Shift Invariant Preduals of $\ell_{1}(\mathbb{Z})$

Thomas Schlumprecht

Texas A\&M University

Banff,
March 2012

Formulation of Main Question

In a joint work with Matt Daws, Richard Haydon, and Stuart White we consider the following

Formulation of Main Question

In a joint work with Matt Daws, Richard Haydon, and Stuart White we consider the following

Problem
Consider the Banach algebra $\ell_{1}(\mathbb{Z})$ (with convolution *).

Formulation of Main Question

In a joint work with Matt Daws, Richard Haydon, and Stuart White we consider the following

Problem
Consider the Banach algebra $\ell_{1}(\mathbb{Z})$ (with convolution *). Is the Banach algebraic predual E of $\ell_{1}(\mathbb{Z})$ unique?

Formulation of Main Question

In a joint work with Matt Daws, Richard Haydon, and Stuart White we consider the following

Problem
Consider the Banach algebra $\ell_{1}(\mathbb{Z})$ (with convolution *). Is the Banach algebraic predual E of $\ell_{1}(\mathbb{Z})$ unique?
How can we characterize these algebraic preduals?

Formulation of Main Question

In a joint work with Matt Daws, Richard Haydon, and Stuart White we consider the following

Problem

Consider the Banach algebra $\ell_{1}(\mathbb{Z})$ (with convolution *). Is the Banach algebraic predual E of $\ell_{1}(\mathbb{Z})$ unique? How can we characterize these algebraic preduals?

Preliminary Definition: A concrete algebraic predual of $\ell_{1}(\mathbb{Z})$ is a closed subspace E of $\ell_{\infty}(\mathbb{Z})$, so that E is shiftinvariant and E^{*} is isomorphic to $\ell_{1}(\mathbb{Z})$.

Banach Algebras

Banach Algebras

Definition

A Banach space X with a multiplication \cdot, which turns X into an associative algebra, and has the property that

$$
\|x \cdot y\| \leq\|x\| \cdot\|y\|, \quad x, y \in X
$$

is called a Banach Algebra.

Banach Algebras

Definition

A Banach space X with a multiplication \cdot, which turns X into an associative algebra, and has the property that

$$
\|x \cdot y\| \leq\|x\| \cdot\|y\|, \quad x, y \in X
$$

is called a Banach Algebra.

Examples

Banach Algebras

Definition

A Banach space X with a multiplication \cdot, which turns X into an associative algebra, and has the property that

$$
\|x \cdot y\| \leq\|x\| \cdot\|y\|, \quad x, y \in X
$$

is called a Banach Algebra.

Examples

(1) Trivial Banach Algebra: Banach space X, with $x \cdot y=0, x, y \in X$,

Banach Algebras

Definition

A Banach space X with a multiplication \cdot, which turns X into an associative algebra, and has the property that

$$
\|x \cdot y\| \leq\|x\| \cdot\|y\|, \quad x, y \in X
$$

is called a Banach Algebra.

Examples

(1) Trivial Banach Algebra: Banach space X, with $x \cdot y=0, x, y \in X$,
(2) Operator algebras: Closed subalgebras of $L(X)$, for example C^{*}-algebras,

Banach Algebras

Definition

A Banach space X with a multiplication \cdot, which turns X into an associative algebra, and has the property that

$$
\|x \cdot y\| \leq\|x\| \cdot\|y\|, \quad x, y \in X
$$

is called a Banach Algebra.

Examples

(1) Trivial Banach Algebra: Banach space X, with $x \cdot y=0, x, y \in X$,
(2) Operator algebras: Closed subalgebras of $L(X)$, for example C^{*}-algebras,
(3) Convolution algebras. G locally compact group, μ Haar measure.
(a) $M(G)$ space of finite Radon measure (b) $L_{1}(\mu)$, both with convolution.

Dual Banach Algebras

Dual Banach Algebras

Definition

Assume (\mathcal{A}, \cdot) is a Banach algebra, and assume that there is a subspace $\mathcal{A}_{*} \subset \mathcal{A}^{*}$ which has the following two properties:

Dual Banach Algebras

Definition

Assume (\mathcal{A}, \cdot) is a Banach algebra, and assume that there is a subspace $\mathcal{A}_{*} \subset \mathcal{A}^{*}$ which has the following two properties:
(1) The canonical operator

$$
J: \mathcal{A} \rightarrow\left(\mathcal{A}_{*}\right)^{*}, \quad a \mapsto[f \mapsto f(a)]
$$

is a surjective isomorphism.

Dual Banach Algebras

Definition

Assume (\mathcal{A}, \cdot) is a Banach algebra, and assume that there is a subspace $\mathcal{A}_{*} \subset \mathcal{A}^{*}$ which has the following two properties:
(1) The canonical operator

$$
J: \mathcal{A} \rightarrow\left(\mathcal{A}_{*}\right)^{*}, \quad a \mapsto[f \mapsto f(a)]
$$

is a surjective isomorphism.
(2) \mathcal{A}_{*} is a closed submodul of \mathcal{A}^{*}, i.e. if $f \in \mathcal{A}_{*}$ and $a \in \mathcal{A}$ then ${ }_{a} f, f_{a}$ are also in \mathcal{A}_{*}, where

$$
{ }_{a} f: \mathcal{A} \rightarrow \mathbb{C}, \quad b \mapsto f(a b), \quad f_{a}: \mathcal{A} \rightarrow \mathbb{C}, \quad b \mapsto f(b a) .
$$

Dual Banach Algebras

Definition

Assume (\mathcal{A}, \cdot) is a Banach algebra, and assume that there is a subspace $\mathcal{A}_{*} \subset \mathcal{A}^{*}$ which has the following two properties:
(1) The canonical operator

$$
J: \mathcal{A} \rightarrow\left(\mathcal{A}_{*}\right)^{*}, \quad a \mapsto[f \mapsto f(a)]
$$

is a surjective isomorphism.
(2) \mathcal{A}_{*} is a closed submodul of \mathcal{A}^{*}, i.e. if $f \in \mathcal{A}_{*}$ and $a \in \mathcal{A}$ then ${ }_{a} f, f_{a}$ are also in \mathcal{A}_{*}, where

$$
{ }_{a} f: \mathcal{A} \rightarrow \mathbb{C}, \quad b \mapsto f(a b), \quad f_{a}: \mathcal{A} \rightarrow \mathbb{C}, \quad b \mapsto f(b a) .
$$

Then we say that \mathcal{A} is a Dual Algebra and call \mathcal{A}_{*} a concrete Predual of \mathcal{A}.

Remarks

Remarks

(1) (1) simply means that as a Banach \mathcal{A} is isomorphic to the dual of a Banach space X. Indeed if X is Banach space and $T: \mathcal{A} \rightarrow X^{*}$ is onto isomorphism, then consider $T^{*}: X^{* *} \rightarrow \mathcal{A}^{*}$ and define

$$
\mathcal{A}_{*}:=T^{*}(\iota(X)) \subset \mathcal{A}^{*}, \text { with } \iota: X \hookrightarrow X^{* *} \text { canonical embedding, }
$$

and note that \mathcal{A}_{*} is a concrete predual of \mathcal{A}.

Remarks

(1) (1) simply means that as a Banach \mathcal{A} is isomorphic to the dual of a Banach space X. Indeed if X is Banach space and $T: \mathcal{A} \rightarrow X^{*}$ is onto isomorphism, then consider $T^{*}: X^{* *} \rightarrow \mathcal{A}^{*}$ and define

$$
\mathcal{A}_{*}:=T^{*}(\iota(X)) \subset \mathcal{A}^{*}, \text { with } \iota: X \hookrightarrow X^{* *} \text { canonical embedding, }
$$

and note that \mathcal{A}_{*} is a concrete predual of \mathcal{A}.
(2) Assuming \mathcal{A}_{*} satisfies (1). Then property (2) is equivalent with
$\cdot: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$, is separately $w^{*}=\sigma\left(\mathcal{A}, \mathcal{A}_{*}\right)$-continuous.

Remarks

(1) (1) simply means that as a Banach \mathcal{A} is isomorphic to the dual of a Banach space X. Indeed if X is Banach space and $T: \mathcal{A} \rightarrow X^{*}$ is onto isomorphism, then consider $T^{*}: X^{* *} \rightarrow \mathcal{A}^{*}$ and define

$$
\mathcal{A}_{*}:=T^{*}(\iota(X)) \subset \mathcal{A}^{*}, \text { with } \iota: X \hookrightarrow X^{* *} \text { canonical embedding, }
$$

and note that \mathcal{A}_{*} is a concrete predual of \mathcal{A}.
(2) Assuming \mathcal{A}_{*} satisfies (1). Then property (2) is equivalent with
$\cdot: \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$, is separately $w^{*}=\sigma\left(\mathcal{A}, \mathcal{A}_{*}\right)$-continuous.
(3) If \mathcal{A} is a trivial Banach algebra (2) is vacuous, and, thus a trivial dual algebra is simply a Banach space which is isomorphic to a dual space. Thus, in that case, preduals are in general Not unique.

The case of C^{*}-algebras

Sakai (1956): If \mathcal{A} is a C^{*} algebra then (1) implies that \mathcal{A} is a von Neuman algebra and (2) is automatically satisfied for any concrete predual. Moreover the predual is unique, up to isometry (but not up to isomorphism: $\ell_{\infty} \simeq L_{\infty}[0,1]$).

The case of C^{*}-algebras

Sakai (1956): If \mathcal{A} is a C^{*} algebra then (1) implies that \mathcal{A} is a von Neuman algebra and (2) is automatically satisfied for any concrete predual. Moreover the predual is unique, up to isometry (but not up to isomorphism: $\ell_{\infty} \simeq L_{\infty}[0,1]$).
Daws, Pham and White (2009): If \mathcal{A} is a von Neuman algebra then \mathcal{A} (literally!) has a unique concrete algebraic predual,

The case of C^{*}-algebras

Sakai (1956): If \mathcal{A} is a C^{*} algebra then (1) implies that \mathcal{A} is a von Neuman algebra and (2) is automatically satisfied for any concrete predual. Moreover the predual is unique, up to isometry (but not up to isomorphism: $\ell_{\infty} \simeq L_{\infty}[0,1]$).
Daws, Pham and White (2009): If \mathcal{A} is a von Neuman algebra then \mathcal{A} (literally!) has a unique concrete algebraic predual, meaning any two closed \mathcal{A}-submoduls $\mathcal{A}_{*}^{(1)}$ and $\mathcal{A}_{*}^{(2)}$ of \mathcal{A}^{*} whose duals are (canonically) isomorphic to \mathcal{A}, are equal as vector spaces.

Formulation of Main Question

Consider on $\ell_{1}(\mathbb{Z})$ the convolution $*: \ell_{1}(\mathbb{Z}) \times \ell_{1}(\mathbb{Z}) \rightarrow \ell_{1}(\mathbb{Z})$

$$
f * g=\left(\sum_{k \in \mathbb{Z}} f(n-k) g(k): n \in \mathbb{N}\right)=\left(\sum_{k \in \mathbb{N}} f(k) g(n-k): n \in \mathbb{N}\right),
$$

for $f=(f(n))_{n \in \mathbb{Z}}$ and $g=(g(n))_{n \in \mathbb{Z}}$ in $\ell_{1}(\mathbb{Z})$.

Formulation of Main Question

Consider on $\ell_{1}(\mathbb{Z})$ the convolution $*: \ell_{1}(\mathbb{Z}) \times \ell_{1}(\mathbb{Z}) \rightarrow \ell_{1}(\mathbb{Z})$

$$
f * g=\left(\sum_{k \in \mathbb{Z}} f(n-k) g(k): n \in \mathbb{N}\right)=\left(\sum_{k \in \mathbb{N}} f(k) g(n-k): n \in \mathbb{N}\right),
$$

for $f=(f(n))_{n \in \mathbb{Z}}$ and $g=(g(n))_{n \in \mathbb{Z}}$ in $\ell_{1}(\mathbb{Z})$.

Problem

Assume $E \subset \ell_{\infty}(\mathbb{Z})$ is a (concrete) algebraic predual of $\ell_{1}(\mathbb{Z})$.

Formulation of Main Question

Consider on $\ell_{1}(\mathbb{Z})$ the convolution $*: \ell_{1}(\mathbb{Z}) \times \ell_{1}(\mathbb{Z}) \rightarrow \ell_{1}(\mathbb{Z})$

$$
f * g=\left(\sum_{k \in \mathbb{Z}} f(n-k) g(k): n \in \mathbb{N}\right)=\left(\sum_{k \in \mathbb{N}} f(k) g(n-k): n \in \mathbb{N}\right)
$$

for $f=(f(n))_{n \in \mathbb{Z}}$ and $g=(g(n))_{n \in \mathbb{Z}}$ in $\ell_{1}(\mathbb{Z})$.

Problem

Assume $E \subset \ell_{\infty}(\mathbb{Z})$ is a (concrete) algebraic predual of $\ell_{1}(\mathbb{Z})$.
(1) Does it follow that $E=c_{0}(\mathbb{Z})$ (literally)?

Formulation of Main Question

Consider on $\ell_{1}(\mathbb{Z})$ the convolution $*: \ell_{1}(\mathbb{Z}) \times \ell_{1}(\mathbb{Z}) \rightarrow \ell_{1}(\mathbb{Z})$

$$
f * g=\left(\sum_{k \in \mathbb{Z}} f(n-k) g(k): n \in \mathbb{N}\right)=\left(\sum_{k \in \mathbb{N}} f(k) g(n-k): n \in \mathbb{N}\right)
$$

for $f=(f(n))_{n \in \mathbb{Z}}$ and $g=(g(n))_{n \in \mathbb{Z}}$ in $\ell_{1}(\mathbb{Z})$.

Problem

Assume $E \subset \ell_{\infty}(\mathbb{Z})$ is a (concrete) algebraic predual of $\ell_{1}(\mathbb{Z})$.
(1) Does it follow that $E=c_{0}(\mathbb{Z})$ (literally)?
(2) Does it follow that E is isomorphic $c_{0}(\mathbb{Z})$?

Main Results

Main Results

(1) Construction of a concrete algebraic predual $H_{\lambda} \subset \ell_{\infty}(\mathbb{Z})$ of $\ell_{1}(\mathbb{Z})$, for every $\lambda \in \mathbb{C},|\lambda|>0$, of $\ell_{1}(\mathbb{Z})$ not equal to $c_{0}(\mathbb{Z})$, not even isometric to c_{0}, but isomorphic to c_{0}.

Main Results

(1) Construction of a concrete algebraic predual $H_{\lambda} \subset \ell_{\infty}(\mathbb{Z})$ of $\ell_{1}(\mathbb{Z})$, for every $\lambda \in \mathbb{C}$, $|\lambda|>0$, of $\ell_{1}(\mathbb{Z})$ not equal to $c_{0}(\mathbb{Z})$, not even isometric to c_{0}, but isomorphic to c_{0}.
(2) Characterization of all algebraic preduals of $\ell_{1}(\mathbb{Z})$ as certain quotients of $C(\mathcal{S})$, where \mathcal{S} is a semi-topological semi-group compactification of \mathbb{Z}.

Main Results

(1) Construction of a concrete algebraic predual $H_{\lambda} \subset \ell_{\infty}(\mathbb{Z})$ of $\ell_{1}(\mathbb{Z})$, for every $\lambda \in \mathbb{C},|\lambda|>0$, of $\ell_{1}(\mathbb{Z})$ not equal to $c_{0}(\mathbb{Z})$, not even isometric to c_{0}, but isomorphic to c_{0}.
(2) Characterization of all algebraic preduals of $\ell_{1}(\mathbb{Z})$ as certain quotients of $C(\mathcal{S})$, where \mathcal{S} is a semi-topological semi-group compactification of \mathbb{Z}.
(3) Construction of an algebraic predual E of $\ell_{1}(\mathbb{Z})$ which is not isomorphic to $c_{0}(\mathbb{Z})$.

Th. Schlumprecht
$\left(e_{n}\right)_{n \in \mathbb{Z}}$ unit vector basis in $c_{0}(\mathbb{Z})$,
$\left(e_{n}\right)_{n \in \mathbb{Z}}$ unit vector basis in $c_{0}(\mathbb{Z}),\left(\delta_{n}\right)_{n \in \mathbb{Z}}$ unit vector basis in $\ell_{1}(\mathbb{Z})$.
$\left(e_{n}\right)_{n \in \mathbb{Z}}$ unit vector basis in $c_{0}(\mathbb{Z}),\left(\delta_{n}\right)_{: n \in \mathbb{Z}}$ unit vector basis in $\ell_{1}(\mathbb{Z})$. Since convolution by $\delta_{ \pm 1}$, induce the bilateral shift σ on $\ell_{1}(\mathbb{Z})$, and $\delta_{ \pm 1}$ generate the (commutative) Banach algebra we deduce:
$\left(e_{n}\right)_{n \in \mathbb{Z}}$ unit vector basis in $c_{0}(\mathbb{Z}),\left(\delta_{n}\right)_{n \in \mathbb{Z}}$ unit vector basis in $\ell_{1}(\mathbb{Z})$. Since convolution by $\delta_{ \pm 1}$, induce the bilateral shift σ on $\ell_{1}(\mathbb{Z})$, and $\delta_{ \pm 1}$ generate the (commutative) Banach algebra we deduce:

Lemma

For a subspace $E \subset \ell_{\infty}(\mathbb{Z})$, which is a predual of $\ell_{1}(\mathbb{Z})$ the following are equivalent
$\left(e_{n}\right)_{n \in \mathbb{Z}}$ unit vector basis in $c_{0}(\mathbb{Z}),\left(\delta_{n}\right)_{: n \in \mathbb{Z}}$ unit vector basis in $\ell_{1}(\mathbb{Z})$. Since convolution by $\delta_{ \pm 1}$, induce the bilateral shift σ on $\ell_{1}(\mathbb{Z})$, and $\delta_{ \pm 1}$ generate the (commutative) Banach algebra we deduce:

Lemma

For a subspace $E \subset \ell_{\infty}(\mathbb{Z})$, which is a predual of $\ell_{1}(\mathbb{Z})$ the following are equivalent
(1) E is an algebraic predual of $\ell_{1}(\mathbb{Z})$,
$\left(e_{n}\right)_{n \in \mathbb{Z}}$ unit vector basis in $c_{0}(\mathbb{Z}),\left(\delta_{n}\right)_{n \in \mathbb{Z}}$ unit vector basis in $\ell_{1}(\mathbb{Z})$. Since convolution by $\delta_{ \pm 1}$, induce the bilateral shift σ on $\ell_{1}(\mathbb{Z})$, and $\delta_{ \pm 1}$ generate the (commutative) Banach algebra we deduce:

Lemma

For a subspace $E \subset \ell_{\infty}(\mathbb{Z})$, which is a predual of $\ell_{1}(\mathbb{Z})$ the following are equivalent
(1) E is an algebraic predual of $\ell_{1}(\mathbb{Z})$,
(2) E is invariant under bilateral shift,
$\left(e_{n}\right)_{n \in \mathbb{Z}}$ unit vector basis in $c_{0}(\mathbb{Z}),\left(\delta_{n}\right)_{n \in \mathbb{Z}}$ unit vector basis in $\ell_{1}(\mathbb{Z})$. Since convolution by $\delta_{ \pm 1}$, induce the bilateral shift σ on $\ell_{1}(\mathbb{Z})$, and $\delta_{ \pm 1}$ generate the (commutative) Banach algebra we deduce:

Lemma

For a subspace $E \subset \ell_{\infty}(\mathbb{Z})$, which is a predual of $\ell_{1}(\mathbb{Z})$ the following are equivalent
(1) E is an algebraic predual of $\ell_{1}(\mathbb{Z})$,
(2) E is invariant under bilateral shift,
(3) Bilateral shift is w^{*}-continuous on $\ell_{1}(\mathbb{Z})$.

First Example

First Example

Let $\lambda \in \mathbb{C},|\lambda|>1$.

First Example

Let $\lambda \in \mathbb{C},|\lambda|>1$. For $n \in \mathbb{N}$ let $b(n)$ be the number of 1 's in the binary expansion of n, for $n<0$ put $b(n)=\infty$ and put

First Example

Let $\lambda \in \mathbb{C},|\lambda|>1$. For $n \in \mathbb{N}$ let $b(n)$ be the number of 1 's in the binary expansion of n, for $n<0$ put $b(n)=\infty$ and put

$$
x_{0}=\left(\lambda^{-b(n)}: n \in \mathbb{Z}\right)=\left(\ldots 0,0,1, \lambda^{-1}, \lambda^{-1}, \lambda^{-2}, \lambda^{-1}, \ldots .\right)
$$

First Example

Let $\lambda \in \mathbb{C},|\lambda|>1$. For $n \in \mathbb{N}$ let $b(n)$ be the number of 1 's in the binary expansion of n, for $n<0$ put $b(n)=\infty$ and put

$$
x_{0}=\left(\lambda^{-b(n)}: n \in \mathbb{Z}\right)=\left(\ldots 0,0,1, \lambda^{-1}, \lambda^{-1}, \lambda^{-2}, \lambda^{-1}, \ldots .\right)
$$

and

$$
H_{\lambda}=\overline{\operatorname{span}\left[\sigma^{n}\left(x_{0}\right): n \in \mathbb{Z}\right]} .
$$

First Example

Let $\lambda \in \mathbb{C},|\lambda|>1$. For $n \in \mathbb{N}$ let $b(n)$ be the number of 1 's in the binary expansion of n, for $n<0$ put $b(n)=\infty$ and put

$$
x_{0}=\left(\lambda^{-b(n)}: n \in \mathbb{Z}\right)=\left(\ldots 0,0,1, \lambda^{-1}, \lambda^{-1}, \lambda^{-2}, \lambda^{-1}, \ldots .\right)
$$

and

$$
H_{\lambda}=\overline{\operatorname{span}\left[\sigma^{n}\left(x_{0}\right): n \in \mathbb{Z}\right]} .
$$

Put also

$$
E_{\lambda}=\left\{(x(n): n \in \mathbb{Z}): \lim _{n \rightarrow \infty} x\left(r+2^{n}\right)=\frac{1}{\lambda} x(r) \text { for all } r \in \mathbb{Z}\right\}
$$

First Example

Let $\lambda \in \mathbb{C},|\lambda|>1$. For $n \in \mathbb{N}$ let $b(n)$ be the number of 1 's in the binary expansion of n, for $n<0$ put $b(n)=\infty$ and put

$$
x_{0}=\left(\lambda^{-b(n)}: n \in \mathbb{Z}\right)=\left(\ldots 0,0,1, \lambda^{-1}, \lambda^{-1}, \lambda^{-2}, \lambda^{-1}, \ldots .\right)
$$

and

$$
H_{\lambda}=\overline{\operatorname{span}\left[\sigma^{n}\left(x_{0}\right): n \in \mathbb{Z}\right]} .
$$

Put also

$$
E_{\lambda}=\left\{(x(n): n \in \mathbb{Z}): \lim _{n \rightarrow \infty} x\left(r+2^{n}\right)=\frac{1}{\lambda} x(r) \text { for all } r \in \mathbb{Z}\right\}
$$

It is clear that $H_{\lambda} \subset E_{\lambda}$ and that both spaces are invariant under σ.

First Example

Let $\lambda \in \mathbb{C},|\lambda|>1$. For $n \in \mathbb{N}$ let $b(n)$ be the number of 1 's in the binary expansion of n, for $n<0$ put $b(n)=\infty$ and put

$$
x_{0}=\left(\lambda^{-b(n)}: n \in \mathbb{Z}\right)=\left(\ldots 0,0,1, \lambda^{-1}, \lambda^{-1}, \lambda^{-2}, \lambda^{-1}, \ldots .\right)
$$

and

$$
H_{\lambda}=\overline{\operatorname{span}\left[\sigma^{n}\left(x_{0}\right): n \in \mathbb{Z}\right]} .
$$

Put also

$$
E_{\lambda}=\left\{(x(n): n \in \mathbb{Z}): \lim _{n \rightarrow \infty} x\left(r+2^{n}\right)=\frac{1}{\lambda} x(r) \text { for all } r \in \mathbb{Z}\right\}
$$

It is clear that $H_{\lambda} \subset E_{\lambda}$ and that both spaces are invariant under σ.
We claim that $H_{\lambda}=E_{\lambda}$ and that H_{λ} is a predual of $\ell_{1}(\mathbb{Z})$.

First Example

Let $\lambda \in \mathbb{C},|\lambda|>1$. For $n \in \mathbb{N}$ let $b(n)$ be the number of 1 's in the binary expansion of n, for $n<0$ put $b(n)=\infty$ and put

$$
x_{0}=\left(\lambda^{-b(n)}: n \in \mathbb{Z}\right)=\left(\ldots 0,0,1, \lambda^{-1}, \lambda^{-1}, \lambda^{-2}, \lambda^{-1}, \ldots .\right)
$$

and

$$
H_{\lambda}=\overline{\operatorname{span}\left[\sigma^{n}\left(x_{0}\right): n \in \mathbb{Z}\right] .}
$$

Put also

$$
E_{\lambda}=\left\{(x(n): n \in \mathbb{Z}): \lim _{n \rightarrow \infty} x\left(r+2^{n}\right)=\frac{1}{\lambda} x(r) \text { for all } r \in \mathbb{Z}\right\}
$$

It is clear that $H_{\lambda} \subset E_{\lambda}$ and that both spaces are invariant under σ.
We claim that $H_{\lambda}=E_{\lambda}$ and that H_{λ} is a predual of $\ell_{1}(\mathbb{Z})$.
For simplicity we set $\lambda=2$ and $H=H_{2}, E=E_{2}$.

It is enough to show that

It is enough to show that
For each $f \in \ell_{1}(\mathbb{Z}) \backslash\{0\}$ there is a $h \in H$ so that $\langle h, f\rangle \neq 0$,

It is enough to show that
For each $f \in \ell_{1}(\mathbb{Z}) \backslash\{0\}$ there is a $h \in H$ so that $\langle h, f\rangle \neq 0$,
For each $\mu \in E^{*}$ there is an $f \in \ell_{1}(\mathbb{Z})$ so that $\langle\mu, \cdot\rangle=\langle f, \cdot\rangle$ on E.

It is enough to show that
For each $f \in \ell_{1}(\mathbb{Z}) \backslash\{0\}$ there is a $h \in H$ so that $\langle h, f\rangle \neq 0$,
For each $\mu \in E^{*}$ there is an $f \in \ell_{1}(\mathbb{Z})$ so that $\langle\mu, \cdot\rangle=\langle f, \cdot\rangle$ on E.
Then both, E and H, satisfy (1) and (2), and the canonical operators

$$
\ell_{1} \rightarrow E^{*},\left.f \mapsto F\right|_{E}, \text { and } \ell_{1} \rightarrow H^{*},\left.f \mapsto f\right|_{H}
$$

are injective and surjective, and thus, by the Closed Graph Theorem isomorphism.

It is enough to show that
For each $f \in \ell_{1}(\mathbb{Z}) \backslash\{0\}$ there is a $h \in H$ so that $\langle h, f\rangle \neq 0$,
For each $\mu \in E^{*}$ there is an $f \in \ell_{1}(\mathbb{Z})$ so that $\langle\mu, \cdot\rangle=\langle f, \cdot\rangle$ on E.
Then both, E and H, satisfy (1) and (2), and the canonical operators

$$
\ell_{1} \rightarrow E^{*},\left.f \mapsto F\right|_{E}, \text { and } \ell_{1} \rightarrow H^{*},\left.f \mapsto f\right|_{H}
$$

are injective and surjective, and thus, by the Closed Graph Theorem isomorphism. Thus E and H are both concrete algebraic preduals.

It is enough to show that

$$
\begin{equation*}
\text { For each } f \in \ell_{1}(\mathbb{Z}) \backslash\{0\} \text { there is a } h \in H \text { so that }\langle h, f\rangle \neq 0 \text {, } \tag{1}
\end{equation*}
$$

For each $\mu \in E^{*}$ there is an $f \in \ell_{1}(\mathbb{Z})$ so that $\langle\mu, \cdot\rangle=\langle f, \cdot\rangle$ on E.
Then both, E and H, satisfy (1) and (2), and the canonical operators

$$
\ell_{1} \rightarrow E^{*},\left.f \mapsto F\right|_{E}, \text { and } \ell_{1} \rightarrow H^{*},\left.f \mapsto f\right|_{H}
$$

are injective and surjective, and thus, by the Closed Graph Theorem isomorphism. Thus E and H are both concrete algebraic preduals. Since $H \subset E$, an application of the Hahn Banach Theorem shows that both spaces are equal.

In order to show (1) let $f=(f(n): n \in \mathbb{Z}) \in \ell_{1}(\mathbb{Z})$ with $f\left(m_{0}\right) \neq 0$.

In order to show (1) let $f=(f(n): n \in \mathbb{Z}) \in \ell_{1}(\mathbb{Z})$ with $f\left(m_{0}\right) \neq 0$.

$$
\text { Put } \tau: \ell_{\infty}(\mathbb{Z}) \rightarrow \ell_{\infty}(\mathbb{Z}) \text {, with } \tau(x)(n)= \begin{cases}x(n / 2) & \text { if } n \text { even } \\ 0 & \text { if } n \text { odd. }\end{cases}
$$

In order to show (1) let $f=(f(n): n \in \mathbb{Z}) \in \ell_{1}(\mathbb{Z})$ with $f\left(m_{0}\right) \neq 0$.

$$
\text { Put } \tau: \ell_{\infty}(\mathbb{Z}) \rightarrow \ell_{\infty}(\mathbb{Z}) \text {, with } \tau(x)(n)= \begin{cases}x(n / 2) & \text { if } n \text { even } \\ 0 & \text { if } n \text { odd. }\end{cases}
$$

Then, after some computations, we obtain

$$
\tau\left(x_{0}\right)=\left(1-\frac{\sigma^{2}}{4}\right)^{-1}\left(1-\frac{\sigma}{2}\right)\left(x_{0}\right)=\sum_{j=0}^{\infty} \frac{\sigma^{2 j}}{4^{j}}\left(1-\frac{\sigma}{2}\right)\left(x_{0}\right) \in H .
$$

In order to show (1) let $f=(f(n): n \in \mathbb{Z}) \in \ell_{1}(\mathbb{Z})$ with $f\left(m_{0}\right) \neq 0$.

$$
\text { Put } \tau: \ell_{\infty}(\mathbb{Z}) \rightarrow \ell_{\infty}(\mathbb{Z}) \text {, with } \tau(x)(n)= \begin{cases}x(n / 2) & \text { if } n \text { even } \\ 0 & \text { if } n \text { odd. }\end{cases}
$$

Then, after some computations, we obtain

$$
\tau\left(x_{0}\right)=\left(1-\frac{\sigma^{2}}{4}\right)^{-1}\left(1-\frac{\sigma}{2}\right)\left(x_{0}\right)=\sum_{j=0}^{\infty} \frac{\sigma^{2 j}}{4^{j}}\left(1-\frac{\sigma}{2}\right)\left(x_{0}\right) \in H .
$$

meaning that $\left.\tau\right|_{E}$ is an operator on E (into E)

In order to show (1) let $f=(f(n): n \in \mathbb{Z}) \in \ell_{1}(\mathbb{Z})$ with $f\left(m_{0}\right) \neq 0$.

$$
\text { Put } \tau: \ell_{\infty}(\mathbb{Z}) \rightarrow \ell_{\infty}(\mathbb{Z}) \text {, with } \tau(x)(n)= \begin{cases}x(n / 2) & \text { if } n \text { even } \\ 0 & \text { if } n \text { odd. }\end{cases}
$$

Then, after some computations, we obtain

$$
\tau\left(x_{0}\right)=\left(1-\frac{\sigma^{2}}{4}\right)^{-1}\left(1-\frac{\sigma}{2}\right)\left(x_{0}\right)=\sum_{j=0}^{\infty} \frac{\sigma^{2 j}}{4^{j}}\left(1-\frac{\sigma}{2}\right)\left(x_{0}\right) \in H .
$$

meaning that $\left.\tau\right|_{E}$ is an operator on E (into E)
Thus

$$
\left\langle\sigma^{m_{0}} \circ \tau^{k}\left(x_{0}\right), f\right\rangle=\left\langle\tau^{k}\left(x_{0}\right), \sigma^{-m_{0}}(f)\right\rangle \rightarrow_{k \rightarrow \infty} x_{0}(0) f\left(m_{0}\right)=f\left(m_{0}\right) \neq 0 .
$$

In order to show (2) we first identify E with a subspace of $C(\beta \mathbb{Z})$, where $\beta \mathbb{Z}$ are the ultrafilters on \mathbb{Z}.

In order to show (2) we first identify E with a subspace of $C(\beta Z)$, where $\beta \mathbb{Z}$ are the ultrafilters on \mathbb{Z}.
Put $\mathbb{Z}^{*}=\beta \mathbb{Z} \backslash \mathbb{Z}$ and for $k \in \mathbb{N}$ and $r \in \mathbb{Z}$
$X_{r}^{(k)}=\left\{\mathcal{U} \in \mathbb{Z}^{*}: \forall m \in \mathbb{N}\left\{r+2^{n_{1}}+2^{n_{2}} \ldots 2^{n_{k}}: m<n_{1}<\ldots n_{k} \in \mathbb{N}\right\} \in \mathcal{U}\right\}$

In order to show (2) we first identify E with a subspace of $C(\beta Z)$, where $\beta \mathbb{Z}$ are the ultrafilters on \mathbb{Z}.
Put $\mathbb{Z}^{*}=\beta \mathbb{Z} \backslash \mathbb{Z}$ and for $k \in \mathbb{N}$ and $r \in \mathbb{Z}$
$X_{r}^{(k)}=\left\{\mathcal{U} \in \mathbb{Z}^{*}: \forall m \in \mathbb{N}\left\{r+2^{n_{1}}+2^{n_{2}} \ldots 2^{n_{k}}: m<n_{1}<\ldots n_{k} \in \mathbb{N}\right\} \in \mathcal{U}\right\}$
$X^{(\infty)}=\mathbb{Z}^{*} \backslash \bigcup_{k \in \mathbb{N}, r \in \mathbb{Z}} X_{r}^{(k)}$.

In order to show (2) we first identify E with a subspace of $C(\beta Z)$, where $\beta \mathbb{Z}$ are the ultrafilters on \mathbb{Z}.
Put $\mathbb{Z}^{*}=\beta \mathbb{Z} \backslash \mathbb{Z}$ and for $k \in \mathbb{N}$ and $r \in \mathbb{Z}$
$X_{r}^{(k)}=\left\{\mathcal{U} \in \mathbb{Z}^{*}: \forall m \in \mathbb{N}\left\{r+2^{n_{1}}+2^{n_{2}} \ldots 2^{n_{k}}: m<n_{1}<\ldots n_{k} \in \mathbb{N}\right\} \in \mathcal{U}\right\}$
$X^{(\infty)}=\mathbb{Z}^{*} \backslash \bigcup_{k \in \mathbb{N}, r \in \mathbb{Z}} X_{r}^{(k)}$. Then E can be written as
$E=\left\{f \in C(\beta \mathbb{Z}): f(\mathcal{U})=2^{-k} f(r)\right.$, for $\mathcal{U} \in X_{r}^{(k)}, r \in \mathbb{Z}, k \in \mathbb{N}$, and $\left.\left.f\right|_{X(\infty)} \equiv 0\right\}$.

In order to show (2) we first identify E with a subspace of $C(\beta Z)$, where $\beta \mathbb{Z}$ are the ultrafilters on \mathbb{Z}.
Put $\mathbb{Z}^{*}=\beta \mathbb{Z} \backslash \mathbb{Z}$ and for $k \in \mathbb{N}$ and $r \in \mathbb{Z}$
$X_{r}^{(k)}=\left\{\mathcal{U} \in \mathbb{Z}^{*}: \forall m \in \mathbb{N}\left\{r+2^{n_{1}}+2^{n_{2}} \ldots 2^{n_{k}}: m<n_{1}<\ldots n_{k} \in \mathbb{N}\right\} \in \mathcal{U}\right\}$
$X^{(\infty)}=\mathbb{Z}^{*} \backslash \bigcup_{k \in \mathbb{N}, r \in \mathbb{Z}} X_{r}^{(k)}$. Then E can be written as
$E=\left\{f \in C(\beta \mathbb{Z}): f(\mathcal{U})=2^{-k} f(r)\right.$, for $\mathcal{U} \in X_{r}^{(k)}, r \in \mathbb{Z}, k \in \mathbb{N}$, and $\left.\left.f\right|_{X(\infty)} \equiv 0\right\}$.
Now let $\mu \in E^{*}$, i.e. $\mu=\left.\tilde{\mu}\right|_{E}$ with $\tilde{\mu} \in \ell_{\infty}^{*}(\mathbb{Z})=M(\beta \mathbb{Z})$ and put

$$
f=(f(t): t \in \mathbb{Z})=\left(\tilde{\mu}(\{t\})+\sum_{k \in \mathbb{N}} \frac{1}{2^{-k}} \tilde{\mu}\left(X_{t}^{(k)}\right)\right) \in \ell_{1}(\mathbb{Z})
$$

In order to show (2) we first identify E with a subspace of $C(\beta Z)$, where $\beta \mathbb{Z}$ are the ultrafilters on \mathbb{Z}.
Put $\mathbb{Z}^{*}=\beta \mathbb{Z} \backslash \mathbb{Z}$ and for $k \in \mathbb{N}$ and $r \in \mathbb{Z}$
$X_{r}^{(k)}=\left\{\mathcal{U} \in \mathbb{Z}^{*}: \forall m \in \mathbb{N}\left\{r+2^{n_{1}}+2^{n_{2}} \ldots 2^{n_{k}}: m<n_{1}<\ldots n_{k} \in \mathbb{N}\right\} \in \mathcal{U}\right\}$
$X^{(\infty)}=\mathbb{Z}^{*} \backslash \bigcup_{k \in \mathbb{N}, r \in \mathbb{Z}} X_{r}^{(k)}$. Then E can be written as
$E=\left\{f \in C(\beta \mathbb{Z}): f(\mathcal{U})=2^{-k} f(r)\right.$, for $\mathcal{U} \in X_{r}^{(k)}, r \in \mathbb{Z}, k \in \mathbb{N}$, and $\left.\left.f\right|_{X(\infty)} \equiv 0\right\}$.
Now let $\mu \in E^{*}$, i.e. $\mu=\left.\tilde{\mu}\right|_{E}$ with $\tilde{\mu} \in \ell_{\infty}^{*}(\mathbb{Z})=M(\beta \mathbb{Z})$ and put

$$
f=(f(t): t \in \mathbb{Z})=\left(\tilde{\mu}(\{t\})+\sum_{k \in \mathbb{N}} \frac{1}{2^{-k}} \tilde{\mu}\left(X_{t}^{(k)}\right)\right) \in \ell_{1}(\mathbb{Z})
$$

It follows for $x \in E \subset C(\beta \mathbb{Z})$

$$
\langle\mu, x\rangle=\langle\tilde{\mu}, x\rangle=\sum_{t \in \mathbb{Z}} f(t) \tilde{\mu}(\{t\})+\sum_{t \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} \int_{X_{t}^{(k)}} f(\mathcal{U}) d \tilde{\mu}(\mathcal{U})=\langle f, x\rangle .
$$

H_{λ} is isomorphic to c_{0}

H_{λ} is isomorphic to c_{0}

Benyamini (1973): If $X \subset C(K), K$ compact, G-space (Grothendieck) is a closed separable subspace, for which there are families $\left(x_{i}\right)_{i \in I}$, $\left(y_{i}\right)_{i \in I} \subset K,\left(\lambda_{i}\right) \subset \mathbb{C}$ so that

$$
X=\left\{f \in C(K): f\left(x_{i}\right)=\lambda_{i} f\left(y_{i}\right), i \in I\right\},
$$

Then X is isomorphic to a $C(K)$ space.

H_{λ} is isomorphic to c_{0}

Benyamini (1973): If $X \subset C(K), K$ compact, G-space (Grothendieck) is a closed separable subspace, for which there are families $\left(x_{i}\right)_{i \in I}$, $\left(y_{i}\right)_{i \in I} \subset K,\left(\lambda_{i}\right) \subset \mathbb{C}$ so that

$$
X=\left\{f \in C(K): f\left(x_{i}\right)=\lambda_{i} f\left(y_{i}\right), i \in I\right\},
$$

Then X is isomorphic to a $C(K)$ space.
Thus H_{λ} is a $C(K)$ space, K countable compact. It is therefore enough to show that Szlenk index of H_{λ} is ω. For that the following observation is crucial:

H_{λ} is isomorphic to c_{0}

Benyamini (1973): If $X \subset C(K), K$ compact, G-space (Grothendieck) is a closed separable subspace, for which there are families $\left(x_{i}\right)_{i \in 1}$, $\left(y_{i}\right)_{i \in I} \subset K,\left(\lambda_{i}\right) \subset \mathbb{C}$ so that

$$
X=\left\{f \in C(K): f\left(x_{i}\right)=\lambda_{i} f\left(y_{i}\right), i \in I\right\}
$$

Then X is isomorphic to a $C(K)$ space.
Thus H_{λ} is a $C(K)$ space, K countable compact. It is therefore enough to show that Szlenk index of H_{λ} is ω. For that the following observation is crucial:

Lemma

Assume $y \in \ell_{\infty}(\mathbb{Z})$ has finite support. Then there is an $x \in H_{\lambda}$, so that

$$
\left.x\right|_{\operatorname{supp}(y)}=\left.y\right|_{\operatorname{supp}(y)} \text { and }\left\|\left.x\right|_{\mathbb{Z} \backslash \operatorname{supp}(y)}\right\|_{\infty} \leq \lambda^{-1}\|y\|_{\infty}
$$

Characterization of algebraic preduals of $\ell_{1}(\mathbb{Z})$

Characterization of algebraic preduals of $\ell_{1}(\mathbb{Z})$

Theorem

A closed subspace $E \subset \ell_{\infty}(\mathbb{Z})$ is a Banach algebraic predual of $\ell_{1}(\mathbb{Z})$ if and only if:

Characterization of algebraic preduals of $\ell_{1}(\mathbb{Z})$

Theorem

A closed subspace $E \subset \ell_{\infty}(\mathbb{Z})$ is a Banach algebraic predual of $\ell_{1}(\mathbb{Z})$ if and only if:
There is a semitopological semigroup compactification \mathcal{S} of \mathbb{Z}

Characterization of algebraic preduals of $\ell_{1}(\mathbb{Z})$

Theorem

A closed subspace $E \subset \ell_{\infty}(\mathbb{Z})$ is a Banach algebraic predual of $\ell_{1}(\mathbb{Z})$ if and only if:
There is a semitopological semigroup compactification \mathcal{S} of \mathbb{Z} (Meaning: \mathcal{S} is a compact space containing \mathbb{Z} as a dense subset, admitting an operation + , which extends + on \mathbb{Z}, so that $(\mathcal{S},+)$ is a semigroup, and which is separately continuous)

Characterization of algebraic preduals of $\ell_{1}(\mathbb{Z})$

Theorem

A closed subspace $E \subset \ell_{\infty}(\mathbb{Z})$ is a Banach algebraic predual of $\ell_{1}(\mathbb{Z})$ if and only if:
There is a semitopological semigroup compactification \mathcal{S} of \mathbb{Z} and a bounded projection and homomorphism with respect to convolution

$$
\Theta: M(\mathcal{S}) \rightarrow \ell_{1}(\mathbb{Z})
$$

so that $\operatorname{Ker}(\Theta)$ is w^{*}-closed $\left(w^{*}=\sigma(M(\mathcal{S}), C(\mathcal{S}))\right.$ and

$$
E=^{\perp} \operatorname{Ker}(\Theta)=\{f \in C(\mathcal{S}): \forall \mu \in \operatorname{Ker}(\Theta)\langle\mu, f\rangle=0\}
$$

Characterization of algebraic preduals of $\ell_{1}(\mathbb{Z})$

Theorem

A closed subspace $E \subset \ell_{\infty}(\mathbb{Z})$ is a Banach algebraic predual of $\ell_{1}(\mathbb{Z})$ if and only if:
There is a semitopological semigroup compactification \mathcal{S} of \mathbb{Z} and a bounded projection and homomorphism with respect to convolution

$$
\Theta: M(\mathcal{S}) \rightarrow \ell_{1}(\mathbb{Z})
$$

so that $\operatorname{Ker}(\Theta)$ is w^{*}-closed $\left(w^{*}=\sigma(M(\mathcal{S}), C(\mathcal{S}))\right.$ and

$$
E=^{\perp} \operatorname{Ker}(\Theta)=\{f \in C(\mathcal{S}): \forall \mu \in \operatorname{Ker}(\Theta)\langle\mu, f\rangle=0\} .
$$

Moreover in that case the pair (\mathcal{S}, Θ) can be chosen to be minimal, meaning that

$$
\mathcal{S} \rightarrow \ell_{1}(\mathbb{Z}), \quad s \mapsto \Theta\left(\delta_{s}\right) \text { is injective. }
$$

Sketch for " \Leftarrow ":

Sketch for " \Leftarrow ":

$\Theta *$-homorphism $\Rightarrow \operatorname{Ker}(\Theta) \subset M(\mathcal{S})$ ideal $\Rightarrow E \ell_{1}$-submodul.

Sketch for " \Leftarrow ":

$\Theta *$-homorphism $\Rightarrow \operatorname{Ker}(\Theta) \subset M(\mathcal{S})$ ideal $\Rightarrow E \ell_{1}$-submodul.
Secondly consider (identify E with subspace of $\ell_{\infty}(\mathbb{Z})$):

$$
\iota_{E}: \ell_{1}(\mathbb{Z}) \rightarrow E^{*}, \quad,\left.a \mapsto a\right|_{E} .
$$

Sketch for " \Leftarrow ":

Θ-homorphism $\Rightarrow \operatorname{Ker}(\Theta) \subset M(\mathcal{S})$ ideal $\Rightarrow E \ell_{1}$-submodul.
Secondly consider (identify E with subspace of $\ell_{\infty}(\mathbb{Z})$):

$$
\iota_{E}: \ell_{1}(\mathbb{Z}) \rightarrow E^{*}, \quad,\left.a \mapsto a\right|_{E} .
$$

Injectivity: if $a \in \ell_{1}(\mathbb{Z})$ with $\langle a, x\rangle=0$ for all $x \in E$, and thus $a \in\left({ }^{\perp} \operatorname{Ker}(\Theta)\right)^{\perp}$. Since $\operatorname{Ker}(\Theta)$ is $\sigma(M(\mathcal{S}), C(\mathcal{S}))$-closed it follows that $a \in\left({ }^{\perp} \operatorname{Ker}(\Theta)\right)^{\perp}=\operatorname{Ker}(\Theta)$.
But $\Theta(a)=a$, and thus $a=0$.

Sketch for " \Leftarrow ":

Θ *-homorphism $\Rightarrow \operatorname{Ker}(\Theta) \subset M(\mathcal{S})$ ideal $\Rightarrow E \ell_{1}$-submodul. Secondly consider (identify E with subspace of $\ell_{\infty}(\mathbb{Z})$):

$$
\iota_{E}: \ell_{1}(\mathbb{Z}) \rightarrow E^{*}, \quad,\left.a \mapsto a\right|_{E} .
$$

Injectivity: if $a \in \ell_{1}(\mathbb{Z})$ with $\langle a, x\rangle=0$ for all $x \in E$, and thus $a \in\left({ }^{\perp} \operatorname{Ker}(\Theta)\right)^{\perp}$. Since $\operatorname{Ker}(\Theta)$ is $\sigma(M(\mathcal{S}), C(\mathcal{S}))$-closed it follows that $a \in\left({ }^{\perp} \operatorname{Ker}(\Theta)\right)^{\perp}=\operatorname{Ker}(\Theta)$.
But $\Theta(a)=a$, and thus $a=0$.
Surjectvity: if $\mu \in E^{*}$, extend μ to $\tilde{\mu} \in M(\mathcal{S})$, then $\tilde{\mu}-\Theta(\tilde{\mu}) \in \operatorname{Ker}(\Theta)$, and thus for $x \in E={ }^{\perp} \operatorname{Ker}(\Theta)$

$$
\iota_{E}(\Theta(\tilde{\mu}))(x)=\Theta(\tilde{\mu})(x)=\tilde{\mu}(x)=\mu(x) .
$$

Construction of other Examples

We choose: $\mathcal{S}=\mathbb{Z} \times \mathbb{N}_{0} \cup\{\infty\}$.

Construction of other Examples

We choose: $\mathcal{S}=\mathbb{Z} \times \mathbb{N}_{0} \cup\{\infty\}$.
On $\mathbb{Z} \times \mathbb{N}_{0}$ usual semigroup structure and $\gamma+\infty=\infty+\gamma=\infty+\infty=\infty$.

Construction of other Examples

We choose: $\mathcal{S}=\mathbb{Z} \times \mathbb{N}_{0} \cup\{\infty\}$.
On $\mathbb{Z} \times \mathbb{N}_{0}$ usual semigroup structure and $\gamma+\infty=\infty+\gamma=\infty+\infty=\infty$.
We identify $\mathbb{Z} \equiv \mathbb{Z} \times\{0\}, \mathbb{N}_{0}=\{0\} \times \mathbb{N}_{0}$ and put $e=(0,1)$.

Construction of other Examples

We choose: $\mathcal{S}=\mathbb{Z} \times \mathbb{N}_{0} \cup\{\infty\}$.
On $\mathbb{Z} \times \mathbb{N}_{0}$ usual semigroup structure and $\gamma+\infty=\infty+\gamma=\infty+\infty=\infty$.
We identify $\mathbb{Z} \equiv \mathbb{Z} \times\{0\}, \mathbb{N}_{0}=\{0\} \times \mathbb{N}_{0}$ and put $e=(0,1)$.
Each $\mu \in \ell_{1}(\mathcal{S})$ can be written as

$$
\mu=\mu_{\infty} \delta_{\infty}+\sum_{n \in \mathbb{N}_{0}} \mu_{n} * \delta_{n}, \text { with } \mu_{n} \in \ell_{1}(\mathbb{Z}), n \in \mathbb{N}_{0}
$$

Construction of other Examples

We choose: $\mathcal{S}=\mathbb{Z} \times \mathbb{N}_{0} \cup\{\infty\}$.
On $\mathbb{Z} \times \mathbb{N}_{0}$ usual semigroup structure and $\gamma+\infty=\infty+\gamma=\infty+\infty=\infty$.
We identify $\mathbb{Z} \equiv \mathbb{Z} \times\{0\}, \mathbb{N}_{0}=\{0\} \times \mathbb{N}_{0}$ and put $e=(0,1)$.
Each $\mu \in \ell_{1}(\mathcal{S})$ can be written as

$$
\mu=\mu_{\infty} \delta_{\infty}+\sum_{n \in \mathbb{N}_{0}} \mu_{n} * \delta_{n}, \text { with } \mu_{n} \in \ell_{1}(\mathbb{Z}), n \in \mathbb{N}_{0}
$$

A projection $\Theta: \ell_{1}(\mathcal{S}) \rightarrow \ell_{1}(\mathbb{Z})$, which is also a $*$-homemorphsim is uniquely determined by $a=\Theta(e) \in \ell_{1}(\mathbb{Z})$. Then
$\Theta\left(\mu_{\infty} \delta_{\infty}+\sum_{n \in \mathbb{N}_{0}} \mu_{n} * \delta_{n}\right)=\sum_{n \in \mathbb{N}_{0}} \mu_{n} * a^{n}$, with $a^{n}=\underbrace{a * a * \ldots * a}_{n \text { times }}, \mu_{n} \in \ell_{1}(\mathbb{Z})$.

Construction of other Examples

We choose: $\mathcal{S}=\mathbb{Z} \times \mathbb{N}_{0} \cup\{\infty\}$.
On $\mathbb{Z} \times \mathbb{N}_{0}$ usual semigroup structure and $\gamma+\infty=\infty+\gamma=\infty+\infty=\infty$.
We identify $\mathbb{Z} \equiv \mathbb{Z} \times\{0\}, \mathbb{N}_{0}=\{0\} \times \mathbb{N}_{0}$ and put $e=(0,1)$.
Each $\mu \in \ell_{1}(\mathcal{S})$ can be written as

$$
\mu=\mu_{\infty} \delta_{\infty}+\sum_{n \in \mathbb{N}_{0}} \mu_{n} * \delta_{n}, \text { with } \mu_{n} \in \ell_{1}(\mathbb{Z}), n \in \mathbb{N}_{0} \text {. }
$$

A projection $\Theta: \ell_{1}(\mathcal{S}) \rightarrow \ell_{1}(\mathbb{Z})$, which is also a $*$-homemorphsim is uniquely determined by $a=\Theta(e) \in \ell_{1}(\mathbb{Z})$. Then
$\Theta\left(\mu_{\infty} \delta_{\infty}+\sum_{n \in \mathbb{N}_{0}} \mu_{n} * \delta_{n}\right)=\sum_{n \in \mathbb{N}_{0}} \mu_{n} * a^{n}$, with $a^{n}=\underbrace{a * a * \ldots * a}_{n \text { times }}, \mu_{n} \in \ell_{1}(\mathbb{Z})$.
In order for Θ to be bounded we need: $\sup _{n \rightarrow \infty}\left\|a^{n}\right\|_{1}<\infty$.

Construction of other Examples

We choose: $\mathcal{S}=\mathbb{Z} \times \mathbb{N}_{0} \cup\{\infty\}$.
On $\mathbb{Z} \times \mathbb{N}_{0}$ usual semigroup structure and $\gamma+\infty=\infty+\gamma=\infty+\infty=\infty$.
We identify $\mathbb{Z} \equiv \mathbb{Z} \times\{0\}, \mathbb{N}_{0}=\{0\} \times \mathbb{N}_{0}$ and put $e=(0,1)$.
Each $\mu \in \ell_{1}(\mathcal{S})$ can be written as

$$
\mu=\mu_{\infty} \delta_{\infty}+\sum_{n \in \mathbb{N}_{0}} \mu_{n} * \delta_{n}, \text { with } \mu_{n} \in \ell_{1}(\mathbb{Z}), n \in \mathbb{N}_{0} \text {. }
$$

A projection $\Theta: \ell_{1}(\mathcal{S}) \rightarrow \ell_{1}(\mathbb{Z})$, which is also a $*$-homemorphsim is uniquely determined by $a=\Theta(e) \in \ell_{1}(\mathbb{Z})$. Then
$\Theta\left(\mu_{\infty} \delta_{\infty}+\sum_{n \in \mathbb{N}_{0}} \mu_{n} * \delta_{n}\right)=\sum_{n \in \mathbb{N}_{0}} \mu_{n} * a^{n}$, with $a^{n}=\underbrace{a * a * \ldots * a}_{n \text { times }}, \mu_{n} \in \ell_{1}(\mathbb{Z})$.
In order for Θ to be bounded we need: $\sup _{n \rightarrow \infty}\left\|a^{n}\right\|_{1}<\infty$.
We also need still to choose an appropriate topology on \mathcal{S}.

Th. Schlumprecht

Lemma

If $\lim _{n \rightarrow \infty}\left\|a^{n}\right\|_{\infty}=0$, then, regardless of the compact Hausdorff topology on \mathcal{S}, it follows that $\operatorname{Ker}(\Theta)$ is $\sigma\left(\ell_{1}(\mathcal{S}), C(\mathcal{S})\right)$-closed in $\ell_{1}(\mathcal{S})$.

Lemma

If $\lim _{n \rightarrow \infty}\left\|a^{n}\right\|_{\infty}=0$, then, regardless of the compact Hausdorff topology on \mathcal{S}, it follows that $\operatorname{Ker}(\Theta)$ is $\sigma\left(\ell_{1}(\mathcal{S}), C(\mathcal{S})\right)$-closed in $\ell_{1}(\mathcal{S})$.

Lemma

It is enough to define a local compact topology on $\mathcal{T}=\mathbb{Z} \times \mathbb{N}_{0}$, which turns \mathcal{T} to a semi topological semi group. Then the one-point compactification on $\mathcal{S}=\mathcal{T} \cup\{\infty\}$ is also a semi-topological semi-group.

Lemma

If $\lim _{n \rightarrow \infty}\left\|a^{n}\right\|_{\infty}=0$, then, regardless of the compact Hausdorff topology on \mathcal{S}, it follows that $\operatorname{Ker}(\Theta)$ is $\sigma\left(\ell_{1}(\mathcal{S}), C(\mathcal{S})\right)$-closed in $\ell_{1}(\mathcal{S})$.

Lemma

It is enough to define a local compact topology on $\mathcal{T}=\mathbb{Z} \times \mathbb{N}_{0}$, which turns \mathcal{T} to a semi topological semi group. Then the one-point compactification on $\mathcal{S}=\mathcal{T} \cup\{\infty\}$ is also a semi-topological semi-group.

Construction: We let $J=\left\{2^{j}: j \in \mathbb{N}\right\}$

Lemma

If $\lim _{n \rightarrow \infty}\left\|a^{n}\right\|_{\infty}=0$, then, regardless of the compact Hausdorff topology on \mathcal{S}, it follows that $\operatorname{Ker}(\Theta)$ is $\sigma\left(\ell_{1}(\mathcal{S}), C(\mathcal{S})\right)$-closed in $\ell_{1}(\mathcal{S})$.

Lemma

It is enough to define a local compact topology on $\mathcal{T}=\mathbb{Z} \times \mathbb{N}_{0}$, which turns \mathcal{T} to a semi topological semi group. Then the one-point compactification on $\mathcal{S}=\mathcal{T} \cup\{\infty\}$ is also a semi-topological semi-group.

Construction: We let $J=\left\{2^{j}: j \in \mathbb{N}\right\}$ Important property: J is additively sparse:
$\forall s \neq t \in \mathbb{N}:(s+J) \cap(t+J)$ is finite.

We will define topology on \mathcal{T} (and thus on \mathcal{S}) so that
$\lim _{j \in J, j \rightarrow \infty}(j, 0)=(0,1)$, and thus $\lim _{j \in J, j \rightarrow \infty}(j+z, n)=(z, n+1), \quad(z, n) \in \mathcal{T}$.

We will define topology on \mathcal{T} (and thus on \mathcal{S}) so that
$\lim _{j \in J, j \rightarrow \infty}(j, 0)=(0,1)$, and thus $\lim _{j \in J, j \rightarrow \infty}(j+z, n)=(z, n+1), \quad(z, n) \in \mathcal{T}$.
For $\gamma=(z, n) \in \mathbb{Z} \times \mathbb{N}_{0}$, a countable neighborhood basis $V_{k} \in \mathbb{N}$ of γ is defined by

We will define topology on \mathcal{T} (and thus on \mathcal{S}) so that
$\lim _{j \in J, j \rightarrow \infty}(j, 0)=(0,1)$, and thus $\lim _{j \in J, j \rightarrow \infty}(j+z, n)=(z, n+1), \quad(z, n) \in \mathcal{T}$.
For $\gamma=(z, n) \in \mathbb{Z} \times \mathbb{N}_{0}$, a countable neighborhood basis $V_{k} \in \mathbb{N}$ of γ is defined by

$$
V_{\gamma, k}=\left\{\left(z+\sum_{r=1}^{n-m} 2^{s_{r}}, m\right): 0 \leq m \leq n, k<s_{1}<s_{2}<\ldots<s_{n-m}\right\}
$$

For example:

We will define topology on \mathcal{T} (and thus on \mathcal{S}) so that
$\lim _{j \in J, j \rightarrow \infty}(j, 0)=(0,1)$, and thus $\lim _{j \in J, j \rightarrow \infty}(j+z, n)=(z, n+1), \quad(z, n) \in \mathcal{T}$.
For $\gamma=(z, n) \in \mathbb{Z} \times \mathbb{N}_{0}$, a countable neighborhood basis $V_{k} \in \mathbb{N}$ of γ is defined by

$$
V_{\gamma, k}=\left\{\left(z+\sum_{r=1}^{n-m} 2^{s_{r}}, m\right): 0 \leq m \leq n, k<s_{1}<s_{2}<\ldots<s_{n-m}\right\}
$$

For example:
$V_{(z, 0), k}=\{(z, 0)\}$

We will define topology on \mathcal{T} (and thus on \mathcal{S}) so that
$\lim _{j \in J, j \rightarrow \infty}(j, 0)=(0,1)$, and thus $\lim _{j \in J, j \rightarrow \infty}(j+z, n)=(z, n+1), \quad(z, n) \in \mathcal{T}$.
For $\gamma=(z, n) \in \mathbb{Z} \times \mathbb{N}_{0}$, a countable neighborhood basis $V_{k} \in \mathbb{N}$ of γ is defined by

$$
V_{\gamma, k}=\left\{\left(z+\sum_{r=1}^{n-m} 2^{s_{r}}, m\right): 0 \leq m \leq n, k<s_{1}<s_{2}<\ldots<s_{n-m}\right\}
$$

For example:
$V_{(z, 0), k}=\{(z, 0)\}$
$V_{(z, 1), k}=\{(z, 1)\} \cup\left\{\left(z+2^{s}, 0\right): k<s\right\}$

We will define topology on \mathcal{T} (and thus on \mathcal{S}) so that
$\lim _{j \in J, j \rightarrow \infty}(j, 0)=(0,1)$, and thus $\lim _{j \in J, j \rightarrow \infty}(j+z, n)=(z, n+1), \quad(z, n) \in \mathcal{T}$.
For $\gamma=(z, n) \in \mathbb{Z} \times \mathbb{N}_{0}$, a countable neighborhood basis $V_{k} \in \mathbb{N}$ of γ is defined by

$$
V_{\gamma, k}=\left\{\left(z+\sum_{r=1}^{n-m} 2^{s_{r}}, m\right): 0 \leq m \leq n, k<s_{1}<s_{2}<\ldots<s_{n-m}\right\}
$$

For example:

$$
V_{(z, 0), k}=\{(z, 0)\}
$$

$$
V_{(z, 1), k}=\{(z, 1)\} \cup\left\{\left(z+2^{s}, 0\right): k<s\right\}
$$

$$
V_{(z, 2), k}=\{(z, 2)\} \cup\left\{\left(z+2^{s}, 1\right): k<s\right\} \cup\left\{\left(z+2^{s_{1}}+2^{s_{2}}, 0\right): k<s\right\}
$$

We still need to choose $a:=\Theta(e) \in \ell_{1}(\mathbb{Z})$.

We still need to choose $a:=\Theta(e) \in \ell_{1}(\mathbb{Z})$.

- If $a=0$ then $E=c_{0}(\mathbb{Z})$,

We still need to choose $a:=\Theta(e) \in \ell_{1}(\mathbb{Z})$.

- If $a=0$ then $E=c_{0}(\mathbb{Z})$,
- If $a=\frac{1}{\lambda} \delta_{0},|\lambda|<1$, then we recapture first example H_{λ},

We still need to choose $a:=\Theta(e) \in \ell_{1}(\mathbb{Z})$.

- If $a=0$ then $E=c_{0}(\mathbb{Z})$,
- If $a=\frac{1}{\lambda} \delta_{0},|\lambda|<1$, then we recapture first example H_{λ},

But if we choose

We still need to choose $a:=\Theta(e) \in \ell_{1}(\mathbb{Z})$.

- If $a=0$ then $E=c_{0}(\mathbb{Z})$,
- If $a=\frac{1}{\lambda} \delta_{0},|\lambda|<1$, then we recapture first example H_{λ},

But if we choose

- $a \in \ell_{1}(\mathbb{Z})$ so that $1=\|a\|_{1}=\left\|a^{n}\right\|$, but on the other hand we still have $\lim _{n \rightarrow \infty}\left\|a^{n}\right\|_{\infty}=0$ (needed to ensure that $\operatorname{Ker}(\Theta)$ is w^{*}-closed) then it follows that Szlenk index of E is ω^{2}.

We still need to choose $a:=\Theta(e) \in \ell_{1}(\mathbb{Z})$.

- If $a=0$ then $E=c_{0}(\mathbb{Z})$,
- If $a=\frac{1}{\lambda} \delta_{0},|\lambda|<1$, then we recapture first example H_{λ},

But if we choose

- $a \in \ell_{1}(\mathbb{Z})$ so that $1=\|a\|_{1}=\left\|a^{n}\right\|$, but on the other hand we still have $\lim _{n \rightarrow \infty}\left\|a^{n}\right\|_{\infty}=0$ (needed to ensure that $\operatorname{Ker}(\Theta)$ is w^{*}-closed) then it follows that Szlenk index of E is ω^{2}.
Thus choose for example $a=\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}$, in order to get algebraic predual of ℓ_{1} which is not isomorphic to c_{0}.

