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Daws [2004]: Classified the closed ideals of B(X) when X=1/,(/), 1<p<oo
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Schlumprecht [2012] studied £, @ £,.

Brooker [2010] looked at C(K) spaces.

Laustsen, Odell, Schlumprecht, Zs. [2012] studied (@:‘;l z;) and C(w®).

<o

Kaminska, Popov, Spinu, Tcaciuc, Troitsky [2012] Lorentz sequence spaces.

Zheng Orlicz sequence spaces.
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Some obvious closed ideals in B(X):

{0} € K(X) & Goo(X) & B(X) -

Moreover, if T is a non-compact operator on X, then Idc, factors through T.
Thus the closed ideal generated by T contains G, (X).

It follows that any closed ideal of B(X) not in the above list must lie strictly
between G, (X) and B(X).

Question: Does every operator T € B(X)
(i) either factor the identity operator ldx,

(ii) or approximately factor through co?
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Reduction to a finite-dimensional problem
An operator
T (@a), - (D),

can be thought of as an infinite matrix (Tm ) of operators T ,: €1 — £7.

Lemma Ve > 0 there is a compact operator K with ||K|| < & such that T + K
has finite rows and columns.

So we may assume that T is locally finite.

We write T(™ for the m™ row of T :

7(m. ( D éf) Ny

’
n€ERm o0

for some finite set R, C N.
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Let T(m: L3,(47") — L1 be a uniformly bounded sequence of operators. Is the
following true:

(i) either the identity operators Id% uniformly factor through the T(™),

(i) or the T(™ uniformly approximately factor through ¢%.7?



Dichotomy Theorem |



Dichotomy Theorem |

Let Xi, Xo,... be arbitrary Banach spaces.



Dichotomy Theorem |

Let Xi, Xo,... be arbitrary Banach spaces.

Let Tm: Xm — L1 be a uniformly bounded sequence of operators. Then the
following dichotomy holds:



Dichotomy Theorem |

Let Xi, Xo,... be arbitrary Banach spaces.

Let Tm: Xm — L1 be a uniformly bounded sequence of operators. Then the
following dichotomy holds:

(i) either the identity operators |de; uniformly factor through the T,
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Let Xi, Xo,... be arbitrary Banach spaces.

Let Tm: Xm — L1 be a uniformly bounded sequence of operators. Then the
following dichotomy holds:

(i) either the identity operators |de; uniformly factor through the T,

(i) or the T, have uniform approximate lattice bounds.
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Lattice bounds and factorization

Let Tm: Xm — L1 be a uniformly bounded sequence of operators.

Assume that dimX,,, < oco for all m.

(i) If the T have uniform lattice bounds then they uniformly factor through
£2's.

(ii) Assume that for each m € N we have X, = £ for some N, € N. If the
Tm have uniform approximate lattice bounds, then they uniformly
approximately factor through ¢2.'s.
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Perturbing operators with uniform approximate lattice bounds

Let Tm: Xm — L1 be a uniformly bounded sequence of operators.
Assume that the T, have uniform approximate lattice bounds.

Question: Do there exist, for each € > 0, operators Sp,: X, — L1 with uniform
lattice bounds such that ||Sym — Tl < € for all m?

e Yes, for X, = Zf’m.

e In general, no. E.g., % Id: 5 — ¢,

o Not even for X, = ¢Nm|
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Theorem The algebra B(X) has a unique maximal ideal.

Theorem The space X is primary.

Proof.
For T: X — X write TU™: X — ¢ for the m™ row of T.

Let M = {T € B(X) : the T(™ have uniform approximate lattice bounds}.

It is easy to check that M is a closed right ideal.

By Dichotomy |, we have T ¢ M if and only if Idx factors through T.

Remarks
(i) M= g;‘" (X) the surjective hull of X.

(1) G (X) = B(X).

O



Dichotomy Theorem I



Dichotomy Theorem I

We consider sequences of operators
T 0™ (07 = Ly

with sup|| T || < cc.



Dichotomy Theorem I

We consider sequences of operators
T 0™ (07 = Ly

with sup|| T || < cc.

Denote by e; = e,.(jm) the unit vector basis of 2, (7).



Dichotomy Theorem I

We consider sequences of operators
T 0™ (07 = Ly

with sup|| T || < cc.

Denote by e; = e,.(jm) the unit vector basis of 2, (7).

The norm of 3°, aje; is given by max; >_;|ayl.



Dichotomy Theorem I

We consider sequences of operators
T 0™ (07 = Ly

with sup|| T || < cc.

Denote by e; = e,.(jm) the unit vector basis of 2, (7).

The norm of 3°, aje; is given by max; >_;|ayl.

We let Tl.j(.m) = T (ey) and identify T(™ with the m x m matrix (T,.J(.m)) in L.
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For each m € N let T(™: £3,(¢7") — L1 be an operator such that the entries of
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The space X = C(w®)

Closed ideals of B(X) include {0} € K(X) & G, (X) € B(X).

=

Benyamini [1978]: The only complemented subspaces of X are ¢ and X.

Alspach [1978]: If T € B(X) has Szlenk index Sz(T) = w? then T fixes an
isometric copy of X.

Question: does Sz(T) = w imply that T approximately factors through co?

Theorem [Laustsen, Odell, Schlumprecht, Zs] The following are equivalent
for an operator T € B(X).

(i) There exists C > 0 such that Sz.(T) < C/e for all € > 0.

(if) T factors through co.



