Closed ideals of operators on Banach spaces

András Zsák

Peterhouse, Cambridge

(joint work with N J Laustsen, E Odell, Th Schlumprecht)

Banach space theory workshop, BIRS, 5-9 March 2012

The general problem

<ロ>

We start with a Banach space X.

We start with a Banach space X.

The aim is to classify the closed ideals of $\mathcal{B}(X)$.

We start with a Banach space X.

The aim is to classify the closed ideals of $\mathcal{B}(X)$.

E.g.,
$$X = \left(\bigoplus_{n=1}^{\infty} \ell_1^n\right)_{c_0}, \ X = C(K)$$
, etc.

Calkin [1941]: The closed ideals of $\mathcal{B}(\ell_2)$ are $\{0\} \subsetneq \mathcal{K}(\ell_2) \subsetneq \mathcal{B}(\ell_2)$.

・ロト・日本・モト・モート ヨー うへで

Calkin [1941]: The closed ideals of $\mathcal{B}(\ell_2)$ are $\{0\} \subsetneq \mathcal{K}(\ell_2) \subsetneq \mathcal{B}(\ell_2)$.

Gohberg, Markus, Feldman [1960]: If X is ℓ_p $(1 \le p < \infty)$ or c_0 , then the closed ideals of $\mathcal{B}(X)$ are $\{0\} \subsetneq \mathcal{K}(X) \subsetneq \mathcal{B}(X)$.

Calkin [1941]: The closed ideals of $\mathcal{B}(\ell_2)$ are $\{0\} \subsetneq \mathcal{K}(\ell_2) \subsetneq \mathcal{B}(\ell_2)$.

Gohberg, Markus, Feldman [1960]: If X is ℓ_p $(1 \le p < \infty)$ or c_0 , then the closed ideals of $\mathcal{B}(X)$ are $\{0\} \subsetneq \mathcal{K}(X) \subsetneq \mathcal{B}(X)$.

Gramsch [1967]; Luft [1968]: Classified the closed ideals of $\mathcal{B}(H)$ for a (non-separable) Hilbert space H.

Calkin [1941]: The closed ideals of $\mathcal{B}(\ell_2)$ are $\{0\} \subsetneq \mathcal{K}(\ell_2) \subsetneq \mathcal{B}(\ell_2)$.

Gohberg, Markus, Feldman [1960]: If X is ℓ_p $(1 \le p < \infty)$ or c_0 , then the closed ideals of $\mathcal{B}(X)$ are $\{0\} \subsetneq \mathcal{K}(X) \subsetneq \mathcal{B}(X)$.

Gramsch [1967]; Luft [1968]: Classified the closed ideals of $\mathcal{B}(H)$ for a (non-separable) Hilbert space H.

Laustsen, Loy, Read [2003]: Let $X = \left(\bigoplus_n \ell_2^n\right)_{c_0}$. The closed ideals of $\mathcal{B}(X)$ are $\{0\} \subsetneq \mathcal{K}(X) \subsetneq \overline{\mathcal{G}}_{c_0}(X) \subsetneq \mathcal{B}(X)$.

Calkin [1941]: The closed ideals of $\mathcal{B}(\ell_2)$ are $\{0\} \subsetneq \mathcal{K}(\ell_2) \subsetneq \mathcal{B}(\ell_2)$.

Gohberg, Markus, Feldman [1960]: If X is ℓ_p $(1 \le p < \infty)$ or c_0 , then the closed ideals of $\mathcal{B}(X)$ are $\{0\} \subsetneq \mathcal{K}(X) \subsetneq \mathcal{B}(X)$.

Gramsch [1967]; Luft [1968]: Classified the closed ideals of $\mathcal{B}(H)$ for a (non-separable) Hilbert space H.

Laustsen, Loy, Read [2003]: Let $X = \left(\bigoplus_n \ell_2^n\right)_{c_0}$. The closed ideals of $\mathcal{B}(X)$ are $\{0\} \subsetneq \mathcal{K}(X) \subsetneq \overline{\mathcal{G}}_{c_0}(X) \subsetneq \mathcal{B}(X)$.

Laustsen, Schlumprecht, Zs. [2006]: Let $X = \left(\bigoplus_n \ell_2^n\right)_{\ell_1}$. The closed ideals of $\mathcal{B}(X)$ are $\{0\} \subsetneq \mathcal{K}(X) \subsetneq \overline{\mathcal{G}}_{\ell_1}(X) \subsetneq \mathcal{B}(X)$.

Calkin [1941]: The closed ideals of $\mathcal{B}(\ell_2)$ are $\{0\} \subsetneq \mathcal{K}(\ell_2) \subsetneq \mathcal{B}(\ell_2)$.

Gohberg, Markus, Feldman [1960]: If X is ℓ_p $(1 \le p < \infty)$ or c_0 , then the closed ideals of $\mathcal{B}(X)$ are $\{0\} \subsetneq \mathcal{K}(X) \subsetneq \mathcal{B}(X)$.

Gramsch [1967]; Luft [1968]: Classified the closed ideals of $\mathcal{B}(H)$ for a (non-separable) Hilbert space H.

Laustsen, Loy, Read [2003]: Let $X = \left(\bigoplus_n \ell_2^n\right)_{c_0}$. The closed ideals of $\mathcal{B}(X)$ are $\{0\} \subsetneq \mathcal{K}(X) \subsetneq \overline{\mathcal{G}}_{c_0}(X) \subsetneq \mathcal{B}(X)$.

Laustsen, Schlumprecht, Zs. [2006]: Let $X = \left(\bigoplus_n \ell_2^n\right)_{\ell_1}$. The closed ideals of $\mathcal{B}(X)$ are $\{0\} \subsetneq \mathcal{K}(X) \subsetneq \overline{\mathcal{G}}_{\ell_1}(X) \subsetneq \mathcal{B}(X)$.

Daws [2004]: Classified the closed ideals of $\mathcal{B}(X)$ when $X = \ell_p(I), 1 \le p < \infty$ or $X = c_0(I)$ where I is an arbitrary index set.

Calkin [1941]: The closed ideals of $\mathcal{B}(\ell_2)$ are $\{0\} \subsetneq \mathcal{K}(\ell_2) \subsetneq \mathcal{B}(\ell_2)$.

Gohberg, Markus, Feldman [1960]: If X is ℓ_p $(1 \le p < \infty)$ or c_0 , then the closed ideals of $\mathcal{B}(X)$ are $\{0\} \subsetneq \mathcal{K}(X) \subsetneq \mathcal{B}(X)$.

Gramsch [1967]; Luft [1968]: Classified the closed ideals of $\mathcal{B}(H)$ for a (non-separable) Hilbert space H.

Laustsen, Loy, Read [2003]: Let $X = \left(\bigoplus_n \ell_2^n\right)_{c_0}$. The closed ideals of $\mathcal{B}(X)$ are $\{0\} \subsetneq \mathcal{K}(X) \subsetneq \overline{\mathcal{G}}_{c_0}(X) \subsetneq \mathcal{B}(X)$.

Laustsen, Schlumprecht, Zs. [2006]: Let $X = \left(\bigoplus_n \ell_2^n\right)_{\ell_1}$. The closed ideals of $\mathcal{B}(X)$ are $\{0\} \subsetneq \mathcal{K}(X) \subsetneq \overline{\mathcal{G}}_{\ell_1}(X) \subsetneq \mathcal{B}(X)$.

Daws [2004]: Classified the closed ideals of $\mathcal{B}(X)$ when $X = \ell_p(I), 1 \le p < \infty$ or $X = c_0(I)$ where I is an arbitrary index set.

Argyros, Haydon [2011]: If X is the Argyros-Haydon space, then the closed ideals of $\mathcal{B}(X)$ are $\{0\} \subsetneq \mathcal{K}(X) \subsetneq \mathcal{B}(X)$.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Sari, Schlumprecht, Tomczak-Jaegermann, Troitsky [2008] and Schlumprecht [2012] studied $\ell_p \oplus \ell_q$.

Sari, Schlumprecht, Tomczak-Jaegermann, Troitsky [2008] and Schlumprecht [2012] studied $\ell_p \oplus \ell_q$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Brooker [2010] looked at C(K) spaces.

Sari, Schlumprecht, Tomczak-Jaegermann, Troitsky [2008] and Schlumprecht [2012] studied $\ell_p \oplus \ell_q$.

Brooker [2010] looked at C(K) spaces.

Laustsen, Odell, Schlumprecht, Zs. [2012] studied $\left(\bigoplus_{n=1}^{\infty} \ell_1^n\right)_{\infty}$ and $C(\omega^{\omega})$.

Sari, Schlumprecht, Tomczak-Jaegermann, Troitsky [2008] and Schlumprecht [2012] studied $\ell_p \oplus \ell_q$.

Brooker [2010] looked at C(K) spaces.

Laustsen, Odell, Schlumprecht, Zs. [2012] studied $\left(\bigoplus_{n=1}^{\infty} \ell_1^n\right)_{c_0}$ and $C(\omega^{\omega})$.

Kaminska, Popov, Spinu, Tcaciuc, Troitsky [2012] Lorentz sequence spaces.

(日) (日) (日) (日) (日) (日) (日) (日)

Sari, Schlumprecht, Tomczak-Jaegermann, Troitsky [2008] and Schlumprecht [2012] studied $\ell_p \oplus \ell_q$.

Brooker [2010] looked at C(K) spaces.

Laustsen, Odell, Schlumprecht, Zs. [2012] studied $\left(\bigoplus_{n=1}^{\infty} \ell_1^n\right)_{c_n}$ and $C(\omega^{\omega})$.

Kaminska, Popov, Spinu, Tcaciuc, Troitsky [2012] Lorentz sequence spaces.

(日) (日) (日) (日) (日) (日) (日) (日)

Zheng Orlicz sequence spaces.

The space
$$X=\left(igoplus_{n=1}^\infty \ell_1^n
ight)_{\mathrm{c}_0}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

The space
$$X = \left(\bigoplus_{n=1}^{\infty} \ell_1^n\right)_{c_0}$$

The space
$$X = \left(\bigoplus_{n=1}^{\infty} \ell_1^n \right)_{\mathrm{c}_0}$$

 $\{0\} \subsetneq \mathcal{K}(X)$

The space
$$X = \left(\bigoplus_{n=1}^{\infty} \ell_1^n \right)_{c_0}$$

$$\{0\} \subsetneq \mathcal{K}(X) \subsetneq \overline{\mathcal{G}}_{c_0}(X)$$

The space
$$X = \left(\bigoplus_{n=1}^{\infty} \ell_1^n \right)_{cn}$$

$$\{0\} \subsetneq \mathcal{K}(X) \subsetneq \overline{\mathcal{G}}_{c_0}(X) \subsetneq \mathcal{B}(X) .$$

The space
$$X = \left(\bigoplus_{n=1}^{\infty} \ell_1^n \right)_{c_0}$$

$$\{0\} \subsetneq \mathcal{K}(X) \subsetneq \overline{\mathcal{G}}_{c_0}(X) \subsetneq \mathcal{B}(X) \;.$$

Moreover, if T is a non-compact operator on X, then Id_{c_0} factors through T.

The space
$$X=\left(igoplus_{n=1}^\infty \ell_1^n
ight)_{ ext{cn}}$$

$$\{0\} \subsetneq \mathcal{K}(X) \subsetneq \overline{\mathcal{G}}_{c_0}(X) \subsetneq \mathcal{B}(X) \;.$$

Moreover, if T is a non-compact operator on X, then Id_{c_0} factors through T. Thus the closed ideal generated by T contains $\overline{\mathcal{G}}_{c_0}(X)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

The space
$$X=\left(igoplus_{n=1}^\infty \ell_1^n
ight)_{ ext{cn}}$$

$$\{0\} \subsetneq \mathcal{K}(X) \subsetneq \overline{\mathcal{G}}_{c_0}(X) \subsetneq \mathcal{B}(X) .$$

Moreover, if T is a non-compact operator on X, then Id_{c_0} factors through T. Thus the closed ideal generated by T contains $\overline{\mathcal{G}}_{c_0}(X)$.

It follows that any closed ideal of $\mathcal{B}(X)$ not in the above list must lie strictly between $\overline{\mathcal{G}}_{c_0}(X)$ and $\mathcal{B}(X)$.

(日) (日) (日) (日) (日) (日) (日) (日)

The space
$$X=\left(igoplus_{n=1}^\infty \ell_1^n
ight)_{ ext{cn}}$$

$$\{0\} \subsetneq \mathcal{K}(X) \subsetneq \overline{\mathcal{G}}_{c_0}(X) \subsetneq \mathcal{B}(X) \;.$$

Moreover, if T is a non-compact operator on X, then Id_{c_0} factors through T. Thus the closed ideal generated by T contains $\overline{\mathcal{G}}_{c_0}(X)$.

It follows that any closed ideal of $\mathcal{B}(X)$ not in the above list must lie strictly between $\overline{\mathcal{G}}_{c_0}(X)$ and $\mathcal{B}(X)$.

Question: Does every operator $T \in \mathcal{B}(X)$

(i) either factor the identity operator Id_X

The space
$$X=\left(igoplus_{n=1}^\infty \ell_1^n
ight)_{ ext{cn}}$$

$$\{0\} \subsetneq \mathcal{K}(X) \subsetneq \overline{\mathcal{G}}_{c_0}(X) \subsetneq \mathcal{B}(X) \;.$$

Moreover, if T is a non-compact operator on X, then Id_{c_0} factors through T. Thus the closed ideal generated by T contains $\overline{\mathcal{G}}_{c_0}(X)$.

It follows that any closed ideal of $\mathcal{B}(X)$ not in the above list must lie strictly between $\overline{\mathcal{G}}_{c_0}(X)$ and $\mathcal{B}(X)$.

Question: Does every operator $T \in \mathcal{B}(X)$

- (i) either factor the identity operator Id_X ,
- (ii) or approximately factor through c_0 ?

An operator

$$\mathcal{T} \colon \Big(\bigoplus_{n=1}^\infty \ell_1^n \Big)_{\mathbf{c}_0} \to \Big(\bigoplus_{n=1}^\infty \ell_1^n \Big)_{\mathbf{c}_0}$$

An operator

$$T: \left(\bigoplus_{n=1}^{\infty} \ell_1^n\right)_{c_0} \to \left(\bigoplus_{n=1}^{\infty} \ell_1^n\right)_{c_0}$$

can be thought of as an infinite matrix $(T_{m,n})$ of operators $T_{m,n} \colon \ell_1^n \to \ell_1^m$.

An operator

$$T: \left(\bigoplus_{n=1}^{\infty} \ell_1^n\right)_{c_0} \to \left(\bigoplus_{n=1}^{\infty} \ell_1^n\right)_{c_0}$$

can be thought of as an infinite matrix $(T_{m,n})$ of operators $T_{m,n} \colon \ell_1^n \to \ell_1^m$.

Lemma $\forall \varepsilon > 0$ there is a compact operator K with $||K|| < \varepsilon$ such that T + K has finite rows and columns.

An operator

$$T: \left(\bigoplus_{n=1}^{\infty} \ell_1^n\right)_{c_0} \to \left(\bigoplus_{n=1}^{\infty} \ell_1^n\right)_{c_0}$$

can be thought of as an infinite matrix $(T_{m,n})$ of operators $T_{m,n} \colon \ell_1^n \to \ell_1^m$.

Lemma $\forall \varepsilon > 0$ there is a compact operator K with $||K|| < \varepsilon$ such that T + K has finite rows and columns.

So we may assume that T is *locally finite*.

An operator

$$T: \left(\bigoplus_{n=1}^{\infty} \ell_1^n\right)_{c_0} \to \left(\bigoplus_{n=1}^{\infty} \ell_1^n\right)_{c_0}$$

can be thought of as an infinite matrix $(T_{m,n})$ of operators $T_{m,n} \colon \ell_1^n \to \ell_1^m$.

Lemma $\forall \varepsilon > 0$ there is a compact operator K with $||K|| < \varepsilon$ such that T + K has finite rows and columns.

So we may assume that T is *locally finite*.

We write $T^{(m)}$ for the m^{th} row of T

An operator

$$T: \left(\bigoplus_{n=1}^{\infty} \ell_1^n\right)_{c_0} \to \left(\bigoplus_{n=1}^{\infty} \ell_1^n\right)_{c_0}$$

can be thought of as an infinite matrix $(T_{m,n})$ of operators $T_{m,n}: \ell_1^n \to \ell_1^m$.

Lemma $\forall \varepsilon > 0$ there is a compact operator K with $||K|| < \varepsilon$ such that T + K has finite rows and columns.

So we may assume that T is locally finite.

We write $T^{(m)}$ for the m^{th} row of T:

$$\mathcal{T}^{(m)}\colon \Big(\bigoplus_{n\in R_m}\ell_1^n\Big)_{\ell_\infty}\to \ell_1^m$$

for some finite set $R_m \subset \mathbb{N}$.
The finite-dimensional problem

The finite-dimensional problem

Let $T^{(m)} \colon \ell_{\infty}^{m}(\ell_{1}^{m}) \to L_{1}$ be a uniformly bounded sequence of operators.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Let $T^{(m)}$: $\ell_{\infty}^m(\ell_1^m) \to L_1$ be a uniformly bounded sequence of operators. Is the following true:

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Let $T^{(m)}$: $\ell_{\infty}^m(\ell_1^m) \to L_1$ be a uniformly bounded sequence of operators. Is the following true:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

(i) either the identity operators $Id_{\ell_1^k}$ uniformly factor through the $\mathcal{T}^{(m)}$,

Let $\mathcal{T}^{(m)}$: $\ell_{\infty}^{m}(\ell_{1}^{m}) \to L_{1}$ be a uniformly bounded sequence of operators. Is the following true:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

(i) either the identity operators $Id_{\ell_1^k}$ uniformly factor through the $T^{(m)}$,

(ii) or the $T^{(m)}$ uniformly approximately factor through ℓ_{∞}^{k} ?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Let X_1, X_2, \ldots be arbitrary Banach spaces.

<□ > < @ > < E > < E > E のQ @

Let X_1, X_2, \ldots be arbitrary Banach spaces.

Let $T_m: X_m \to L_1$ be a uniformly bounded sequence of operators. Then the following dichotomy holds:

・ロト・日本・モト・モート ヨー うへで

Let X_1, X_2, \ldots be arbitrary Banach spaces.

Let $T_m: X_m \to L_1$ be a uniformly bounded sequence of operators. Then the following dichotomy holds:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

(i) either the identity operators $Id_{\ell_1^k}$ uniformly factor through the T_m

Let X_1, X_2, \ldots be arbitrary Banach spaces.

Let $T_m: X_m \to L_1$ be a uniformly bounded sequence of operators. Then the following dichotomy holds:

(日) (日) (日) (日) (日) (日) (日) (日)

(i) either the identity operators $Id_{\ell_1^k}$ uniformly factor through the T_m

(ii) or the T_m have uniform approximate lattice bounds.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Let $T_m: X_m \to L_1$ be a uniformly bounded sequence of operators.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Let $T_m: X_m \to L_1$ be a uniformly bounded sequence of operators.

Assume that $\dim X_m < \infty$ for all *m*.

Let $T_m: X_m \to L_1$ be a uniformly bounded sequence of operators.

Assume that $\dim X_m < \infty$ for all *m*.

(i) If the T_m have uniform lattice bounds then they uniformly factor through ℓ_{∞}^n 's.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let $T_m: X_m \to L_1$ be a uniformly bounded sequence of operators.

Assume that $\dim X_m < \infty$ for all *m*.

- (i) If the T_m have uniform lattice bounds then they uniformly factor through ℓ_{∞}^n 's.
- (ii) Assume that for each $m \in \mathbb{N}$ we have $X_m = \ell_1^{N_m}$ for some $N_m \in \mathbb{N}$. If the T_m have uniform approximate lattice bounds, then they uniformly approximately factor through ℓ_{∞}^n 's.

Let $T_m: X_m \to L_1$ be a uniformly bounded sequence of operators.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Let $T_m: X_m \to L_1$ be a uniformly bounded sequence of operators.

・ロト・日本・モト・モート ヨー うへで

Assume that the T_m have uniform approximate lattice bounds.

Let $T_m: X_m \to L_1$ be a uniformly bounded sequence of operators.

Assume that the T_m have uniform approximate lattice bounds.

Question: Do there exist, for each $\varepsilon > 0$, operators $S_m \colon X_m \to L_1$ with uniform lattice bounds such that $||S_m - T_m|| < \varepsilon$ for all *m*?

Let $T_m: X_m \to L_1$ be a uniformly bounded sequence of operators.

Assume that the T_m have uniform approximate lattice bounds.

Question: Do there exist, for each $\varepsilon > 0$, operators $S_m \colon X_m \to L_1$ with uniform lattice bounds such that $||S_m - T_m|| < \varepsilon$ for all m?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Yes, for $X_m = \ell_1^{N_m}$.

Let $T_m: X_m \to L_1$ be a uniformly bounded sequence of operators.

Assume that the T_m have uniform approximate lattice bounds.

Question: Do there exist, for each $\varepsilon > 0$, operators $S_m \colon X_m \to L_1$ with uniform lattice bounds such that $||S_m - T_m|| < \varepsilon$ for all m?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Yes, for $X_m = \ell_1^{N_m}$.
- In general, no.

Let $T_m: X_m \to L_1$ be a uniformly bounded sequence of operators.

Assume that the T_m have uniform approximate lattice bounds.

Question: Do there exist, for each $\varepsilon > 0$, operators $S_m \colon X_m \to L_1$ with uniform lattice bounds such that $||S_m - T_m|| < \varepsilon$ for all m?

- Yes, for $X_m = \ell_1^{N_m}$.
- In general, no. *E.g.*, $\frac{1}{\sqrt{m}}$ Id: $\ell_2^m \to \ell_1^m$.

Let $T_m: X_m \to L_1$ be a uniformly bounded sequence of operators.

Assume that the T_m have uniform approximate lattice bounds.

Question: Do there exist, for each $\varepsilon > 0$, operators $S_m \colon X_m \to L_1$ with uniform lattice bounds such that $||S_m - T_m|| < \varepsilon$ for all m?

- Yes, for $X_m = \ell_1^{N_m}$.
- In general, no. E.g., $\frac{1}{\sqrt{m}}$ Id: $\ell_2^m \rightarrow \ell_1^m$.
- Not even for $X_m = \ell_{\infty}^{N_m}!$

Theorem The algebra $\mathcal{B}(X)$ has a unique maximal ideal.

(ロ)、

Theorem The algebra $\mathcal{B}(X)$ has a unique maximal ideal.

・ロト・日本・モト・モート ヨー うへで

Theorem The space X is primary.

Theorem The algebra $\mathcal{B}(X)$ has a unique maximal ideal.

Theorem The space X is primary.

Proof. For $T: X \to X$ write $T^{(m)}: X \to \ell_1^m$ for the m^{th} row of T.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem The algebra $\mathcal{B}(X)$ has a unique maximal ideal.

Theorem The space X is primary.

Proof. For $T: X \to X$ write $T^{(m)}: X \to \ell_1^m$ for the m^{th} row of T. Let $\mathcal{M} = \{T \in \mathcal{B}(X) : \text{the } T^{(m)} \text{ have uniform approximate lattice bounds}\}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem The algebra $\mathcal{B}(X)$ has a unique maximal ideal.

Theorem The space X is primary.

Proof. For $T: X \to X$ write $T^{(m)}: X \to \ell_1^m$ for the m^{th} row of T. Let $\mathcal{M} = \{T \in \mathcal{B}(X) : \text{the } T^{(m)} \text{ have uniform approximate lattice bounds}\}.$ It is easy to check that \mathcal{M} is a closed right ideal.

Theorem The algebra $\mathcal{B}(X)$ has a unique maximal ideal.

Theorem The space X is primary.

Proof. For $T: X \to X$ write $T^{(m)}: X \to \ell_1^m$ for the m^{th} row of T. Let $\mathcal{M} = \{T \in \mathcal{B}(X) : \text{the } T^{(m)} \text{ have uniform approximate lattice bounds}\}.$ It is easy to check that \mathcal{M} is a closed right ideal.

By Dichotomy I, we have $T \notin M$ if and only if Id_X factors through T.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem The algebra $\mathcal{B}(X)$ has a unique maximal ideal.

Theorem The space X is primary.

Proof. For $T: X \to X$ write $T^{(m)}: X \to \ell_1^m$ for the m^{th} row of T. Let $\mathcal{M} = \{T \in \mathcal{B}(X) : \text{the } T^{(m)} \text{ have uniform approximate lattice bounds}\}.$ It is easy to check that \mathcal{M} is a closed right ideal.

By Dichotomy I, we have $T \notin M$ if and only if Id_X factors through T.

Theorem The algebra $\mathcal{B}(X)$ has a unique maximal ideal.

Theorem The space X is primary.

Proof. For $T: X \to X$ write $T^{(m)}: X \to \ell_1^m$ for the m^{th} row of T. Let $\mathcal{M} = \{T \in \mathcal{B}(X) : \text{the } T^{(m)} \text{ have uniform approximate lattice bounds}\}.$ It is easy to check that \mathcal{M} is a closed right ideal.

By Dichotomy I, we have $T \notin M$ if and only if Id_X factors through T.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remarks

Theorem The algebra $\mathcal{B}(X)$ has a unique maximal ideal.

Theorem The space X is primary.

Proof. For $T: X \to X$ write $T^{(m)}: X \to \ell_1^m$ for the m^{th} row of T. Let $\mathcal{M} = \{T \in \mathcal{B}(X) : \text{the } T^{(m)} \text{ have uniform approximate lattice bounds}\}.$ It is easy to check that \mathcal{M} is a closed right ideal.

By Dichotomy I, we have $T \notin M$ if and only if Id_X factors through T.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remarks

(i)
$$\mathcal{M} = \overline{\mathcal{G}}_{c_0}^{(\mathrm{sur})}(X)$$
 the surjective hull of X.

Theorem The algebra $\mathcal{B}(X)$ has a unique maximal ideal.

Theorem The space X is primary.

Proof. For $T: X \to X$ write $T^{(m)}: X \to \ell_1^m$ for the m^{th} row of T. Let $\mathcal{M} = \{T \in \mathcal{B}(X) : \text{the } T^{(m)} \text{ have uniform approximate lattice bounds}\}.$

It is easy to check that $\ensuremath{\mathcal{M}}$ is a closed right ideal.

By Dichotomy I, we have $T \notin M$ if and only if Id_X factors through T.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remarks

(i)
$$\mathcal{M} = \overline{\mathcal{G}}_{c_0}^{(sur)}(X)$$
 the surjective hull of X.

(ii)
$$\overline{\mathcal{G}}_{c_0}^{(inj)}(X) = \mathcal{B}(X).$$

<ロ> <@> < E> < E> E のQの

We consider sequences of operators

$$T^{(m)} \colon \ell^m_\infty(\ell^m_1) \to L_1$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

with sup $\|T^{(m)}\| < \infty$.
We consider sequences of operators

$$T^{(m)}: \ell^m_\infty(\ell^m_1) \to L_1$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

with $\sup \|T^{(m)}\| < \infty$.

Denote by $e_{ij} = e_{ij}^{(m)}$ the unit vector basis of $\ell_{\infty}^{m}(\ell_{1}^{m})$.

We consider sequences of operators

$$T^{(m)}$$
: $\ell^m_\infty(\ell^m_1) \to L_1$

with $\sup \|T^{(m)}\| < \infty$.

Denote by $e_{ij} = e_{ij}^{(m)}$ the unit vector basis of $\ell_{\infty}^{m}(\ell_{1}^{m})$.

The norm of $\sum_{ij} a_{ij} e_{ij}$ is given by $\max_i \sum_j |a_{ij}|$.

We consider sequences of operators

$$T^{(m)}$$
: $\ell^m_{\infty}(\ell^m_1) \to L_1$

with $\sup \|T^{(m)}\| < \infty$.

Denote by $e_{ij} = e_{ij}^{(m)}$ the unit vector basis of $\ell_{\infty}^{m}(\ell_{1}^{m})$.

The norm of $\sum_{ij} a_{ij} e_{ij}$ is given by $\max_i \sum_j |a_{ij}|$.

We let $T_{ij}^{(m)} = T^{(m)}(e_{ij})$ and identify $T^{(m)}$ with the $m \times m$ matrix $(T_{ij}^{(m)})$ in L_1 .

For each $m \in \mathbb{N}$ let $\mathcal{T}^{(m)} \colon \ell_\infty^m(\ell_1^m) o L_1$ be an operator

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

For each $m \in \mathbb{N}$ let $\mathcal{T}^{(m)} \colon \ell_{\infty}^{m}(\ell_{1}^{m}) \to L_{1}$ be an operator such that the entries of the corresponding random matrix $(\mathcal{T}_{i,j}^{(m)})$ are independent, symmetric random variables

For each $m \in \mathbb{N}$ let $\mathcal{T}^{(m)} \colon \ell_{\infty}^{m}(\ell_{1}^{m}) \to L_{1}$ be an operator such that the entries of the corresponding random matrix $(\mathcal{T}_{i,j}^{(m)})$ are independent, symmetric random variables with $\|\mathcal{T}^{(m)}\| \leq 1$. Then

For each $m \in \mathbb{N}$ let $\mathcal{T}^{(m)} \colon \ell_{\infty}^{m}(\ell_{1}^{m}) \to L_{1}$ be an operator such that the entries of the corresponding random matrix $(\mathcal{T}_{i,j}^{(m)})$ are independent, symmetric random variables with $\|\mathcal{T}^{(m)}\| \leq 1$. Then

(i) either the identity operators $Id_{\ell_1^k}$ uniformly factor through the $T^{(m)}$

For each $m \in \mathbb{N}$ let $\mathcal{T}^{(m)} \colon \ell_{\infty}^{m}(\ell_{1}^{m}) \to L_{1}$ be an operator such that the entries of the corresponding random matrix $(\mathcal{T}_{i,j}^{(m)})$ are independent, symmetric random variables with $\|\mathcal{T}^{(m)}\| \leq 1$. Then

(i) either the identity operators $Id_{\ell_1^k}$ uniformly factor through the $T^{(m)}$,

(ii) or the $T^{(m)}$ uniformly approximately factor through ℓ_{∞}^{k} 's.

<□ > < @ > < E > < E > E のQ @

Closed ideals of $\mathcal{B}(X)$ include $\{0\} \subsetneq \mathcal{K}(X) \subsetneq \overline{\mathcal{G}}_{c_0}(X) \subsetneq \mathcal{B}(X)$.

Closed ideals of $\mathcal{B}(X)$ include $\{0\} \subsetneq \mathcal{K}(X) \subsetneq \overline{\mathcal{G}}_{c_0}(X) \subsetneq \mathcal{B}(X)$.

Benyamini [1978]: The only complemented subspaces of X are c_0 and X.

Closed ideals of $\mathcal{B}(X)$ include $\{0\} \subsetneq \mathcal{K}(X) \subsetneq \overline{\mathcal{G}}_{c_0}(X) \subsetneq \mathcal{B}(X)$.

Benyamini [1978]: The only complemented subspaces of X are c_0 and X.

Alspach [1978]: If $T \in \mathcal{B}(X)$ has Szlenk index Sz $(T) = \omega^2$ then T fixes an isometric copy of X.

Closed ideals of $\mathcal{B}(X)$ include $\{0\} \subsetneq \mathcal{K}(X) \subsetneq \overline{\mathcal{G}}_{c_0}(X) \subsetneq \mathcal{B}(X)$.

Benyamini [1978]: The only complemented subspaces of X are c_0 and X.

Alspach [1978]: If $T \in \mathcal{B}(X)$ has Szlenk index $Sz(T) = \omega^2$ then T fixes an isometric copy of X.

Question: does $Sz(T) = \omega$ imply that T approximately factors through c_0 ?

Closed ideals of $\mathcal{B}(X)$ include $\{0\} \subsetneq \mathcal{K}(X) \subsetneq \overline{\mathcal{G}}_{c_0}(X) \subsetneq \mathcal{B}(X)$.

Benyamini [1978]: The only complemented subspaces of X are c_0 and X.

Alspach [1978]: If $T \in \mathcal{B}(X)$ has Szlenk index $Sz(T) = \omega^2$ then T fixes an isometric copy of X.

Question: does $Sz(T) = \omega$ imply that T approximately factors through c_0 ?

Theorem [Laustsen, Odell, Schlumprecht, Zs] The following are equivalent for an operator $T \in \mathcal{B}(X)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Closed ideals of $\mathcal{B}(X)$ include $\{0\} \subsetneq \mathcal{K}(X) \subsetneq \overline{\mathcal{G}}_{c_0}(X) \subsetneq \mathcal{B}(X)$.

Benyamini [1978]: The only complemented subspaces of X are c_0 and X.

Alspach [1978]: If $T \in \mathcal{B}(X)$ has Szlenk index $Sz(T) = \omega^2$ then T fixes an isometric copy of X.

Question: does $Sz(T) = \omega$ imply that T approximately factors through c_0 ?

Theorem [Laustsen, Odell, Schlumprecht, Zs] The following are equivalent for an operator $T \in \mathcal{B}(X)$.

(i) There exists C > 0 such that $Sz_{\varepsilon}(T) < C/\varepsilon$ for all $\varepsilon > 0$.

Closed ideals of $\mathcal{B}(X)$ include $\{0\} \subsetneq \mathcal{K}(X) \subsetneq \overline{\mathcal{G}}_{c_0}(X) \subsetneq \mathcal{B}(X)$.

Benyamini [1978]: The only complemented subspaces of X are c_0 and X.

Alspach [1978]: If $T \in \mathcal{B}(X)$ has Szlenk index $Sz(T) = \omega^2$ then T fixes an isometric copy of X.

Question: does $Sz(T) = \omega$ imply that T approximately factors through c_0 ?

Theorem [Laustsen, Odell, Schlumprecht, Zs] The following are equivalent for an operator $T \in \mathcal{B}(X)$.

(i) There exists C > 0 such that $Sz_{\varepsilon}(T) < C/\varepsilon$ for all $\varepsilon > 0$.

(ii) T factors through c_0 .