Higher order spreading models

Konstantinos Tyros

University of Toronto Department of Mathematics

2012 / Banff Center

Konstantinos Tyros Higher order spreading models

- The context of this talk is part of a joint work with S.A. Argyros and V. Kanellopoulos.
- The main objective of this talk is a generalization of the classical notion of the spreading model invented by A. Brunel and L. Sucheston in the middle of 70's.

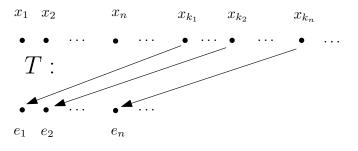
★ ∃ → < ∃</p>

- The context of this talk is part of a joint work with S.A. Argyros and V. Kanellopoulos.
- The main objective of this talk is a generalization of the classical notion of the spreading model invented by A. Brunel and L. Sucheston in the middle of 70's.

The classical spreading models

A sequence $(x_n)_n$ in a Banach space *X* generates a sequence $(e_n)_n$ as a spreading model if there exists a null sequence $(\delta_n)_n$ of positive reals, such that

for every $n \le k_1 < \ldots < k_n$ in \mathbb{N} , the spaces $< x_{k_1}, \ldots, x_{k_n} >$ and $< e_1, \ldots, e_n >$, through the linear operator sending each x_{k_j} to e_j , are $1 + \delta_n$ isomorphic.



Theorem (E. Odell and Th. Schlumprecht)

There exists a reflexive space X such that every space generated by a spreading model of X does not contain any isomorphic copy of ℓ^p , for $p \in [1, \infty)$, or c_0 .

In the same paper they ask the following concerning the *k*-iterated spreading models.

Problem

Does for every Banach space X exist a natural number k such that X admits a k-iterated spreading model equivalent to the usual basis of ℓ^p , for some $p \in [1, \infty)$, or c_0 ?

御▶★臣▶★臣

Theorem (E. Odell and Th. Schlumprecht)

There exists a reflexive space X such that every space generated by a spreading model of X does not contain any isomorphic copy of ℓ^p , for $p \in [1, \infty)$, or c_0 .

In the same paper they ask the following concerning the *k*-iterated spreading models.

Problem

Does for every Banach space X exist a natural number k such that X admits a k-iterated spreading model equivalent to the usual basis of ℓ^p , for some $p \in [1, \infty)$, or c_0 ?

イロト イポト イヨト イヨト

Theorem (E. Odell and Th. Schlumprecht)

There exists a reflexive space X such that every space generated by a spreading model of X does not contain any isomorphic copy of ℓ^p , for $p \in [1, \infty)$, or c_0 .

In the same paper they ask the following concerning the *k*-iterated spreading models.

Problem

Does for every Banach space X exist a natural number k such that X admits a k-iterated spreading model equivalent to the usual basis of ℓ^p , for some $p \in [1, \infty)$, or c_0 ?

イロト イポト イヨト イヨト

- For every Banach space X and every countable ordinal ξ we assign to X the family of ξ-order spreading models denoted by SM_ξ(X).
- The transfinite hierarchy (SM_ξ(X))_{ξ<ω1} is increasing and the ξ-spreading models of X have a weaker asymptotic connection to X as ξ tends to ω1. Moreover, the Brunel-Sucheston spreading models coincide with the order one spreading models (SM₁(X)).
- The definition of the ξ-order spreading models pass through the notion of the *F*-spreading models.

御下 (日下)(日

- For every Banach space X and every countable ordinal ξ we assign to X the family of ξ-order spreading models denoted by SM_ξ(X).
- The transfinite hierarchy (SM_ξ(X))_{ξ<ω1} is increasing and the ξ-spreading models of X have a weaker asymptotic connection to X as ξ tends to ω1. Moreover, the Brunel-Sucheston spreading models coincide with the order one spreading models (SM₁(X)).
- The definition of the ξ-order spreading models pass through the notion of the *F*-spreading models.

伺 とく ヨ とく ヨ と

- For every Banach space X and every countable ordinal ξ we assign to X the family of ξ-order spreading models denoted by SM_ξ(X).
- The transfinite hierarchy (SMξ(X))ξ<ω1 is increasing and the ξ-spreading models of X have a weaker asymptotic connection to X as ξ tends to ω1. Moreover, the Brunel-Sucheston spreading models coincide with the order one spreading models (SM1(X)).
- The definition of the ξ -order spreading models pass through the notion of the \mathcal{F} -spreading models.

日本本語を本語を

- For every Banach space X and every countable ordinal ξ we assign to X the family of ξ-order spreading models denoted by SM_ξ(X).
- The transfinite hierarchy (SMξ(X))ξ<ω1 is increasing and the ξ-spreading models of X have a weaker asymptotic connection to X as ξ tends to ω1. Moreover, the Brunel-Sucheston spreading models coincide with the order one spreading models (SM1(X)).
- The definition of the ξ-order spreading models pass through the notion of the *F*-spreading models.

伺き くほき くほう

In order to define the \mathcal{F} -spreading models we introduce the following two concepts.

- The first one is the *F*-sequences (x_s)_{s∈F}, where *F* is a family of finite subsets of N satisfying certain properties. These sequences will replace the common sequences (x_n)_{n∈N} in a Banach space.
- The second one is the concept of plegma families. These families specify the finite subsequences of an \mathcal{F} -sequence which determine the spreading model.

(4) E > (4) E

In order to define the \mathcal{F} -spreading models we introduce the following two concepts.

- The first one is the *F*-sequences (x_s)_{s∈F}, where *F* is a family of finite subsets of N satisfying certain properties. These sequences will replace the common sequences (x_n)_{n∈N} in a Banach space.
- The second one is the concept of plegma families. These families specify the finite subsequences of an \mathcal{F} -sequence which determine the spreading model.

> < 国 > < 国</p>

In order to define the \mathcal{F} -spreading models we introduce the following two concepts.

- The first one is the *F*-sequences (x_s)_{s∈F}, where *F* is a family of finite subsets of N satisfying certain properties. These sequences will replace the common sequences (x_n)_{n∈N} in a Banach space.
- The second one is the concept of plegma families. These families specify the finite subsequences of an \mathcal{F} -sequence which determine the spreading model.

- A family \mathcal{F} of finite subsets of \mathbb{N} is called
- *hereditary* if for every $s \in \mathcal{F}$ and $t \subseteq s$ we have that $t \in \mathcal{F}$.
- *spreading* if for every $s \in \mathcal{F}$ and $t \in [\mathbb{N}]^{<\infty}$ such that

$$|s| = |t|$$

$$(i) \le t(i), \text{ for all } 1 \le i \le |s|,$$

we have that $t \in \mathcal{F}$.

- *compact*, if it is closed in $\{0, 1\}^{\mathbb{N}}$ and
- *thin* if there are no $s, t \in \mathcal{F}$ with $s \sqsubset t$.
- The thin families have been defined by C. Nash-Williams and further studied by P. Pudlak, V. Rodl and S. Todorcevic.

> < 国 > < 国</p>

- A family \mathcal{F} of finite subsets of \mathbb{N} is called
- *hereditary* if for every $s \in \mathcal{F}$ and $t \subseteq s$ we have that $t \in \mathcal{F}$.
- *spreading* if for every $s \in \mathcal{F}$ and $t \in [\mathbb{N}]^{<\infty}$ such that

 $\bigcirc |s| = |i|$

3 $s(i) \le t(i)$, for all $1 \le i \le |s|$,

we have that $t \in \mathcal{F}$.

- *compact*, if it is closed in $\{0, 1\}^{\mathbb{N}}$ and
- *thin* if there are no $s, t \in \mathcal{F}$ with $s \sqsubset t$.
- The thin families have been defined by C. Nash-Williams and further studied by P. Pudlak, V. Rodl and S. Todorcevic.

直 とう きょう く いう

- A family \mathcal{F} of finite subsets of \mathbb{N} is called
- *hereditary* if for every $s \in \mathcal{F}$ and $t \subseteq s$ we have that $t \in \mathcal{F}$.
- *spreading* if for every $s \in \mathcal{F}$ and $t \in [\mathbb{N}]^{<\infty}$ such that

|s| = |t|

 $angle s(i) \le t(i), \text{ for all } 1 \le i \le |s|,$

we have that $t \in \mathcal{F}$.

- *compact*, if it is closed in $\{0, 1\}^{\mathbb{N}}$ and
- *thin* if there are no $s, t \in \mathcal{F}$ with $s \sqsubset t$.
- The thin families have been defined by C. Nash-Williams and further studied by P. Pudlak, V. Rodl and S. Todorcevic.

直 とう きょう く いう

- A family \mathcal{F} of finite subsets of \mathbb{N} is called
- *hereditary* if for every $s \in \mathcal{F}$ and $t \subseteq s$ we have that $t \in \mathcal{F}$.
- *spreading* if for every $s \in \mathcal{F}$ and $t \in [\mathbb{N}]^{<\infty}$ such that

$$|s| = |t|$$

2)
$$s(i) \le t(i)$$
, for all $1 \le i \le |s|$,

we have that $t \in \mathcal{F}$.

- *compact*, if it is closed in $\{0, 1\}^{\mathbb{N}}$ and
- *thin* if there are no $s, t \in \mathcal{F}$ with $s \sqsubset t$.
- The thin families have been defined by C. Nash-Williams and further studied by P. Pudlak, V. Rodl and S. Todorcevic.

- A family \mathcal{F} of finite subsets of \mathbb{N} is called
- *hereditary* if for every $s \in \mathcal{F}$ and $t \subseteq s$ we have that $t \in \mathcal{F}$.
- *spreading* if for every $s \in \mathcal{F}$ and $t \in [\mathbb{N}]^{<\infty}$ such that

1
$$|s| = |t|$$

2 $s(i) \le t(i)$, for all $1 \le i \le |s|$,

we have that $t \in \mathcal{F}$.

- *compact*, if it is closed in $\{0, 1\}^{\mathbb{N}}$ and
- *thin* if there are no $s, t \in \mathcal{F}$ with $s \sqsubset t$.
- The thin families have been defined by C. Nash-Williams and further studied by P. Pudlak, V. Rodl and S. Todorcevic.

• • E • • E •

- A family \mathcal{F} of finite subsets of \mathbb{N} is called
- *hereditary* if for every $s \in \mathcal{F}$ and $t \subseteq s$ we have that $t \in \mathcal{F}$.
- *spreading* if for every $s \in \mathcal{F}$ and $t \in [\mathbb{N}]^{<\infty}$ such that

1
$$|s| = |t|$$

2 $s(i) \le t(i)$, for all $1 \le i \le |s|$,

we have that $t \in \mathcal{F}$.

- *compact*, if it is closed in $\{0, 1\}^{\mathbb{N}}$ and
- *thin* if there are no $s, t \in \mathcal{F}$ with $s \sqsubset t$.
- The thin families have been defined by C. Nash-Williams and further studied by P. Pudlak, V. Rodl and S. Todorcevic.

• • E • • E •

- A family \mathcal{F} of finite subsets of \mathbb{N} is called
- *hereditary* if for every $s \in \mathcal{F}$ and $t \subseteq s$ we have that $t \in \mathcal{F}$.
- *spreading* if for every $s \in \mathcal{F}$ and $t \in [\mathbb{N}]^{<\infty}$ such that

1
$$|s| = |t|$$

2 $s(i) \le t(i)$, for all $1 \le i \le |s|$,

we have that $t \in \mathcal{F}$.

- *compact*, if it is closed in $\{0, 1\}^{\mathbb{N}}$ and
- *thin* if there are no $s, t \in \mathcal{F}$ with $s \sqsubset t$.
- The thin families have been defined by C. Nash-Williams and further studied by P. Pudlak, V. Rodl and S. Todorcevic.

An important feature of a family \mathcal{F} of finite subsets of \mathbb{N} , is the *order* of \mathcal{F} , denoted by $o(\mathcal{F})$. We consider the set

$$\widehat{\mathcal{F}} = \{t \in [\mathbb{N}]^{<\infty} : \exists s \in \mathcal{F} \text{ with } t \sqsubseteq s\}.$$

If $\widehat{\mathcal{F}}$ is compact, we set $o(\mathcal{F})$ to be the rank of \emptyset in the well founded partial ordered set $\widehat{\mathcal{F}}$ endowed with the inverse initial segment inclusion.

- A family \mathcal{F} is called *regular thin* if
 - \$\mathcal{F}\$ is thin and
 \$\mathcal{F}\$ is regular, i.e. \$\mathcal{F}\$ is hereditary, spreading and comp
- Typical examples of low order regular thin families are the families of k-subsets of N, [N]^k with o([N]^k) = k as well as the maximal elements of the Schreier family,
 *F*_ω = {s ⊂ N : min s = |s|} with o(*F*_ω) = ω.
- By recursion on ordinals one can define regular thin families of order ξ for every ξ < ω₁.

直 とう きょう く いう

- A family \mathcal{F} is called *regular thin* if
 - \mathcal{F} is thin and
 - $\widehat{\mathcal{F}}$ is regular, i.e. $\widehat{\mathcal{F}}$ is hereditary, spreading and compact.
- Typical examples of low order regular thin families are the families of k-subsets of N, [N]^k with o([N]^k) = k as well as the maximal elements of the Schreier family,
 *F*_ω = {s ⊂ N : min s = |s|} with o(*F*_ω) = ω.
- By recursion on ordinals one can define regular thin families of order ξ for every ξ < ω₁.

• • • • • • •

- A family \mathcal{F} is called *regular thin* if
 - \mathcal{F} is thin and
 - $\widehat{\mathcal{F}}$ is regular, i.e. $\widehat{\mathcal{F}}$ is hereditary, spreading and compact.
- Typical examples of low order regular thin families are the families of k-subsets of N, [N]^k with o([N]^k) = k as well as the maximal elements of the Schreier family,
 F_ω = {s ⊂ N : min s = |s|} with o(*F_ω*) = ω.
- By recursion on ordinals one can define regular thin families of order ξ for every ξ < ω₁.

• • • • • • •

- A family \mathcal{F} is called *regular thin* if
 - \mathcal{F} is thin and
 - $\widehat{\mathcal{F}}$ is regular, i.e. $\widehat{\mathcal{F}}$ is hereditary, spreading and compact.
- Typical examples of low order regular thin families are the families of k-subsets of N, [N]^k with o([N]^k) = k as well as the maximal elements of the Schreier family,
 *F*_ω = {s ⊂ N : min s = |s|} with o(*F*_ω) = ω.
- By recursion on ordinals one can define regular thin families of order ξ for every ξ < ω₁.

- A family \mathcal{F} is called *regular thin* if
 - \mathcal{F} is thin and
 - $\widehat{\mathcal{F}}$ is regular, i.e. $\widehat{\mathcal{F}}$ is hereditary, spreading and compact.
- Typical examples of low order regular thin families are the families of k-subsets of N, [N]^k with o([N]^k) = k as well as the maximal elements of the Schreier family,

$$\mathcal{F}_{\omega} = \{s \subset \mathbb{N} : \min s = |s|\} \text{ with } o(\mathcal{F}_{\omega}) = \omega.$$

 By recursion on ordinals one can define regular thin families of order ξ for every ξ < ω₁.

• • E • • E •

- A family \mathcal{F} is called *regular thin* if
 - \mathcal{F} is thin and
 - $\widehat{\mathcal{F}}$ is regular, i.e. $\widehat{\mathcal{F}}$ is hereditary, spreading and compact.
- Typical examples of low order regular thin families are the families of *k*-subsets of N, [N]^k with o([N]^k) = k as well as the maximal elements of the Schreier family,
 *F*_ω = {s ⊂ N : min s = |s|} with o(*F*_ω) = ω.
- By recursion on ordinals one can define regular thin families of order ξ for every ξ < ω₁.

直 とう きょう く いう

- Given a regular thin family *F* and a set *X*, by the term
 F-sequence in *X* we will mean a map φ : *F* → *X*. Setting for each s ∈ *F*, x_s = φ(s) an *F*-sequence will be denoted by (x_s)_{s∈F}.
- Also by taking restrictions of *F* to infinite subsets *L* of N, we define the *F*-subsequences, denoted by (*x_s*)_{*s*∈*F*↑*L*}, where *F* ↑ *L* = {*s* ∈ *F* : *s* ⊂ *L*}.

> < E > < E >

- Given a regular thin family *F* and a set *X*, by the term
 F-sequence in *X* we will mean a map *φ* : *F* → *X*. Setting for
 each *s* ∈ *F*, *x_s* = *φ*(*s*) an *F*-sequence will be denoted by
 (*x_s*)_{*s*∈*F*}.
- Also by taking restrictions of *F* to infinite subsets *L* of N, we define the *F*-subsequences, denoted by (*x_s*)_{*s*∈*F*↑*L*}, where *F* ↑ *L* = {*s* ∈ *F* : *s* ⊂ *L*}.

> < 国 > < 国 >

- Roughly speaking the plegma families are tuples (s_1, \ldots, s_l) of *pairwise disjoint* finite subsets of \mathbb{N} satisfying the following property.
- The first elements of s_i , $1 \le i \le l$ are in increasing order and they lie before their second elements which are also in increasing order and so on.
- The plegma families do not necessarily include sets of equal size.

> < 3 > < 3</p>

- Roughly speaking the plegma families are tuples (s_1, \ldots, s_l) of *pairwise disjoint* finite subsets of \mathbb{N} satisfying the following property.
- The first elements of s_i , $1 \le i \le l$ are in increasing order and they lie before their second elements which are also in increasing order and so on.
- The plegma families do not necessarily include sets of equal size.

> < 3 > < 3</p>

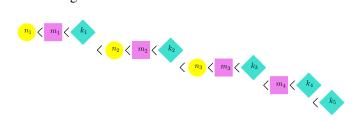
- Roughly speaking the plegma families are tuples (s_1, \ldots, s_l) of *pairwise disjoint* finite subsets of \mathbb{N} satisfying the following property.
- The first elements of s_i , $1 \le i \le l$ are in increasing order and they lie before their second elements which are also in increasing order and so on.
- The plegma families do not necessarily include sets of equal size.

伺 とく ヨ とく ヨ と

- Roughly speaking the plegma families are tuples (s_1, \ldots, s_l) of *pairwise disjoint* finite subsets of \mathbb{N} satisfying the following property.
- The first elements of s_i , $1 \le i \le l$ are in increasing order and they lie before their second elements which are also in increasing order and so on.
- The plegma families do not necessarily include sets of equal size.

直 とう きょう く ほう

For instance, let $s_1 = \{n_1 < n_2 < n_3\},\ s_2 = \{m_1 < m_2 < m_3 < m_4\}$ and $s_3 = \{k_1 < k_2 < k_3 < k_4 < k_5\}.$ The 3-tuple (s_1, s_2, s_3) is plegma if it has the following form.



イロト イポト イヨト イヨト

The Ramsey property of the plegma families

There are several combinatorial properties concerning the plegma families consisting of elements belonging to a regular thin families.

- Given a regular thin family $\mathcal{F}, M \in [\mathbb{N}]^{\infty}$ and $l \in \mathbb{N}$, let $Plm_l(\mathcal{F} \upharpoonright M)$ be the set of all plegma families (s_1, \ldots, s_l) with each $s_i \in \mathcal{F} \upharpoonright M$. Moreover we set $Plm(\mathcal{F} \upharpoonright M) = \bigcup_{l=1}^{\infty} Plm_l(\mathcal{F} \upharpoonright M)$.
- The crucial property of the plegma families is the following.

Proposition

Let $M \in [\mathbb{N}]^{\infty}$, $l \in \mathbb{N}$ and \mathcal{F} be a regular thin family. Then for every finite coloring of $Plm_l(\mathcal{F} \upharpoonright M)$ there exists $L \in [M]^{\infty}$ such that $Plm_l(\mathcal{F} \upharpoonright L)$ is monochromatic.

🗇 🕨 🖉 🕨 🖉 🗎

There are several combinatorial properties concerning the plegma families consisting of elements belonging to a regular thin families.

- Given a regular thin family $\mathcal{F}, M \in [\mathbb{N}]^{\infty}$ and $l \in \mathbb{N}$, let $Plm_l(\mathcal{F} \upharpoonright M)$ be the set of all plegma families (s_1, \ldots, s_l) with each $s_i \in \mathcal{F} \upharpoonright M$. Moreover we set $Plm(\mathcal{F} \upharpoonright M) = \bigcup_{l=1}^{\infty} Plm_l(\mathcal{F} \upharpoonright M)$.
- The crucial property of the plegma families is the following.

Proposition

Let $M \in [\mathbb{N}]^{\infty}$, $l \in \mathbb{N}$ and \mathcal{F} be a regular thin family. Then for every finite coloring of $Plm_l(\mathcal{F} \upharpoonright M)$ there exists $L \in [M]^{\infty}$ such that $Plm_l(\mathcal{F} \upharpoonright L)$ is monochromatic.

There are several combinatorial properties concerning the plegma families consisting of elements belonging to a regular thin families.

- Given a regular thin family $\mathcal{F}, M \in [\mathbb{N}]^{\infty}$ and $l \in \mathbb{N}$, let $Plm_l(\mathcal{F} \upharpoonright M)$ be the set of all plegma families (s_1, \ldots, s_l) with each $s_i \in \mathcal{F} \upharpoonright M$. Moreover we set $Plm(\mathcal{F} \upharpoonright M) = \bigcup_{l=1}^{\infty} Plm_l(\mathcal{F} \upharpoonright M)$.
- The crucial property of the plegma families is the following.

Proposition

Let $M \in [\mathbb{N}]^{\infty}$, $l \in \mathbb{N}$ and \mathcal{F} be a regular thin family. Then for every finite coloring of $Plm_l(\mathcal{F} \upharpoonright M)$ there exists $L \in [M]^{\infty}$ such that $Plm_l(\mathcal{F} \upharpoonright L)$ is monochromatic.

There are several combinatorial properties concerning the plegma families consisting of elements belonging to a regular thin families.

- Given a regular thin family $\mathcal{F}, M \in [\mathbb{N}]^{\infty}$ and $l \in \mathbb{N}$, let $Plm_l(\mathcal{F} \upharpoonright M)$ be the set of all plegma families (s_1, \ldots, s_l) with each $s_i \in \mathcal{F} \upharpoonright M$. Moreover we set $Plm(\mathcal{F} \upharpoonright M) = \bigcup_{l=1}^{\infty} Plm_l(\mathcal{F} \upharpoonright M)$.
- The crucial property of the plegma families is the following.

Proposition

Let $M \in [\mathbb{N}]^{\infty}$, $l \in \mathbb{N}$ and \mathcal{F} be a regular thin family. Then for every finite coloring of $Plm_l(\mathcal{F} \upharpoonright M)$ there exists $L \in [M]^{\infty}$ such that $Plm_l(\mathcal{F} \upharpoonright L)$ is monochromatic.

There are several combinatorial properties concerning the plegma families consisting of elements belonging to a regular thin families.

- Given a regular thin family $\mathcal{F}, M \in [\mathbb{N}]^{\infty}$ and $l \in \mathbb{N}$, let $Plm_l(\mathcal{F} \upharpoonright M)$ be the set of all plegma families (s_1, \ldots, s_l) with each $s_i \in \mathcal{F} \upharpoonright M$. Moreover we set $Plm(\mathcal{F} \upharpoonright M) = \bigcup_{l=1}^{\infty} Plm_l(\mathcal{F} \upharpoonright M)$.
- The crucial property of the plegma families is the following.

Proposition

Let $M \in [\mathbb{N}]^{\infty}$, $l \in \mathbb{N}$ and \mathcal{F} be a regular thin family. Then for every finite coloring of $Plm_l(\mathcal{F} \upharpoonright M)$ there exists $L \in [M]^{\infty}$ such that $Plm_l(\mathcal{F} \upharpoonright L)$ is monochromatic.

(日)

Concerning the maps between regular thin families we have the following results.

• The first one allows the plegma preserving embeddings of regular thin families into ones with lower order.

Theorem

Let \mathcal{F}, \mathcal{G} be regular thin families. If $o(\mathcal{F}) \leq o(\mathcal{G})$ then there exist $N \in [\mathbb{N}]^{\infty}$ and a map $\varphi : \mathcal{G} \upharpoonright N \to \mathcal{F}$ such that for every $(s_i)_{i=1}^l \in Plm(\mathcal{G} \upharpoonright N)$, we have that $(\varphi(s_i))_{i=1}^l \in Plm(\mathcal{F})$.

• The above theorem is based on the following proposition.

Proposition

Let $\mathcal{H}_1, \mathcal{H}_2$ be regular families of finite subsets of \mathbb{N} with $o(\mathcal{H}_1) \leq o(\mathcal{H}_2)$. Then there exists $L \in [\mathbb{N}]^{\infty}$ such that $\mathcal{H}_1(L) \subseteq \mathcal{H}_2$.

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国

Concerning the maps between regular thin families we have the following results.

• The first one allows the plegma preserving embeddings of regular thin families into ones with lower order.

Theorem

Let \mathcal{F}, \mathcal{G} be regular thin families. If $o(\mathcal{F}) \leq o(\mathcal{G})$ then there exist $N \in [\mathbb{N}]^{\infty}$ and a map $\varphi : \mathcal{G} \upharpoonright N \to \mathcal{F}$ such that for every $(s_i)_{i=1}^l \in Plm(\mathcal{G} \upharpoonright N)$, we have that $(\varphi(s_i))_{i=1}^l \in Plm(\mathcal{F})$.

• The above theorem is based on the following proposition.

Proposition

Let $\mathcal{H}_1, \mathcal{H}_2$ be regular families of finite subsets of \mathbb{N} with $o(\mathcal{H}_1) \leq o(\mathcal{H}_2)$. Then there exists $L \in [\mathbb{N}]^{\infty}$ such that $\mathcal{H}_1(L) \subseteq \mathcal{H}_2$.

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国

Concerning the maps between regular thin families we have the following results.

• The first one allows the plegma preserving embeddings of regular thin families into ones with lower order.

Theorem

Let \mathcal{F}, \mathcal{G} be regular thin families. If $o(\mathcal{F}) \leq o(\mathcal{G})$ then there exist $N \in [\mathbb{N}]^{\infty}$ and a map $\varphi : \mathcal{G} \upharpoonright N \to \mathcal{F}$ such that for every $(s_i)_{i=1}^l \in Plm(\mathcal{G} \upharpoonright N)$, we have that $(\varphi(s_i))_{i=1}^l \in Plm(\mathcal{F})$.

• The above theorem is based on the following proposition.

Proposition

Let $\mathcal{H}_1, \mathcal{H}_2$ be regular families of finite subsets of \mathbb{N} with $o(\mathcal{H}_1) \leq o(\mathcal{H}_2)$. Then there exists $L \in [\mathbb{N}]^{\infty}$ such that $\mathcal{H}_1(L) \subseteq \mathcal{H}_2$.

・ロト ・聞 ト ・ ヨト ・ ヨト

Concerning the maps between regular thin families we have the following results.

• The first one allows the plegma preserving embeddings of regular thin families into ones with lower order.

Theorem

Let \mathcal{F}, \mathcal{G} be regular thin families. If $o(\mathcal{F}) \leq o(\mathcal{G})$ then there exist $N \in [\mathbb{N}]^{\infty}$ and a map $\varphi : \mathcal{G} \upharpoonright N \to \mathcal{F}$ such that for every $(s_i)_{i=1}^l \in Plm(\mathcal{G} \upharpoonright N)$, we have that $(\varphi(s_i))_{i=1}^l \in Plm(\mathcal{F})$.

• The above theorem is based on the following proposition.

Proposition

Let $\mathcal{H}_1, \mathcal{H}_2$ be regular families of finite subsets of \mathbb{N} with $o(\mathcal{H}_1) \leq o(\mathcal{H}_2)$. Then there exists $L \in [\mathbb{N}]^{\infty}$ such that $\mathcal{H}_1(L) \subseteq \mathcal{H}_2$.

Concerning the maps between regular thin families we have the following results.

• The first one allows the plegma preserving embeddings of regular thin families into ones with lower order.

Theorem

Let \mathcal{F}, \mathcal{G} be regular thin families. If $o(\mathcal{F}) \leq o(\mathcal{G})$ then there exist $N \in [\mathbb{N}]^{\infty}$ and a map $\varphi : \mathcal{G} \upharpoonright N \to \mathcal{F}$ such that for every $(s_i)_{i=1}^l \in Plm(\mathcal{G} \upharpoonright N)$, we have that $(\varphi(s_i))_{i=1}^l \in Plm(\mathcal{F})$.

• The above theorem is based on the following proposition.

Proposition

Let $\mathcal{H}_1, \mathcal{H}_2$ be regular families of finite subsets of \mathbb{N} with $o(\mathcal{H}_1) \leq o(\mathcal{H}_2)$. Then there exists $L \in [\mathbb{N}]^{\infty}$ such that $\mathcal{H}_1(L) \subseteq \mathcal{H}_2$.

・ 伊 ト ・ ヨ ト ・ ヨ ト

Plegma incompatibility from lower to higher order families

• The second one forbids the plegma preserving embeddings of regular thin families into ones with higher order.

Theorem

Let \mathcal{F}, \mathcal{G} be regular thin families. If $o(\mathcal{F}) < o(\mathcal{G})$ then for every $\varphi : \mathcal{F} \to \mathcal{G}$ and $M \in [\mathbb{N}]^{\infty}$ there exists $L \in [M]^{\infty}$ such that for every plegma pair (s_1, s_2) in $\mathcal{F} \upharpoonright L$ neither $(\phi(s_1), \phi(s_2))$ nor $(\phi(s_2), \phi(s_1))$ is a plegma pair.

伺 ト く ヨ ト く ヨ ト

Plegma incompatibility from lower to higher order families

• The second one forbids the plegma preserving embeddings of regular thin families into ones with higher order.

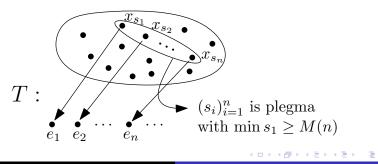
Theorem

Let \mathcal{F}, \mathcal{G} be regular thin families. If $o(\mathcal{F}) < o(\mathcal{G})$ then for every $\varphi : \mathcal{F} \to \mathcal{G}$ and $M \in [\mathbb{N}]^{\infty}$ there exists $L \in [M]^{\infty}$ such that for every plegma pair (s_1, s_2) in $\mathcal{F} \upharpoonright L$ neither $(\phi(s_1), \phi(s_2))$ nor $(\phi(s_2), \phi(s_1))$ is a plegma pair.

🗇 🕨 🖉 🕨 🖉 🗎

Definition of the \mathcal{F} -spreading models

Let *X* be a Banach space, \mathcal{F} be a regular thin family, $(x_s)_{s \in \mathcal{F}}$ be an \mathcal{F} -sequence in *X* and $M \in [\mathbb{N}]^{\infty}$. We will say that the \mathcal{F} -subsequence $(x_s)_{s \in \mathcal{F} \upharpoonright M}$ generates a sequence $(e_n)_n$ as an \mathcal{F} -spreading model, if there exists a null sequence of positive reals $(\delta_n)_n$ satisfying the following. For every $n \in \mathbb{N}$ and every plegma family $(s_i)_{i=1}^n$ of length n in $\mathcal{F} \upharpoonright M$ with min $s_1 \geq M(n)$, the spaces $\langle x_{s_1}, \ldots, x_{s_n} \rangle$ and $\langle e_1, \ldots, e_n \rangle$, through the linear operator sending each x_{s_i} to e_i , are $1 + \delta_n$ isomorphic.



Theorem

Let X be a Banach space and \mathcal{F} be a regular thin family. Then every bounded \mathcal{F} -sequence in X contains an \mathcal{F} -subsequence generating an \mathcal{F} -spreading model. • A consequence of the plegma compatibility from higher to lower order families is the following.

Proposition

Let X be a Banach space. If $o(\mathcal{F}) = o(\mathcal{G})$ then $(e_n)_n$ is an \mathcal{F} -spreading model of X if and only if $(e_n)_n$ is a \mathcal{G} -spreading model of X. More generally, if $o(\mathcal{F}) \leq o(\mathcal{G})$ and $(e_n)_n$ is an \mathcal{F} -spreading model of X then $(e_n)_n$ is a \mathcal{G} -spreading model of X.

🗇 🕨 🖉 🕨 🖉 🗎

• A consequence of the plegma compatibility from higher to lower order families is the following.

Proposition

Let X be a Banach space. If $o(\mathcal{F}) = o(\mathcal{G})$ then $(e_n)_n$ is an \mathcal{F} -spreading model of X if and only if $(e_n)_n$ is a \mathcal{G} -spreading model of X. More generally, if $o(\mathcal{F}) \leq o(\mathcal{G})$ and $(e_n)_n$ is an \mathcal{F} -spreading model of X then $(e_n)_n$ is a \mathcal{G} -spreading model of X.

伺 ト く ヨ ト く ヨ ト

The hierarchy of spreading models

• This proposition permits us to classify the spreading models in a transfinite hierarchy as follows.

Definition

Let *X* be a Banach space and ξ be a countable ordinal. We will say that $(e_n)_n$ is *a* ξ -order spreading model of *X* if there exists a regular thin family \mathcal{F} with $o(\mathcal{F}) = \xi$ such that $(e_n)_n$ is an \mathcal{F} -spreading model of *X*.

• The set of all ξ -order spreading models of *X* will be denoted by $\mathcal{SM}_{\xi}(X)$.

日とくほとくほど

The hierarchy of spreading models

• This proposition permits us to classify the spreading models in a transfinite hierarchy as follows.

Definition

Let *X* be a Banach space and ξ be a countable ordinal. We will say that $(e_n)_n$ is a ξ -order spreading model of *X* if there exists a regular thin family \mathcal{F} with $o(\mathcal{F}) = \xi$ such that $(e_n)_n$ is an \mathcal{F} -spreading model of *X*.

• The set of all ξ -order spreading models of *X* will be denoted by $\mathcal{SM}_{\xi}(X)$.

直と くほと くほと

The hierarchy of spreading models

• This proposition permits us to classify the spreading models in a transfinite hierarchy as follows.

Definition

Let *X* be a Banach space and ξ be a countable ordinal. We will say that $(e_n)_n$ is *a* ξ -order spreading model of *X* if there exists a regular thin family \mathcal{F} with $o(\mathcal{F}) = \xi$ such that $(e_n)_n$ is an \mathcal{F} -spreading model of *X*.

 The set of all ξ-order spreading models of X will be denoted by SM_ξ(X).

直と くほと くほと

 The preceding proposition yields that the above defined transfinite hierarchy of spreading models is *increasing*, i.e. for every Banach space X and 1 ≤ ζ < ξ < ω₁ we have that

 $\mathcal{SM}_{\zeta}(X) \subseteq \mathcal{SM}_{\xi}(X)$

Problem

Is it true that for every separable Banach space *X* there is a countable ordinal ξ such that for every $\zeta > \xi$, $SM_{\zeta}(X) = SM_{\xi}(X)$?

▶ ∢ ≣ ▶

Examples establishing the hierarchy

 Another natural question is whether for every ξ < ω₁ there exists a Banach space X such that SM_ζ(X) ≠ SM_ξ(X), for all ζ < ξ. Towards this direction we have the following result.

Theorem

Let ξ be a finite or a limit countable ordinal. Then there exists a reflexive space X with an unconditional basis satisfying the following properties:

1 The space X admits ℓ^1 as a ξ -order spreading model.

For every ordinal ζ < ξ, the space X does not admit l¹ as a ζ-order spreading model.

・ 同 ト ・ ヨ ト ・ ヨ

Examples establishing the hierarchy

 Another natural question is whether for every ξ < ω₁ there exists a Banach space X such that SM_ζ(X) ≠ SM_ξ(X), for all ζ < ξ. Towards this direction we have the following result.

Theorem

Let ξ be a finite or a limit countable ordinal. Then there exists a reflexive space X with an unconditional basis satisfying the following properties:

• The space X admits ℓ^1 as a ξ -order spreading model.

2 For every ordinal $\zeta < \xi$, the space X does not admit ℓ^1 as a ζ -order spreading model.

A reflexive space not admitting ℓ^p or c_0 as a spreading model

- Odell and Schlumprecht asked if there exist a Banach space X such that for every $k \in \mathbb{N}$, X does not admit ℓ^p or $c_0, 1 \le p < \infty$ as a k-iterated spreading model.
- The answer to the above problem is affirmative. Actually the following more general result holds.

Theorem

There exists a reflexive space X with an unconditional basis such that for every $\xi < \omega_1$ and every $(e_n)_n \in S\mathcal{M}_{\xi}(X)$, the space $E = \overline{\langle (e_n)_n \rangle}$ is reflexive and does not contain any isomorphic copy of c_0 or ℓ^p , for all $1 \le p < \infty$.

日とくほとくほど

A reflexive space not admitting ℓ^p or c_0 as a spreading model

- Odell and Schlumprecht asked if there exist a Banach space X such that for every $k \in \mathbb{N}$, X does not admit ℓ^p or $c_0, 1 \le p < \infty$ as a k-iterated spreading model.
- The answer to the above problem is affirmative. Actually the following more general result holds.

Theorem

There exists a reflexive space X with an unconditional basis such that for every $\xi < \omega_1$ and every $(e_n)_n \in S\mathcal{M}_{\xi}(X)$, the space $E = \overline{\langle (e_n)_n \rangle}$ is reflexive and does not contain any isomorphic copy of c_0 or ℓ^p , for all $1 \le p < \infty$.

・ 何 ト ・ ヨ ト ・ ヨ ト

A reflexive space not admitting ℓ^p or c_0 as a spreading model

- Odell and Schlumprecht asked if there exist a Banach space X such that for every $k \in \mathbb{N}$, X does not admit ℓ^p or $c_0, 1 \le p < \infty$ as a k-iterated spreading model.
- The answer to the above problem is affirmative. Actually the following more general result holds.

Theorem

There exists a reflexive space X with an unconditional basis such that for every $\xi < \omega_1$ and every $(e_n)_n \in S\mathcal{M}_{\xi}(X)$, the space $E = \overline{\langle (e_n)_n \rangle}$ is reflexive and does not contain any isomorphic copy of c_0 or ℓ^p , for all $1 \le p < \infty$.

- The space X is similar to the one constructed by Odell and Schlumprecht. However the proof requires a systematic analysis of the generic form of the \mathcal{F} -sequences with weakly relatively compact range.
- The above theorem shows that the finite representability of ℓ^p, 1 ≤ p ≤ ∞, asserted by Krivine's theorem, cannot be recovered by the higher order spreading models that we introduced here.

- The space X is similar to the one constructed by Odell and Schlumprecht. However the proof requires a systematic analysis of the generic form of the \mathcal{F} -sequences with weakly relatively compact range.
- The above theorem shows that the finite representability of ℓ^p,
 1 ≤ p ≤ ∞, asserted by Krivine's theorem, cannot be recovered by the higher order spreading models that we introduced here.

• We define the *k*-Cesàro summability as follows.

Definition

Let *X* be a Banach space, $x_0 \in X$, $k \in \mathbb{N}$, $(x_s)_{s \in [\mathbb{N}]^k}$ be a $[\mathbb{N}]^k$ -sequence in *X* and $M \in [\mathbb{N}]^\infty$. We will say that the $[\mathbb{N}]^k$ -subsequence $(x_s)_{s \in [M]^k}$ is *k*-*Cesàro summable to* x_0 if

$$\frac{1}{\#[M|n]^k} \sum_{s \in [M|n]^k} x_s \xrightarrow[n \to \infty]{\|\cdot\|} x_0$$

where $M|n = \{M(1), ..., M(n)\}.$

• We define the *k*-Cesàro summability as follows.

Definition

Let *X* be a Banach space, $x_0 \in X$, $k \in \mathbb{N}$, $(x_s)_{s \in [\mathbb{N}]^k}$ be a $[\mathbb{N}]^k$ -sequence in *X* and $M \in [\mathbb{N}]^\infty$. We will say that the $[\mathbb{N}]^k$ -subsequence $(x_s)_{s \in [M]^k}$ is *k*-*Cesàro summable to* x_0 if

$$\frac{1}{\#[M|n]^k} \sum_{s \in [M|n]^k} x_s \quad \stackrel{\|\cdot\|}{\underset{n \to \infty}{\longrightarrow}} \quad x_0$$

where $M|n = \{M(1), ..., M(n)\}.$

• We prove the following lemma.

Lemma

Let $\delta > 0$ and $k, l \in \mathbb{N}$. Then there exists $N_0 \in \mathbb{N}$ such that for every $N \ge N_0$ and every subset A of the set $[\{1, \ldots, N\}]^k$ of all k-subsets of $\{1, \ldots, N\}$ of size at least $\delta\binom{N}{k}$, there is a plegma l-tuple $(s_j)_{j=1}^l$ in A.

• While for the case k = 1 the above is immediate, for $k \ge 2$ the proof seems to require the multidimensional Szemeredi's theorem of H. Furstenberg and Y. Katznelson (1978).

• We prove the following lemma.

Lemma

Let $\delta > 0$ and $k, l \in \mathbb{N}$. Then there exists $N_0 \in \mathbb{N}$ such that for every $N \ge N_0$ and every subset A of the set $[\{1, \ldots, N\}]^k$ of all k-subsets of $\{1, \ldots, N\}$ of size at least $\delta\binom{N}{k}$, there is a plegma l-tuple $(s_j)_{j=1}^l$ in A.

• While for the case k = 1 the above is immediate, for $k \ge 2$ the proof seems to require the multidimensional Szemeredi's theorem of H. Furstenberg and Y. Katznelson (1978).

/∄ ▶ ∢ ⋽ ▶ ∢ ⋽

• We prove the following lemma.

Lemma

Let $\delta > 0$ and $k, l \in \mathbb{N}$. Then there exists $N_0 \in \mathbb{N}$ such that for every $N \ge N_0$ and every subset A of the set $[\{1, \ldots, N\}]^k$ of all k-subsets of $\{1, \ldots, N\}$ of size at least $\delta\binom{N}{k}$, there is a plegma l-tuple $(s_j)_{j=1}^l$ in A.

• While for the case k = 1 the above is immediate, for $k \ge 2$ the proof seems to require the multidimensional Szemeredi's theorem of H. Furstenberg and Y. Katznelson (1978).

• Using the above lemma we get the following extension of a well known result of H. P. Rosenthal (which corresponds to the case k = 1).

Theorem

Let X be a Banach space, $k \in \mathbb{N}$ and $(x_s)_{s \in [\mathbb{N}]^k}$ be a wrc $[\mathbb{N}]^k$ -sequence in X. Then there exists $M \in [\mathbb{N}]^\infty$ such that at least one of the following holds:

- The subsequence (x_s)_{s∈[M]^k} generates a k-order spreading model equivalent to the standard basis of ℓ¹.
- There exists $x_0 \in X$ such that for every $L \in [M]^{\infty}$ the subsequence $(x_s)_{s \in [L]^k}$ is k-Cesàro summable to x_0 .
- While for k = 1 the two alternatives of the above theorem are exclusive, for k ≥ 2 this does not remain valid.

□▶★□▶★□▶

• Using the above lemma we get the following extension of a well known result of H. P. Rosenthal (which corresponds to the case k = 1).

Theorem

- The subsequence (x_s)_{s∈[M]^k} generates a k-order spreading model equivalent to the standard basis of ℓ¹.
- There exists x₀ ∈ X such that for every L ∈ [M][∞] the subsequence (x_s)_{s∈[L]^k} is k-Cesàro summable to x₀.
- While for k = 1 the two alternatives of the above theorem are exclusive, for k ≥ 2 this does not remain valid.

• Using the above lemma we get the following extension of a well known result of H. P. Rosenthal (which corresponds to the case k = 1).

Theorem

- The subsequence (x_s)_{s∈[M]^k} generates a k-order spreading model equivalent to the standard basis of ℓ¹.
- There exists x₀ ∈ X such that for every L ∈ [M][∞] the subsequence (x_s)_{s∈[L]^k} is k-Cesàro summable to x₀.
- While for k = 1 the two alternatives of the above theorem are exclusive, for k ≥ 2 this does not remain valid.

• Using the above lemma we get the following extension of a well known result of H. P. Rosenthal (which corresponds to the case k = 1).

Theorem

- The subsequence (x_s)_{s∈[M]^k} generates a k-order spreading model equivalent to the standard basis of ℓ¹.
- There exists $x_0 \in X$ such that for every $L \in [M]^{\infty}$ the subsequence $(x_s)_{s \in [L]^k}$ is k-Cesàro summable to x_0 .
- While for k = 1 the two alternatives of the above theorem are exclusive, for k ≥ 2 this does not remain valid.

• Using the above lemma we get the following extension of a well known result of H. P. Rosenthal (which corresponds to the case k = 1).

Theorem

- The subsequence (x_s)_{s∈[M]^k} generates a k-order spreading model equivalent to the standard basis of ℓ¹.
- There exists $x_0 \in X$ such that for every $L \in [M]^{\infty}$ the subsequence $(x_s)_{s \in [L]^k}$ is k-Cesàro summable to x_0 .
- While for k = 1 the two alternatives of the above theorem are exclusive, for k ≥ 2 this does not remain valid.