
Closed ideals of operators on Banach spaces

András Zsák

Peterhouse, Cambridge

(joint work with N J Laustsen, E Odell, Th Schlumprecht)

Banach space theory workshop, BIRS, 5–9 March 2012



The general problem

We start with a Banach space X .

The aim is to classify the closed ideals of B(X ).

E.g., X =
( ∞⊕

n=1

`n1

)
c0

, X = C(K), etc.



The general problem

We start with a Banach space X .

The aim is to classify the closed ideals of B(X ).

E.g., X =
( ∞⊕

n=1

`n1

)
c0

, X = C(K), etc.



The general problem

We start with a Banach space X .

The aim is to classify the closed ideals of B(X ).

E.g., X =
( ∞⊕

n=1

`n1

)
c0

, X = C(K), etc.



The general problem

We start with a Banach space X .

The aim is to classify the closed ideals of B(X ).

E.g., X =
( ∞⊕

n=1

`n1

)
c0

, X = C(K), etc.



Spaces X with a complete description of the closed ideals of B(X )

Calkin [1941]: The closed ideals of B(`2) are {0} ( K(`2) ( B(`2).

Gohberg, Markus, Feldman [1960]: If X is `p (1≤p<∞) or c0, then the
closed ideals of B(X ) are {0} ( K(X ) ( B(X ).

Gramsch [1967]; Luft [1968]: Classified the closed ideals of B(H) for a
(non-separable) Hilbert space H.

Laustsen, Loy, Read [2003]: Let X =
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n `
n
2

)
c0

. The closed ideals of B(X )
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)
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Daws [2004]: Classified the closed ideals of B(X ) when X =`p(I ), 1≤p<∞
or X =c0(I ) where I is an arbitrary index set.

Argyros, Haydon [2011]: If X is the Argyros-Haydon space, then the closed
ideals of B(X ) are {0} ( K(X ) ( B(X ).
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Some obvious closed ideals in B(X ):

{0} ( K(X ) ( Gc0(X ) ( B(X ) .

Moreover, if T is a non-compact operator on X , then Idc0 factors through T .
Thus the closed ideal generated by T contains Gc0(X ).

It follows that any closed ideal of B(X ) not in the above list must lie strictly
between Gc0(X ) and B(X ).

Question: Does every operator T ∈ B(X )

(i) either factor the identity operator IdX ,

(ii) or approximately factor through c0?
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Reduction to a finite-dimensional problem

An operator

T :
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n=1

`n1

)
c0

→
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n=1

`n1

)
c0

can be thought of as an infinite matrix (Tm,n) of operators Tm,n : `n1 → `m1 .

Lemma ∀ ε > 0 there is a compact operator K with ‖K‖ < ε such that T + K
has finite rows and columns.

So we may assume that T is locally finite.

We write T (m) for the mth row of T :

T (m) :
( ⊕

n∈Rm

`n1

)
`∞
→ `m1

for some finite set Rm ⊂ N.
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Let T (m) : `m∞(`m1 )→ L1 be a uniformly bounded sequence of operators. Is the
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(i) either the identity operators Id`k1
uniformly factor through the T (m),

(ii) or the T (m) uniformly approximately factor through `k∞?
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(ii) or the Tm have uniform approximate lattice bounds.
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(ii) Assume that for each m ∈ N we have Xm = `Nm
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Tm have uniform approximate lattice bounds, then they uniformly
approximately factor through `n∞’s.



Lattice bounds and factorization

Let Tm : Xm → L1 be a uniformly bounded sequence of operators.

Assume that dimXm <∞ for all m.

(i) If the Tm have uniform lattice bounds then they uniformly factor through
`n∞’s.

(ii) Assume that for each m ∈ N we have Xm = `Nm
1 for some Nm ∈ N. If the

Tm have uniform approximate lattice bounds, then they uniformly
approximately factor through `n∞’s.



Lattice bounds and factorization

Let Tm : Xm → L1 be a uniformly bounded sequence of operators.

Assume that dimXm <∞ for all m.

(i) If the Tm have uniform lattice bounds then they uniformly factor through
`n∞’s.

(ii) Assume that for each m ∈ N we have Xm = `Nm
1 for some Nm ∈ N. If the

Tm have uniform approximate lattice bounds, then they uniformly
approximately factor through `n∞’s.



Lattice bounds and factorization

Let Tm : Xm → L1 be a uniformly bounded sequence of operators.

Assume that dimXm <∞ for all m.

(i) If the Tm have uniform lattice bounds then they uniformly factor through
`n∞’s.

(ii) Assume that for each m ∈ N we have Xm = `Nm
1 for some Nm ∈ N. If the

Tm have uniform approximate lattice bounds, then they uniformly
approximately factor through `n∞’s.



Lattice bounds and factorization

Let Tm : Xm → L1 be a uniformly bounded sequence of operators.

Assume that dimXm <∞ for all m.

(i) If the Tm have uniform lattice bounds then they uniformly factor through
`n∞’s.

(ii) Assume that for each m ∈ N we have Xm = `Nm
1 for some Nm ∈ N. If the

Tm have uniform approximate lattice bounds, then they uniformly
approximately factor through `n∞’s.



Perturbing operators with uniform approximate lattice bounds

Let Tm : Xm → L1 be a uniformly bounded sequence of operators.

Assume that the Tm have uniform approximate lattice bounds.
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lattice bounds such that ‖Sm − Tm‖ < ε for all m?

• Yes, for Xm = `Nm
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• In general, no. E.g., 1√
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Consequences of Dichotomy Theorem I

Theorem The algebra B(X ) has a unique maximal ideal.

Theorem The space X is primary.

Proof.
For T : X → X write T (m) : X → `m1 for the mth row of T .

Let M = {T ∈ B(X ) : the T (m) have uniform approximate lattice bounds}.

It is easy to check that M is a closed right ideal.

By Dichotomy I, we have T /∈M if and only if IdX factors through T .

Remarks

(i) M = G(sur)c0 (X ) the surjective hull of X .

(ii) G(inj)c0 (X ) = B(X ).
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Dichotomy Theorem II

We consider sequences of operators

T (m) : `m∞(`m1 )→ L1

with sup‖T (m)‖ <∞.

Denote by eij = e
(m)
ij the unit vector basis of `m∞(`m1 ).

The norm of
∑

ij aijeij is given by maxi
∑

j |aij |.

We let T
(m)
ij = T (m)(eij) and identify T (m) with the m×m matrix

(
T

(m)
ij

)
in L1.
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For each m ∈ N let T (m) : `m∞(`m1 )→ L1 be an operator

such that the entries of

the corresponding random matrix
(
T

(m)
i,j

)
are independent, symmetric random

variables with ‖T (m)‖ ≤ 1. Then

(i) either the identity operators Id`k1
uniformly factor through the T (m),

(ii) or the T (m) uniformly approximately factor through `k∞’s.
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The space X = C (ωω)

Closed ideals of B(X ) include {0} ( K(X ) ( Gc0(X ) ( B(X ).

Benyamini [1978]: The only complemented subspaces of X are c0 and X .

Alspach [1978]: If T ∈ B(X ) has Szlenk index Sz(T ) = ω2 then T fixes an
isometric copy of X .

Question: does Sz(T ) = ω imply that T approximately factors through c0?

Theorem [Laustsen, Odell, Schlumprecht, Zs] The following are equivalent
for an operator T ∈ B(X ).

(i) There exists C > 0 such that Szε(T ) < C/ε for all ε > 0.

(ii) T factors through c0.
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