphism, complemented subspaces.
- We want to have a more straightforward approach, motivated by the Argyros Raikoftsalis result. Namely, the main idea is to construct for a given sequence $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$ of separable Banach spaces, a Banach space \mathcal{Z} such that
(1) $\mathcal{Z}=\left(\sum_{n=1}^{\infty} \oplus Z_{n}\right)_{*}$, where each Z_{n} is an augmentation of X_{n}.
(2) For every bounded and linear operator T on Z there exists a scalar λ such that $T-\lambda I$ is a horizontally compact operator.
- We want to have a more straightforward approach, motivated by the Argyros Raikoftsalis result. Namely, the main idea is to construct for a given sequence $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$ of separable Banach spaces, a Banach space \mathcal{Z} such that
(1) $\mathcal{Z}=\left(\sum_{n=1}^{\infty} \oplus Z_{n}\right)_{*}$, where each Z_{n} is an augmentation of X_{n}.
(2) For every bounded and linear operator T on \mathcal{Z} there exists a scalar λ such that $T-\lambda I$ is a horizontally compact operator.
- We want to have a more straightforward approach, motivated by the Argyros Raikoftsalis result. Namely, the main idea is to construct for a given sequence $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$ of separable Banach spaces, a Banach space \mathcal{Z} such that
(1) $\mathcal{Z}=\left(\sum_{n=1}^{\infty} \oplus Z_{n}\right)_{*}$, where each Z_{n} is an augmentation of X_{n}.
(2) For every bounded and linear operator T on \mathcal{Z} there exists a scalar λ such that $T-\lambda I$ is a horizontally compact operator.
- A bounded and linear operator K on \mathcal{Z} is called horizontally compact if for every bounded block sequence $\left(z_{n}\right)_{n \in \mathbb{N}}$ in \mathcal{Z}, with respect to $\left(Z_{n}\right)_{n \in \mathbb{N}},\left\|K\left(z_{n}\right)\right\| \rightarrow 0$.
- Equivalently, for every $\varepsilon>0$, there exists $k_{\varepsilon} \in \mathbb{N}$, such that $\left\|K \circ P_{\left(k_{\varepsilon}, \infty\right)}(x)\right\|<\varepsilon\|x\|$ for every $x \in \mathcal{Z}$.
- The second condition that we want concerning the operators acting on \mathcal{Z}, is stronger than the corresponding of the Gowers-Maurey HI-Schauder sums.
- The finite powers of such a space \mathcal{Z}. for a specifically chosen sequence $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$ could satisfy the desired result.
- A bounded and linear operator K on \mathcal{Z} is called horizontally compact if for every bounded block sequence $\left(z_{n}\right)_{n \in \mathbb{N}}$ in \mathcal{Z}, with respect to $\left(Z_{n}\right)_{n \in \mathbb{N}},\left\|K\left(z_{n}\right)\right\| \rightarrow 0$.
- Equivalently, for every $\varepsilon>0$, there exists $k_{\varepsilon} \in \mathbb{N}$, such that $\left\|K \circ P_{\left(k_{\varepsilon}, \infty\right)}(x)\right\|<\varepsilon\|x\|$ for every $x \in \mathcal{Z}$.
- The second condition that we want concerning the operators acting on \mathcal{Z}, is stronger than the corresponding of the Gowers-Maurey HI-Schauder sums.
- The finite powers of such a space \mathcal{Z}, for a specifically chosen sequence $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$ could satisfy the desired result.
- A bounded and linear operator K on \mathcal{Z} is called horizontally compact if for every bounded block sequence $\left(z_{n}\right)_{n \in \mathbb{N}}$ in \mathcal{Z}, with respect to $\left(Z_{n}\right)_{n \in \mathbb{N}},\left\|K\left(z_{n}\right)\right\| \rightarrow 0$.
- Equivalently, for every $\varepsilon>0$, there exists $k_{\varepsilon} \in \mathbb{N}$, such that $\left\|K \circ P_{\left(k_{\varepsilon}, \infty\right)}(x)\right\|<\varepsilon\|x\|$ for every $x \in \mathcal{Z}$.
- The second condition that we want concerning the operators acting on \mathcal{Z}, is stronger than the corresponding of the Gowers-Maurey HI-Schauder sums.
- The finite powers of such a space \mathcal{Z}, for a specifically chosen sequence $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$ could satisfy the desired result.
- A bounded and linear operator K on \mathcal{Z} is called horizontally compact if for every bounded block sequence $\left(z_{n}\right)_{n \in \mathbb{N}}$ in \mathcal{Z}, with respect to $\left(Z_{n}\right)_{n \in \mathbb{N}},\left\|K\left(z_{n}\right)\right\| \rightarrow 0$.
- Equivalently, for every $\varepsilon>0$, there exists $k_{\varepsilon} \in \mathbb{N}$, such that $\left\|K \circ P_{\left(k_{\varepsilon}, \infty\right)}(x)\right\|<\varepsilon\|x\|$ for every $x \in \mathcal{Z}$.
- The second condition that we want concerning the operators acting on \mathcal{Z}, is stronger than the corresponding of the Gowers-Maurey HI-Schauder sums.
- The finite powers of such a space \mathcal{Z}, for a specifically chosen sequence $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$ could satisfy the desired result.

BD- \mathcal{L}^{∞}-Sums of Banach spaces

- S.A. Argyros and R. Haydon using a BD-type method of construction proved the following result.
\square
Theorem (S.A. Argyros-R.G. Haydon, Acta Math 2011)
There exists a hereditarily indecomposable Banach space \mathfrak{X}_{k}
with the "scalar-plus-compact" property.
- We recall that a Banach space X has the "scalar-plus-compact" property if every linear and bounded operator T is a compact perturbation of a scalar multiple of the identity.

BD- \mathcal{L}^{∞}-Sums of Banach spaces

- S.A. Argyros and R. Haydon using a BD-type method of construction proved the following result.

Theorem (S.A. Argyros-R.G. Haydon, Acta Math 2011)

There exists a hereditarily indecomposable Banach space \mathfrak{X}_{k} with the "scalar-plus-compact" property.

- We recall that a Banach space X has the
"scalar-plus-compact" property if every linear and bounded operator T is a compact perturbation of a scalar multiple of the identity.

BD- \mathcal{L}^{∞}-Sums of Banach spaces

- S.A. Argyros and R. Haydon using a BD-type method of construction proved the following result.

Theorem (S.A. Argyros-R.G. Haydon, Acta Math 2011)
 There exists a hereditarily indecomposable Banach space \mathfrak{X}_{k} with the "scalar-plus-compact" property.

- We recall that a Banach space X has the "scalar-plus-compact" property if every linear and bounded operator T is a compact perturbation of a scalar multiple of the identity.

BD- \mathcal{L}^{∞}-Sums of Banach spaces

- The definition of BD- \mathcal{L}^{∞}-Sums of Banach spaces uses the original BD - construction.
- Let $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$ be a sequence of separable Banach spaces. We say that a Banach space \mathcal{Z} is a $\mathrm{BD}-\mathcal{L}^{\infty}$-sum of $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$ if there exists a sequence $\left(\Delta_{n}\right)_{n \in \mathbb{N}}$ of finite, pairwise disjoint subsets of \mathbb{N} and the following are satisfied:

BD- \mathcal{L}^{∞}-Sums of Banach spaces

- The definition of BD- \mathcal{L}^{∞}-Sums of Banach spaces uses the original BD - construction.
- Let $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$ be a sequence of separable Banach spaces. We say that a Banach space \mathcal{Z} is a BD - \mathcal{L}^{∞}-sum of $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$ if there exists a sequence $\left(\Delta_{n}\right)_{n \in \mathbb{N}}$ of finite, pairwise disjoint subsets of \mathbb{N} and the following are satisfied:

BD- \mathcal{L}^{∞}-Sums of Banach spaces

- The definition of BD- \mathcal{L}^{∞}-Sums of Banach spaces uses the original BD- construction.
- Let $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$ be a sequence of separable Banach spaces. We say that a Banach space \mathcal{Z} is a BD - \mathcal{L}^{∞}-sum of $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$ if there exists a sequence $\left(\Delta_{n}\right)_{n \in \mathbb{N}}$ of finite, pairwise disjoint subsets of \mathbb{N} and the following are satisfied:
- $\mathcal{Z} \subset \mathfrak{X}_{\infty}=\left(\sum_{n=1}^{\infty} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right)\right)_{\infty}$.

BD-C- \mathcal{L}^{∞}-Sums of Banach spaces

- There exists $C>0$ and operators $i_{k}: \sum_{n=1}^{k} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right) \rightarrow \mathcal{Z}$ with the following properties:
- $\left\|i_{k}\right\| \leq C$ for every $k \in \mathbb{N}$.
- For every $x \in \sum_{n=1}^{k} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right)$,
- Setting $Y_{k}=i_{k}\left[\sum_{n=1}^{k} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right]\right.$ for every $k \in \mathbb{N}$, $\mathcal{Z}=\overline{\bigcup_{k \in \mathbb{N}} Y_{k}}$.

BD-C- \mathcal{L}^{∞}-Sums of Banach spaces

- There exists $C>0$ and operators $i_{k}: \sum_{n=1}^{k} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right) \rightarrow \mathcal{Z}$ with the following properties:
- $\left\|i_{k}\right\| \leq C$ for every $k \in \mathbb{N}$.
- For every $x \in \sum_{n=1}^{k} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right)$,
- Setting $Y_{k}=i_{k}\left[\sum_{n=1}^{k} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right]\right.$ for every $k \in \mathbb{N}$, $\mathcal{Z}=\overline{\bigcup_{k \in \mathbb{N}} Y_{k}}$.

BD-C- \mathcal{L}^{∞}-Sums of Banach spaces

- There exists $C>0$ and operators $i_{k}: \sum_{n=1}^{k} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right) \rightarrow \mathcal{Z}$ with the following properties:
- $\left\|i_{k}\right\| \leq C$ for every $k \in \mathbb{N}$.
- For every $x \in \sum_{n=1}^{k} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right)$,

BD-C- \mathcal{L}^{∞}-Sums of Banach spaces

- There exists $C>0$ and operators $i_{k}: \sum_{n=1}^{k} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right) \rightarrow \mathcal{Z}$ with the following properties:
- $\left\|i_{k}\right\| \leq C$ for every $k \in \mathbb{N}$.
- For every $x \in \sum_{n=1}^{k} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right)$,
(1) $P_{[1, k]} \circ i_{k}(x)=x$,

- Setting $Y_{k}=i_{k}\left[\sum_{n=1}^{k} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right]\right.$ for every $k \in \mathbb{N}$, $\mathcal{Z}=\overline{\bigcup_{k \in \mathbb{N}} Y_{k}}$.

BD-C- \mathcal{L}^{∞}-Sums of Banach spaces

- There exists $C>0$ and operators $i_{k}: \sum_{n=1}^{k} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right) \rightarrow \mathcal{Z}$ with the following properties:
- $\left\|i_{k}\right\| \leq C$ for every $k \in \mathbb{N}$.
- For every $x \in \sum_{n=1}^{k} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right)$,
(1) $P_{[1, k]} \circ i_{k}(x)=x$,
(2) $P_{(k, \infty)} \circ i_{k}(x) \in \sum_{n=k+1}^{\infty} \oplus \ell^{\infty}\left(\Delta_{n}\right)$.

BD-C- \mathcal{L}^{∞}-Sums of Banach spaces

- There exists $C>0$ and operators $i_{k}: \sum_{n=1}^{k} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right) \rightarrow \mathcal{Z}$ with the following properties:
- $\left\|i_{k}\right\| \leq C$ for every $k \in \mathbb{N}$.
- For every $x \in \sum_{n=1}^{k} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right)$,
(1) $P_{[1, k]} \circ i_{k}(x)=x$,
(2) $P_{(k, \infty)} \circ i_{k}(x) \in \sum_{n=k+1}^{\infty} \oplus \ell^{\infty}\left(\Delta_{n}\right)$.
(3) $i_{l}\left(P_{[1, l]} \circ i_{k}(x)\right)=i_{k}(x)$, for every $l \geq k$.

BD-C- \mathcal{L}^{∞}-Sums of Banach spaces

- There exists $C>0$ and operators $i_{k}: \sum_{n=1}^{k} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right) \rightarrow \mathcal{Z}$ with the following properties:
- $\left\|i_{k}\right\| \leq C$ for every $k \in \mathbb{N}$.
- For every $x \in \sum_{n=1}^{k} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right)$,
(1) $P_{[1, k]} \circ i_{k}(x)=x$,
(2) $P_{(k, \infty)} \circ i_{k}(x) \in \sum_{n=k+1}^{\infty} \oplus \ell^{\infty}\left(\Delta_{n}\right)$.
(3) $i_{l}\left(P_{[1, l]} \circ i_{k}(x)\right)=i_{k}(x)$, for every $l \geq k$.
- Setting $Y_{k}=i_{k}\left[\sum_{n=1}^{k} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right]\right.$ for every $k \in \mathbb{N}$, $\mathcal{Z}=\overline{\bigcup_{k \in \mathbb{N}} Y_{k}}$.
- We briefly describe how we can obtain a BD- \mathcal{L}^{∞} sum.
- Let $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$ be a sequence of separable Banach spaces.
- As in the Bourgain-Delbaen space, we start by fixing two constants $0<a \leq 1$ and $0<b<\frac{1}{2}$.
- We choose $D_{n}=\left\{d_{n, 1}^{*}, d_{n, 2}^{*}, \ldots, d_{n, k}^{*}, \ldots\right\}$ a w^{*} dense subset of $B_{X_{n}^{*}}$ for every $n \in \mathbb{N}$, and denote by $D_{n, k}$ the first k-terms of D_{n}.

The construction of BD- \mathcal{L}^{∞}-Sums of Banach spaces

- We briefly describe how we can obtain a BD- \mathcal{L}^{∞} sum.
- Let $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$ be a sequence of separable Banach spaces.
- As in the Bourgain-Delbaen space, we start by fixing two constants $0<a \leq 1$ and $0<b<\frac{1}{2}$.
- We choose $D_{n}=\left\{d_{n, 1}^{*}, d_{n, 2}^{*}, \ldots, d_{n, k}^{*}, \ldots\right\}$ a w^{*} dense subset of $B_{X_{n}^{*}}$ for every $n \in \mathbb{N}$, and denote by $D_{n, k}$ the first k-terms of D_{n}.

The construction of BD- \mathcal{L}^{∞}-Sums of Banach spaces

- We briefly describe how we can obtain a BD- \mathcal{L}^{∞} sum.
- Let $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$ be a sequence of separable Banach spaces.
- As in the Bourgain-Delbaen space, we start by fixing two constants $0<a \leq 1$ and $0<b<\frac{1}{2}$.
- We choose $D_{n}=\left\{d_{n, 1}^{*}, d_{n, 2}^{*}, \ldots, d_{n, k}^{*}, \ldots\right\}$ a w^{*} dense subset of $B_{X_{n}^{*}}$ for every $n \in \mathbb{N}$, and denote by $D_{n, k}$ the first k-terms of D_{n}.

The construction of BD- \mathcal{L}^{∞}-Sums of Banach spaces

- We briefly describe how we can obtain a BD- \mathcal{L}^{∞} sum.
- Let $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$ be a sequence of separable Banach spaces.
- As in the Bourgain-Delbaen space, we start by fixing two constants $0<a \leq 1$ and $0<b<\frac{1}{2}$.
- We choose $D_{n}=\left\{d_{n, 1}^{*}, d_{n, 2}^{*}, \ldots, d_{n, k}^{*}, \ldots\right\}$ a w^{*} dense subset of $B_{X_{n}^{*}}$ for every $n \in \mathbb{N}$, and denote by $D_{n, k}$ the first k-terms of D_{n}.

The construction of BD- \mathcal{L}^{∞}-Sums of Banach spaces

- The sets $\left(\Delta_{n}\right)_{n \in \mathbb{N}}$ are defined recursively following the BD-method.
- Each element $\gamma \in \Delta_{k}$ is determined by a functional $c_{\gamma}^{*}:\left(\sum_{n=1}^{k-1} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right)\right)_{\infty} \rightarrow \mathbb{R}$.

The construction of BD- \mathcal{L}^{∞}-Sums of Banach spaces

- The sets $\left(\Delta_{n}\right)_{n \in \mathbb{N}}$ are defined recursively following the BD-method.
- Each element $\gamma \in \Delta_{k}$ is determined by a functional $c_{\gamma}^{*}:\left(\sum_{n=1}^{k-1} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right)\right)_{\infty} \rightarrow \mathbb{R}$.

The construction of BD- \mathcal{L}^{∞}-Sums of Banach spaces

- The sets $\left(\Delta_{n}\right)_{n \in \mathbb{N}}$ are defined recursively following the BD-method.
- Each element $\gamma \in \Delta_{k}$ is determined by a functional $c_{\gamma}^{*}:\left(\sum_{n=1}^{k-1} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right)\right)_{\infty} \rightarrow \mathbb{R}$.
- We set $\Gamma=\cup_{n \in \mathbb{N}} \Delta_{n}$ and $\Gamma_{k}=\cup_{n=1}^{k} \Delta_{n}$ for every $k \in \mathbb{N}$.

The construction of BD- \mathcal{L}^{∞}-Sums of Banach spaces

- For every $l \leq k$ we define linear operators $i_{l, k}: \sum_{n=1}^{l} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right) \rightarrow \sum_{n=1}^{k} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right)$ such that:

The construction of BD- \mathcal{L}^{∞}-Sums of Banach spaces

- For every $l \leq k$ we define linear operators $i_{l, k}: \sum_{n=1}^{l} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right) \rightarrow \sum_{n=1}^{k} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right)$ such that:
- $i_{l, k}=i_{l, m} \circ i_{m, k}$ for every $l \leq m \leq k$ and

The construction of BD- \mathcal{L}^{∞}-Sums of Banach spaces

- For every $l \leq k$ we define linear operators $i_{l, k}: \sum_{n=1}^{l} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right) \rightarrow \sum_{n=1}^{k} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right)$ such that:
- $i_{l, k}=i_{l, m} \circ i_{m, k}$ for every $l \leq m \leq k$ and
- $i_{k-1, k}(x)=x$ for every $x \in \sum_{n=1}^{k-1} \oplus X_{n}$, while
- For every $l \leq k$ we define linear operators $i_{l, k}: \sum_{n=1}^{l} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right) \rightarrow \sum_{n=1}^{k} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right)$ such that:
- $i_{l, k}=i_{l, m} \circ i_{m, k}$ for every $l \leq m \leq k$ and
- $i_{k-1, k}(x)=x$ for every $x \in \sum_{n=1}^{k-1} \oplus X_{n}$, while
- $i_{k-1, k}(x)(\gamma)=\left\{\begin{array}{l}x(\gamma), \text { if } \gamma \in \Gamma_{k-1} \\ c_{\gamma}^{*}(x), \text { if } \gamma \in \Delta_{k}\end{array}\right.$.

The construction of BD- \mathcal{L}^{∞}-Sums of Banach spaces

- Each Δ_{k} is the union of two finite pairwise disjoint subsets of $\mathbb{N}, \Delta_{k}=\Delta_{k}^{0} \cup \Delta_{k}^{1}$.
- Assuming that $\left(\Delta_{l}\right)_{l<k}$ are defined, we determine the set Δ_{k+1} as follows:
- For every $\gamma \in \Lambda^{0}$, there exists $d^{*} \in \cup_{l=1}^{k+1} D_{l, k}$, such that $c_{\gamma}^{*}(x)=d^{*}(x)$ for every $x \in \sum_{n=1}^{k} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right)$.
 $c_{\gamma}^{*}(x)=a x(\eta)+b\left(x(\xi)-i_{l, k} P_{[1, l]} x(\xi)\right)$, where $\eta \in \Gamma_{l}$ and $\xi \in \Gamma_{k} \backslash \Gamma_{l}$.

The construction of BD- \mathcal{L}^{∞}-Sums of Banach spaces

- Each Δ_{k} is the union of two finite pairwise disjoint subsets of $\mathbb{N}, \Delta_{k}=\Delta_{k}^{0} \cup \Delta_{k}^{1}$.
- Assuming that $\left(\Delta_{l}\right)_{l \leq k}$ are defined, we determine the set Δ_{k+1} as follows:
- For every $\gamma \in \Delta_{k+1}^{0}$, there exists $d^{*} \in \cup_{l=1}^{k+1} D_{l, k}$ such that $c_{\gamma}^{*}(x)=d^{*}(x)$ for every $x \in \sum_{n=1}^{k} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right)$.

The construction of BD- \mathcal{L}^{∞}-Sums of Banach spaces

- Each Δ_{k} is the union of two finite pairwise disjoint subsets of $\mathbb{N}, \Delta_{k}=\Delta_{k}^{0} \cup \Delta_{k}^{1}$.
- Assuming that $\left(\Delta_{l}\right)_{l \leq k}$ are defined, we determine the set Δ_{k+1} as follows:
- For every $\gamma \in \Delta_{k+1}^{0}$, there exists $d^{*} \in \cup_{l=1}^{k+1} D_{l, k}$ such that $c_{\gamma}^{*}(x)=d^{*}(x)$ for every $x \in \sum_{n=1}^{k} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right)$.
- Each Δ_{k} is the union of two finite pairwise disjoint subsets of $\mathbb{N}, \Delta_{k}=\Delta_{k}^{0} \cup \Delta_{k}^{1}$.
- Assuming that $\left(\Delta_{l}\right)_{l \leq k}$ are defined, we determine the set Δ_{k+1} as follows:
- For every $\gamma \in \Delta_{k+1}^{0}$, there exists $d^{*} \in \cup_{l=1}^{k+1} D_{l, k}$ such that $c_{\gamma}^{*}(x)=d^{*}(x)$ for every $x \in \sum_{n=1}^{k} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right)$.
- For $\gamma \in \Delta_{k+1}^{1}$, and $x \in \sum_{n=1}^{k} \oplus\left(X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right)$
$c_{\gamma}^{*}(x)=a x(\eta)+b\left(x(\xi)-i_{l, k} P_{[1, l]} x(\xi)\right)$, where $\eta \in \Gamma_{l}$ and $\xi \in \Gamma_{k} \backslash \Gamma_{l}$.

AH- \mathcal{L}^{∞} sums

- The BD- method yields that $i_{k, m}$ are uniformly bounded by a constant $C>0$ and therefore we can define $i_{k}=\lim _{m \rightarrow \infty} i_{k, m}$.
- The operators i_{k} are uniformly bounded and setting $Z_{n}=i_{n}\left[X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right]$ we have that $\left(Z_{n}\right)_{n \in \mathbb{N}}$ is a decomposition of the space.
- The BD- method yields that $i_{k, m}$ are uniformly bounded by a constant $C>0$ and therefore we can define $i_{k}=\lim _{m \rightarrow \infty} i_{k, m}$.
- The operators i_{k} are uniformly bounded and setting $Z_{n}=i_{n}\left[X_{n} \oplus \ell^{\infty}\left(\Delta_{n}\right)\right]$ we have that $\left(Z_{n}\right)_{n \in \mathbb{N}}$ is a decomposition of the space.

AH- \mathcal{L}^{∞} sums

- Using the Argyros-Haydon BD-type of construction in the above concept, we prove the following

Theorem

Let $(X,\|\cdot\| n)_{n \in \mathbb{N}}$ be a sequence of separable Banach spaces. Then there exists a Banach space \mathcal{Z} with the following properties:

- Using the Argyros-Haydon BD-type of construction in the above concept, we prove the following

Theorem

Let $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$ be a sequence of separable Banach spaces. Then there exists a Banach space \mathcal{Z} with the following properties:
 subspace.
\mathcal{Z}^{*} may be identified with $\left(\sum_{n=1}^{\infty} \oplus Z_{n}^{*}\right)_{1}$.

- Using the Argyros-Haydon BD-type of construction in the above concept, we prove the following

Theorem

Let $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$ be a sequence of separable Banach spaces. Then there exists a Banach space \mathcal{Z} with the following properties:

$$
\mathcal{Z} \text { is the } B D-\mathcal{L}^{\infty} \text { sum of }\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}} \text {, }
$$

\mathcal{Z} admits a shrinking Schauder decomposition, $\mathcal{Z}=\sum_{k=1}^{\infty} \in$
Every horizontally block sequence $\left(z_{n}\right)_{n \in \mathbb{N}}$ generates an HI subspace.
\mathcal{Z}^{*} may be iilentified with $\left(\sum_{n=1}^{\infty} \oplus Z_{n}^{*}\right)_{1}$

- Using the Argyros-Haydon BD-type of construction in the above concept, we prove the following

Theorem

Let $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$ be a sequence of separable Banach spaces. Then there exists a Banach space \mathcal{Z} with the following properties:
\mathcal{Z} is the BD- \mathcal{L}^{∞} sum of $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$,
\mathcal{Z} admits a shrinking Schauder decomposition, $\mathcal{Z}=\sum_{k=1}^{\infty} \oplus Z_{k}$.

- Using the Argyros-Haydon BD-type of construction in the above concept, we prove the following

Theorem

Let $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$ be a sequence of separable Banach spaces. Then there exists a Banach space \mathcal{Z} with the following properties:
\mathcal{Z} is the BD- \mathcal{L}^{∞} sum of $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$,
\mathcal{Z} admits a shrinking Schauder decomposition, $\mathcal{Z}=\sum_{k=1}^{\infty} \oplus Z_{k}$.
Every horizontally block sequence $\left(z_{n}\right)_{n \in \mathbb{N}}$ generates an HI subspace.

- Using the Argyros-Haydon BD-type of construction in the above concept, we prove the following

Theorem

Let $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$ be a sequence of separable Banach spaces. Then there exists a Banach space \mathcal{Z} with the following properties:
\mathcal{Z} is the BD- \mathcal{L}^{∞} sum of $\left(X_{n},\|\cdot\|_{n}\right)_{n \in \mathbb{N}}$,
\mathcal{Z} admits a shrinking Schauder decomposition, $\mathcal{Z}=\sum_{k=1}^{\infty} \oplus Z_{k}$.
Every horizontally block sequence $\left(z_{n}\right)_{n \in \mathbb{N}}$ generates an HI
subspace.
\mathcal{Z}^{*} may be identified with $\left(\sum_{n=1}^{\infty} \oplus Z_{n}^{*}\right)_{1}$.

AH- \mathcal{L}^{∞} sums

- The properties of \mathcal{Z} are strongly based on the existence of special features that are preserved by the Argyros-Haydon HI method of construction.
- We denote by \mathcal{Z}_{p} (resp. \mathcal{Z}_{0}) the AH- \mathcal{L}^{∞} sum of the corresponding ℓ_{p} (resp. c_{0}).
- Then. $\mathcal{Z}_{p}=\sum_{k=1}^{\infty} \oplus Z_{k}$, where $Z_{k}=i_{n}\left[l_{p} \oplus \ell^{\infty}\left(\Delta_{k}\right)\right]$.
- Each Z_{k} is isomorphic to $\left(\ell_{p} \oplus \ell^{\infty}\left(\Delta_{k}\right)\right)_{\infty}$ which is $C_{k^{-}}$ isomorphic to ℓ_{p} with $C_{k} \rightarrow \infty$. Therefore, we cannot have an isometry.
- For every $k \in \mathbb{N}, P_{[1, k]}\left(\mathcal{Z}_{p}\right) \simeq \ell_{p}$ and $P_{[1, k]}\left(\mathcal{Z}_{0}\right) \simeq c_{0}$.
- The properties of \mathcal{Z} are strongly based on the existence of special features that are preserved by the Argyros-Haydon HI method of construction.
- We denote by \mathcal{Z}_{p} (resp. \mathcal{Z}_{0}) the AH- \mathcal{L}^{∞} sum of the corresponding $\ell_{p}\left(\right.$ resp. $\left.c_{0}\right)$.
- Then, $Z_{p}=\sum_{k=1}^{\infty} \oplus Z_{k}$, where $Z_{k}=i_{n}\left[\ell_{p} \oplus \ell^{\infty}\left(\Delta_{k}\right)\right]$.
- Each Z_{k} is isomorphic to $\left(\ell_{p} \oplus \ell^{\infty}\left(\Delta_{k}\right)\right)_{\infty}$ which is $C_{k^{-}}$ isomorphic to ℓ_{p} with $C_{k} \rightarrow \infty$. Therefore, we cannot have an isometry.
- For every $k \in \mathbb{N}, P_{[1, k]}\left(\mathcal{Z}_{p}\right) \simeq \ell_{p}$ and $P_{[1, k]}\left(\mathcal{Z}_{0}\right) \simeq c_{0}$.
- The properties of \mathcal{Z} are strongly based on the existence of special features that are preserved by the Argyros-Haydon HI method of construction.
- We denote by \mathcal{Z}_{p} (resp. \mathcal{Z}_{0}) the AH- \mathcal{L}^{∞} sum of the corresponding ℓ_{p} (resp. c_{0}).
- Then, $\mathcal{Z}_{p}=\sum_{k=1}^{\infty} \oplus Z_{k}$, where $Z_{k}=i_{n}\left[\ell_{p} \oplus \ell^{\infty}\left(\Delta_{k}\right)\right]$.
- Each Z_{k} is isomorphic to $\left(\ell_{p} \oplus \ell^{\infty}\left(\Delta_{k}\right)\right)_{\infty}$ which is $C_{k}-$ isomorphic to ℓ_{p} with $C_{k} \rightarrow \infty$. Therefore, we cannot have an isometry.
- For every $k \in \mathbb{N}, P_{[1, k]}\left(\mathcal{Z}_{p}\right) \simeq \ell_{p}$ and $P_{[1, k]}\left(\mathcal{Z}_{0}\right) \simeq c_{0}$.
- The properties of \mathcal{Z} are strongly based on the existence of special features that are preserved by the Argyros-Haydon HI method of construction.
- We denote by \mathcal{Z}_{p} (resp. \mathcal{Z}_{0}) the AH- \mathcal{L}^{∞} sum of the corresponding ℓ_{p} (resp. c_{0}).
- Then, $\mathcal{Z}_{p}=\sum_{k=1}^{\infty} \oplus Z_{k}$, where $Z_{k}=i_{n}\left[\ell_{p} \oplus \ell^{\infty}\left(\Delta_{k}\right)\right]$.
- Each Z_{k} is isomorphic to $\left(\ell_{p} \oplus \ell^{\infty}\left(\Delta_{k}\right)\right)_{\infty}$ which is $C_{k^{-}}$ isomorphic to ℓ_{p} with $C_{k} \rightarrow \infty$. Therefore, we cannot have an isometry.
- For every $k \in \mathbb{N}, P_{[1, k]}\left(\mathcal{Z}_{p}\right) \simeq \ell_{p}$ and $P_{[1, k]}\left(\mathcal{Z}_{0}\right) \simeq c_{0}$.
- The properties of \mathcal{Z} are strongly based on the existence of special features that are preserved by the Argyros-Haydon HI method of construction.
- We denote by \mathcal{Z}_{p} (resp. \mathcal{Z}_{0}) the AH- \mathcal{L}^{∞} sum of the corresponding ℓ_{p} (resp. c_{0}).
- Then, $\mathcal{Z}_{p}=\sum_{k=1}^{\infty} \oplus Z_{k}$, where $Z_{k}=i_{n}\left[\ell_{p} \oplus \ell^{\infty}\left(\Delta_{k}\right)\right]$.
- Each Z_{k} is isomorphic to $\left(\ell_{p} \oplus \ell^{\infty}\left(\Delta_{k}\right)\right)_{\infty}$ which is $C_{k^{-}}$ isomorphic to ℓ_{p} with $C_{k} \rightarrow \infty$. Therefore, we cannot have an isometry.
- For every $k \in \mathbb{N}, P_{[1, k]}\left(\mathcal{Z}_{p}\right) \simeq \ell_{p}$ and $P_{[1, k]}\left(\mathcal{Z}_{0}\right) \simeq c_{0}$.

Quasi Prime AH- \mathcal{L}^{∞} sums

- The following are proved:
- For every $1 \leq p<\infty$ the space \mathcal{Z}_{p} is strictly quasi prime and admits ℓ_{p} as a complemented subspace.
- The space \mathbb{Z}_{0} is strictly quasi prime containing c_{0} as a complemented subspace.
- Let $\mathcal{Z}=\mathcal{Z}_{p}$ or \mathcal{Z}_{0}. Then, for every bounded and linear operator T on \mathcal{Z}, there exists scalar λ such that $T-\lambda I$ is horizontally compact.

Quasi Prime AH- \mathcal{L}^{∞} sums

- The following are proved:
- For every $1 \leq p<\infty$ the space \mathcal{Z}_{p} is strictly quasi prime and admits ℓ_{p} as a complemented subspace.
- The space \mathcal{Z}_{0} is strictly quasi prime containing c_{0} as a complemented subspace.
- Let $\mathcal{Z}=\mathcal{Z}_{p}$ or \mathcal{Z}_{0}. Then, for every bounded and linear operator T on \mathcal{Z}, there exists scalar λ such that $T-\lambda I$ is horizontally compact.

Quasi Prime AH- \mathcal{L}^{∞} sums

- The following are proved:
- For every $1 \leq p<\infty$ the space \mathcal{Z}_{p} is strictly quasi prime and admits ℓ_{p} as a complemented subspace.
- The space \mathcal{Z}_{0} is strictly quasi prime containing c_{0} as a complemented subspace.
- Let $\mathcal{Z}=\mathcal{Z}_{p}$ or \mathcal{Z}_{0}. Then, for every bounded and linear operator T on \mathcal{Z}, there exists scalar λ such that $T-\lambda I$ is horizontally compact.

Quasi Prime AH- \mathcal{L}^{∞} sums

- The following are proved:
- For every $1 \leq p<\infty$ the space \mathcal{Z}_{p} is strictly quasi prime and admits ℓ_{p} as a complemented subspace.
- The space \mathcal{Z}_{0} is strictly quasi prime containing c_{0} as a complemented subspace.
- Let $\mathcal{Z}=\mathcal{Z}_{p}$ or \mathcal{Z}_{0}. Then, for every bounded and linear operator T on \mathcal{Z}, there exists scalar λ such that $T-\lambda I$ is horizontally compact.

Operators on certain AH- \mathcal{L}^{∞}

- In terms of studying the operators acting on \mathcal{Z}_{p} and \mathcal{Z}_{0} we use a special type of block sequences, the Rapidly Increasing sequences (RIS). Following the AH -method of construction we prove the following:
- Let $\mathcal{Z}=\mathcal{Z}_{p}$ or \mathcal{Z}_{0}.
- Let Y is a Banach space and $T: \mathcal{Z} \rightarrow Y$ is a bounded and linear operator such that $\left\|T\left(x_{n}\right)\right\| \rightarrow 0$ for every RIS $\left(x_{n}\right)_{n \in \mathbb{N}}$, then $\left\|T\left(x_{n}\right)\right\| \rightarrow 0$ for every bounded (horizontally) block sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in \mathcal{Z}.
- If $T: \mathcal{Z} \rightarrow \mathcal{Z}$ is a linear and bounded operator, then $\operatorname{dist}\left(T x_{n}, \mathbb{R} x_{n}\right) \rightarrow 0$ for every RIS $\left(x_{n}\right)_{n \in \mathbb{N}}$ in \mathcal{Z}.

Operators on certain AH- \mathcal{L}^{∞}
 sums

- In terms of studying the operators acting on \mathcal{Z}_{p} and \mathcal{Z}_{0} we use a special type of block sequences, the Rapidly Increasing sequences (RIS). Following the AH -method of construction we prove the following:
- Let $\mathcal{Z}=\mathcal{Z}_{p}$ or \mathcal{Z}_{0}.
- Let Y is a Banach space and $T: \mathcal{Z} \rightarrow Y$ is a bounded and
linear operator such that $\left\|T\left(x_{n}\right)\right\| \rightarrow 0$ for every RIS $\left(x_{n}\right)_{n \in \mathbb{N}}$, then $\left\|T\left(x_{n}\right)\right\| \rightarrow 0$ for every bounded (horizontally) block sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in \mathcal{Z}.
- If $T: \mathcal{Z} \rightarrow \mathcal{Z}$ is a linear and bounded operator, then $\operatorname{dist}\left(T x_{n}, \mathbb{R} x_{n}\right) \rightarrow 0$ for every RIS $\left(x_{n}\right)_{n \in \mathbb{N}}$ in \mathcal{Z}.

Operators on certain AH- \mathcal{L}^{∞}
 sums

- In terms of studying the operators acting on \mathcal{Z}_{p} and \mathcal{Z}_{0} we use a special type of block sequences, the Rapidly Increasing sequences (RIS). Following the AH -method of construction we prove the following:
- Let $\mathcal{Z}=\mathcal{Z}_{p}$ or \mathcal{Z}_{0}.
- Let Y is a Banach space and $T: \mathcal{Z} \rightarrow Y$ is a bounded and linear operator such that $\left\|T\left(x_{n}\right)\right\| \rightarrow 0$ for every RIS $\left(x_{n}\right)_{n \in \mathbb{N}}$, then $\left\|T\left(x_{n}\right)\right\| \rightarrow 0$ for every bounded (horizontally) block sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in \mathcal{Z}.
- If $T: \mathcal{Z} \rightarrow \mathcal{Z}$ is a linear and bounded operator, then $\operatorname{dist}\left(T x_{n}, \mathbb{R} x_{n}\right) \rightarrow 0$ for every RIS $\left(x_{n}\right)_{n \in \mathbb{N}}$ in \mathcal{Z}.

Operators on certain AH- \mathcal{L}^{∞}
 sums

- In terms of studying the operators acting on \mathcal{Z}_{p} and \mathcal{Z}_{0} we use a special type of block sequences, the Rapidly Increasing sequences (RIS). Following the AH -method of construction we prove the following:
- Let $\mathcal{Z}=\mathcal{Z}_{p}$ or \mathcal{Z}_{0}.
- Let Y is a Banach space and $T: \mathcal{Z} \rightarrow Y$ is a bounded and linear operator such that $\left\|T\left(x_{n}\right)\right\| \rightarrow 0$ for every RIS $\left(x_{n}\right)_{n \in \mathbb{N}}$, then $\left\|T\left(x_{n}\right)\right\| \rightarrow 0$ for every bounded (horizontally) block sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in \mathcal{Z}.
- If $T: \mathcal{Z} \rightarrow \mathcal{Z}$ is a linear and bounded operator, then $\operatorname{dist}\left(T x_{n}, \mathbb{R} x_{n}\right) \rightarrow 0$ for every RIS $\left(x_{n}\right)_{n \in \mathbb{N}}$ in \mathcal{Z}.

Operators on certain AH- \mathcal{L}^{∞} sums

- Therefore, for a given RIS $\left(x_{n}\right)_{n \in \mathbb{N}}$, there exist a sequence of scalars $\left(\lambda_{n}\right)$ such that $\left\|T x_{n}-\lambda_{n} x_{n}\right\| \rightarrow 0$.
- It is proved easily that the scalars λ_{n} converge to a scalar λ that does not depend to the initially chosen RIS.
- By the above, $T-\lambda I$ is horizontally compact.

Operators on certain AH- \mathcal{L}^{∞} sums

- Therefore, for a given RIS $\left(x_{n}\right)_{n \in \mathbb{N}}$, there exist a sequence of scalars $\left(\lambda_{n}\right)$ such that $\left\|T x_{n}-\lambda_{n} x_{n}\right\| \rightarrow 0$.
- It is proved easily that the scalars λ_{n} converge to a scalar λ that does not depend to the initially chosen RIS.
- By the above, $T-\lambda I$ is horizontally compact.

Operators on certain AH- \mathcal{L}^{∞} sums

- Therefore, for a given RIS $\left(x_{n}\right)_{n \in \mathbb{N}}$, there exist a sequence of scalars $\left(\lambda_{n}\right)$ such that $\left\|T x_{n}-\lambda_{n} x_{n}\right\| \rightarrow 0$.
- It is proved easily that the scalars λ_{n} converge to a scalar λ that does not depend to the initially chosen RIS.
- By the above, $T-\lambda I$ is horizontally compact.
- In order to show that \mathcal{Z}_{p} and \mathcal{Z}_{0} is strictly quasi prime we use arguments of the Argyros Raikoftsalis work.
- Next we describe the basic steps in the case of \mathcal{Z}_{p}. (Similarly for \mathcal{Z}_{0}^{n}).
- Assuming that $\mathcal{Z}_{p}=Y_{1} \oplus Y_{2}$, then either Y_{1} or Y_{2} does not contain an HI subspace.
- If Y_{1} is such a subspace we prove that Y_{1} is isomorphic to a complemented subspace of $P_{\left[1, k_{0}\right]}\left[\mathcal{Z}_{p}\right]$ and
- ℓ_{p} is isomorphic to a complemented subspace of Y_{2}.
- Since $P_{\left[1, k_{0}\right]}\left[\mathcal{Z}_{p}\right]$ is isomorphic to ℓ_{p} we conclude that $Y_{1} \simeq \ell_{p}$ and $Y_{2} \simeq \ell_{p} \oplus W \simeq \ell_{p} \oplus \ell_{p} \oplus W \simeq \ell_{p} \oplus Y_{2} \simeq \mathcal{Z}_{p}$.
- In order to show that \mathcal{Z}_{p} and \mathcal{Z}_{0} is strictly quasi prime we use arguments of the Argyros Raikoftsalis work.
- Next we describe the basic steps in the case of \mathcal{Z}_{p}. (Similarly for \mathcal{Z}_{0}^{n}).
- Assuming that $\mathcal{Z}_{p}=Y_{1} \oplus Y_{2}$, then either Y_{1} or Y_{2} does not contain an HI subspace.
- If V_{1} is such a subspace we prove that Y_{1} is isomorphic to a complemented subspace of $P_{\left[1, k_{0}\right]}\left[\mathcal{Z}_{p}\right]$ and
- ℓ_{p} is isomorphic to a complemented subspace of Y_{2}.

- In order to show that \mathcal{Z}_{p} and \mathcal{Z}_{0} is strictly quasi prime we use arguments of the Argyros Raikoftsalis work.
- Next we describe the basic steps in the case of \mathcal{Z}_{p}. (Similarly for \mathcal{Z}_{0}^{n}).
- Assuming that $\mathcal{Z}_{p}=Y_{1} \oplus Y_{2}$, then either Y_{1} or Y_{2} does not contain an HI subspace.
- If Y_{1} is such a subspace we prove that Y_{1} is isomorphic to a complemented subspace of $P_{\left[1, k_{0}\right]}\left[\mathcal{Z}_{p}\right]$ and
- l_{p} is isomorphic to a complemented subspace of Y_{2}.

- In order to show that \mathcal{Z}_{p} and \mathcal{Z}_{0} is strictly quasi prime we use arguments of the Argyros Raikoftsalis work.
- Next we describe the basic steps in the case of \mathcal{Z}_{p}. (Similarly for \mathcal{Z}_{0}^{n}).
- Assuming that $\mathcal{Z}_{p}=Y_{1} \oplus Y_{2}$, then either Y_{1} or Y_{2} does not contain an HI subspace.
- If Y_{1} is such a subspace we prove that Y_{1} is isomorphic to a complemented subspace of $P_{\left[1, k_{0}\right]}\left[\mathcal{Z}_{p}\right]$ and
- ℓ_{p} is isomorphic to a complemented subspace of Y_{2}.

- In order to show that \mathcal{Z}_{p} and \mathcal{Z}_{0} is strictly quasi prime we use arguments of the Argyros Raikoftsalis work.
- Next we describe the basic steps in the case of \mathcal{Z}_{p}. (Similarly for \mathcal{Z}_{0}^{n}).
- Assuming that $\mathcal{Z}_{p}=Y_{1} \oplus Y_{2}$, then either Y_{1} or Y_{2} does not contain an HI subspace.
- If Y_{1} is such a subspace we prove that Y_{1} is isomorphic to a complemented subspace of $P_{\left[1, k_{0}\right]}\left[\mathcal{Z}_{p}\right]$ and
- ℓ_{p} is isomorphic to a complemented subspace of Y_{2}.

- In order to show that \mathcal{Z}_{p} and \mathcal{Z}_{0} is strictly quasi prime we use arguments of the Argyros Raikoftsalis work.
- Next we describe the basic steps in the case of \mathcal{Z}_{p}. (Similarly for \mathcal{Z}_{0}^{n}).
- Assuming that $\mathcal{Z}_{p}=Y_{1} \oplus Y_{2}$, then either Y_{1} or Y_{2} does not contain an HI subspace.
- If Y_{1} is such a subspace we prove that Y_{1} is isomorphic to a complemented subspace of $P_{\left[1, k_{0}\right]}\left[\mathcal{Z}_{p}\right]$ and
- ℓ_{p} is isomorphic to a complemented subspace of Y_{2}.
- Since $P_{\left[1, k_{0}\right]}\left[\mathcal{Z}_{p}\right]$ is isomorphic to ℓ_{p} we conclude that $Y_{1} \simeq \ell_{p}$ and $Y_{2} \simeq \ell_{p} \oplus W \simeq \ell_{p} \oplus \ell_{p} \oplus W \simeq \ell_{p} \oplus Y_{2} \simeq \mathcal{Z}_{p}$.

The Main Result

- Studying the finite powers of $\mathcal{Z}=\mathcal{Z}_{p}$ or \mathcal{Z}_{0} we prove

Theorem
 The space $\mathcal{Z}^{n}=\sum_{i=1}^{n} \oplus \mathcal{Z}$ endowed with the external supremum norm, we prove admits $n+1$ - pairwise not isomorphic complemented subspaces.

- As in the Argyros- Raikoftsalis construction, we already have that \mathcal{Z}^{n} is not isomorphic to \mathcal{Z}^{m} for every $n \neq m$ which implies that \mathcal{Z}^{n} has at least $n+1$, pairwise not isomorphic complemented subspaces.
- Studying the finite powers of $\mathcal{Z}=\mathcal{Z}_{p}$ or \mathcal{Z}_{0} we prove

Theorem

The space $\mathcal{Z}^{n}=\sum_{i=1}^{n} \oplus \mathcal{Z}$ endowed with the external supremum norm, we prove admits $n+1$ - pairwise not isomorphic complemented subspaces.
> - As in the Argyros- Raikoftsalis construction, we already have that \mathcal{Z}^{n} is not isomorphic to \mathcal{Z}^{m} for every $n \neq m$ which implies that \mathcal{Z}^{n} has at least $n+1$, pairwise not isomorphic complemented subspaces.

- Studying the finite powers of $\mathcal{Z}=\mathcal{Z}_{p}$ or \mathcal{Z}_{0} we prove

Theorem

The space $\mathcal{Z}^{n}=\sum_{i=1}^{n} \oplus \mathcal{Z}$ endowed with the external supremum norm, we prove admits $n+1$ - pairwise not isomorphic complemented subspaces.

- As in the Argyros- Raikoftsalis construction, we already have that \mathcal{Z}^{n} is not isomorphic to \mathcal{Z}^{m} for every $n \neq m$ which implies that \mathcal{Z}^{n} has at least $n+1$, pairwise not isomorphic complemented subspaces.

Complemented subspaces of Z_{p}^{n}

- Since \mathcal{Z}_{p} and \mathcal{Z}_{0} are strictly quasi prime we have that $\mathcal{Z}_{p}^{n} \simeq \ell_{p} \oplus \mathcal{Z}_{p}^{n}$ and similarly $\mathcal{Z}_{0}^{n} \simeq \ell_{p} \oplus \mathcal{Z}_{0}^{n}$.
- Therefore, we are interested for the non trivial complemented subspaces of \mathcal{Z}_{p}^{n} (resp. \mathcal{Z}_{0}^{n}) that are not isomorphic to $\ell_{p}\left(\right.$ resp. $\left.c_{0}\right)$.
- We prove that if W is a complemented subspace of \mathcal{Z}_{p}^{n} (resp. \mathcal{Z}_{0}^{n}) that is not isomorphic to ℓ_{p} (resp. c_{0}). Then, there exists a non empty set $L \subset\{1, \ldots, n\}$ such that W is isomorphic to $\sum_{i \in L} \oplus \mathcal{Z}_{p}(i)$.
- We give a small description of the proof, in the case of \mathcal{Z}_{p}^{n} (similarly for \mathcal{Z}_{0}^{n}).

Complemented subspaces of Z_{p}^{n}

- Since \mathcal{Z}_{p} and \mathcal{Z}_{0} are strictly quasi prime we have that $\mathcal{Z}_{p}^{n} \simeq \ell_{p} \oplus \mathcal{Z}_{p}^{n}$ and similarly $\mathcal{Z}_{0}^{n} \simeq \ell_{p} \oplus \mathcal{Z}_{0}^{n}$.
- Therefore, we are interested for the non trivial complemented subspaces of \mathcal{Z}_{p}^{n} (resp. \mathcal{Z}_{0}^{n}) that are not isomorphic to $\ell_{p}\left(\right.$ resp. $\left.c_{0}\right)$.
- We prove that if W is a complemented subspace of \mathcal{Z}_{p}^{n} (resp. \mathcal{Z}_{0}^{n}) that is not isomorphic to ℓ_{p} (resp. c_{0}). Then, there exists a non empty set $L \subset\{1, \ldots, n\}$ such that W is isomorphic to $\sum_{i \in L} \oplus \mathcal{Z}_{p}(i)$. (similarly for \mathcal{Z}_{0}^{n}).

Complemented subspaces of Z_{p}^{n}

- Since \mathcal{Z}_{p} and \mathcal{Z}_{0} are strictly quasi prime we have that $\mathcal{Z}_{p}^{n} \simeq \ell_{p} \oplus \mathcal{Z}_{p}^{n}$ and similarly $\mathcal{Z}_{0}^{n} \simeq \ell_{p} \oplus \mathcal{Z}_{0}^{n}$.
- Therefore, we are interested for the non trivial complemented subspaces of \mathcal{Z}_{p}^{n} (resp. \mathcal{Z}_{0}^{n}) that are not isomorphic to ℓ_{p} (resp. c_{0}).
- We prove that if W is a complemented subspace of \mathcal{Z}_{p}^{n} (resp. \mathcal{Z}_{0}^{n}) that is not isomorphic to ℓ_{p} (resp. c_{0}). Then, there exists a non empty set $L \subset\{1, \ldots, n\}$ such that W is isomorphic to $\sum_{i \in L} \oplus \mathcal{Z}_{p}(i)$.
(similarly for \mathcal{Z}_{0}^{n}).

Complemented subspaces of Z_{p}^{n}

- Since \mathcal{Z}_{p} and \mathcal{Z}_{0} are strictly quasi prime we have that $\mathcal{Z}_{p}^{n} \simeq \ell_{p} \oplus \mathcal{Z}_{p}^{n}$ and similarly $\mathcal{Z}_{0}^{n} \simeq \ell_{p} \oplus \mathcal{Z}_{0}^{n}$.
- Therefore, we are interested for the non trivial complemented subspaces of \mathcal{Z}_{p}^{n} (resp. \mathcal{Z}_{0}^{n}) that are not isomorphic to ℓ_{p} (resp. c_{0}).
- We prove that if W is a complemented subspace of \mathcal{Z}_{p}^{n} (resp. \mathcal{Z}_{0}^{n}) that is not isomorphic to ℓ_{p} (resp. c_{0}). Then, there exists a non empty set $L \subset\{1, \ldots, n\}$ such that W is isomorphic to $\sum_{i \in L} \oplus \mathcal{Z}_{p}(i)$.
- We give a small description of the proof, in the case of \mathcal{Z}_{p}^{n} (similarly for \mathcal{Z}_{0}^{n}).

Complemented subspaces of Z_{p}^{n}

- Let $P: \mathcal{Z}_{p}^{n} \rightarrow \mathcal{Z}_{p}^{n}$ such that $W=P\left[\mathcal{Z}_{p}^{n}\right]$. Then, P can be written into the form $P=\left(\lambda_{i, j} I_{i, j}+K_{i, j}\right)_{1 \leq i, j \leq n}$, for some scalars $\lambda_{i, j}$ and horizontally compact operators $K_{i, j}: \mathcal{Z}_{(j)} \rightarrow \mathcal{Z}_{(i)}$.
- We prove that the matrix $\Lambda=\left(\lambda_{i, j}\right)_{1 \leq i, j \leq n}$ is a projection on \mathbb{R}^{n} and let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an inventible matrix of the form $A=\left(a_{i, j}\right)_{1<i, j \leq n}$ such that $A \Lambda A^{-1}=\left(\tilde{\lambda}_{i, j}\right)_{1<i j \leq n}$

- Considering the inventible operator $\tilde{A}=\left(a_{i, j} I_{i, j}\right)_{1 \leq i, j \leq n}$ on \mathcal{Z}_{n}^{n}, we set $\tilde{P}=\tilde{A} P \tilde{A}^{-1}$ and the following hold:

Complemented subspaces of Z_{p}^{n}

- Let $P: \mathcal{Z}_{p}^{n} \rightarrow \mathcal{Z}_{p}^{n}$ such that $W=P\left[\mathcal{Z}_{p}^{n}\right]$. Then, P can be written into the form $P=\left(\lambda_{i, j} I_{i, j}+K_{i, j}\right)_{1 \leq i, j \leq n}$, for some scalars $\lambda_{i, j}$ and horizontally compact operators $K_{i, j}: \mathcal{Z}_{(j)} \rightarrow \mathcal{Z}_{(i)}$.
- We prove that the matrix $\Lambda=\left(\lambda_{i, j}\right)_{1 \leq i, j \leq n}$ is a projection on \mathbb{R}^{n} and let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an inventible matrix of the form $A=\left(a_{i, j}\right)_{1 \leq i, j \leq n}$ such that $A \Lambda A^{-1}=\left(\tilde{\lambda}_{i, j}\right)_{1 \leq i, j \leq n}$
with $\tilde{\lambda}_{i, j}= \begin{cases}0, & \text { if } i \neq j \\ 0 \text { or } 1, & \text { if } i=j\end{cases}$
- Considering the inventible operator $\tilde{A}=\left(a_{i, j} I_{i, j}\right)_{1 \leq i, j \leq n}$ on

Complemented subspaces of Z_{p}^{n}

- Let $P: \mathcal{Z}_{p}^{n} \rightarrow \mathcal{Z}_{p}^{n}$ such that $W=P\left[\mathcal{Z}_{p}^{n}\right]$. Then, P can be written into the form $P=\left(\lambda_{i, j} I_{i, j}+K_{i, j}\right)_{1 \leq i, j \leq n}$, for some scalars $\lambda_{i, j}$ and horizontally compact operators $K_{i, j}: \mathcal{Z}_{(j)} \rightarrow \mathcal{Z}_{(i)}$.
- We prove that the matrix $\Lambda=\left(\lambda_{i, j}\right)_{1 \leq i, j \leq n}$ is a projection on \mathbb{R}^{n} and let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an inventible matrix of the form $A=\left(a_{i, j}\right)_{1 \leq i, j \leq n}$ such that $A \Lambda A^{-1}=\left(\tilde{\lambda}_{i, j}\right)_{1 \leq i, j \leq n}$ with $\tilde{\lambda}_{i, j}=\left\{\begin{array}{l}0, \quad \text { if } i \neq j \\ 0 \text { or } 1, \quad \text { if } i=j\end{array}\right.$
- Considering the inventible operator $\tilde{A}=\left(a_{i, j} I_{i, j}\right)_{1 \leq i, j \leq n}$ on \mathcal{Z}_{p}^{n}, we set $\tilde{P}=\tilde{A} P \tilde{A}^{-1}$ and the following hold:

Complemented subspaces of Z_{p}^{n}

- \tilde{P} is a projection on $\mathcal{Z}_{p}^{n}, W \simeq \tilde{P}\left[\mathcal{Z}_{p}^{n}\right]$ and $\tilde{P}=\left(\tilde{\lambda}_{i, j} I_{i, j}+\tilde{K}_{i, j}\right)_{i, j}$, where $\tilde{K}_{i, j}: \mathcal{Z}_{p(j)} \rightarrow \mathcal{Z}_{p(i)}$ remain horizontally compact.
- Thus, for every $\varepsilon>0$, there exists $k_{\varepsilon} \in \mathbb{N}$ such that $\left\|\tilde{K}_{i, j} \circ P_{\left(k_{\varepsilon}, \infty\right)} \mid \mathcal{Z}_{p(j)}\right\|<\varepsilon$ for every i, j.
- Setting $L=\left\{i: \tilde{\lambda}_{i, i} \neq 0\right\}$, we show that $L \neq \emptyset$ and $W \simeq\left(\sum_{i \in L} \oplus \mathcal{Z}_{p}\right) \oplus Y$, where $Y \simeq \ell_{p}$.
- Since $\mathcal{Z}_{p} \simeq \mathcal{Z}_{p} \oplus \ell_{p}$, the result follows.

Complemented subspaces of Z_{p}^{n}

- \tilde{P} is a projection on $\mathcal{Z}_{p}^{n}, W \simeq \tilde{P}\left[\mathcal{Z}_{p}^{n}\right]$ and
$\tilde{P}=\left(\tilde{\lambda}_{i, j} I_{i, j}+\tilde{K}_{i, j}\right)_{i, j}$, where $\tilde{K}_{i, j}: \mathcal{Z}_{p(j)} \rightarrow \mathcal{Z}_{p(i)}$ remain horizontally compact.
- Thus, for every $\varepsilon>0$, there exists $k_{\varepsilon} \in \mathbb{N}$ such that $\left\|\tilde{K}_{i, j} \circ P_{\left(k_{\varepsilon}, \infty\right)} \mid \mathcal{Z}_{p(j)}\right\|<\varepsilon$ for every i, j.
- Setting $L=\left\{i: \lambda_{i, i} \neq 0\right\}$, we show that $L \neq \emptyset$ and $W \simeq\left(\sum_{i \in L} \oplus \mathcal{Z}_{p}\right) \oplus Y$, where $Y \simeq \ell_{p}$.
- Since $\mathcal{Z}_{p} \simeq \mathcal{Z}_{p} \oplus \ell_{p}$, the result follows.

Complemented subspaces of Z_{p}^{n}

- \tilde{P} is a projection on $\mathcal{Z}_{p}^{n}, W \simeq \tilde{P}\left[\mathcal{Z}_{p}^{n}\right]$ and
$\tilde{P}=\left(\tilde{\lambda}_{i, j} I_{i, j}+\tilde{K}_{i, j}\right)_{i, j}$, where $\tilde{K}_{i, j}: \mathcal{Z}_{p(j)} \rightarrow \mathcal{Z}_{p(i)}$ remain horizontally compact.
- Thus, for every $\varepsilon>0$, there exists $k_{\varepsilon} \in \mathbb{N}$ such that $\left\|\tilde{K}_{i, j} \circ P_{\left(k_{\varepsilon}, \infty\right)} \mid \mathcal{Z}_{p(j)}\right\|<\varepsilon$ for every i, j.
- Setting $L=\left\{i: \tilde{\lambda}_{i, i} \neq 0\right\}$, we show that $L \neq \emptyset$ and $W \simeq\left(\sum_{i \in L} \oplus \mathcal{Z}_{p}\right) \oplus Y$, where $Y \simeq \ell_{p}$.
- Since $\mathcal{Z}_{p} \simeq \mathcal{Z}_{p} \oplus \ell_{p}$, the result follows.

Complemented subspaces of Z_{p}^{n}

- \tilde{P} is a projection on $\mathcal{Z}_{p}^{n}, W \simeq \tilde{P}\left[\mathcal{Z}_{p}^{n}\right]$ and
$\tilde{P}=\left(\tilde{\lambda}_{i, j} I_{i, j}+\tilde{K}_{i, j}\right)_{i, j}$, where $\tilde{K}_{i, j}: \mathcal{Z}_{p(j)} \rightarrow \mathcal{Z}_{p(i)}$ remain horizontally compact.
- Thus, for every $\varepsilon>0$, there exists $k_{\varepsilon} \in \mathbb{N}$ such that $\left\|\tilde{K}_{i, j} \circ P_{\left(k_{\varepsilon}, \infty\right)} \mid \mathcal{Z}_{p(j)}\right\|<\varepsilon$ for every i, j.
- Setting $L=\left\{i: \tilde{\lambda}_{i, i} \neq 0\right\}$, we show that $L \neq \emptyset$ and $W \simeq\left(\sum_{i \in L} \oplus \mathcal{Z}_{p}\right) \oplus Y$, where $Y \simeq \ell_{p}$.
- Since $\mathcal{Z}_{p} \simeq \mathcal{Z}_{p} \oplus \ell_{p}$, the result follows.

BD- \mathcal{L}^{∞} sums of a sequence of Banach spaces

Thank You!

