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Introduction

The context of this talk is part of a joint work with S.A. Argyros
and V. Kanellopoulos.

The main objective of this talk is a generalization of the classical
notion of the spreading model invented by A. Brunel and L.
Sucheston in the middle of 70’s.
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The classical spreading models

A sequence (xn)n in a Banach space X generates a sequence (en)n as a
spreading model if there exists a null sequence (δn)n of positive reals,
such that
for every n ≤ k1 < . . . < kn in N, the spaces < xk1 , . . . , xkn > and
< e1, . . . , en >, through the linear operator sending each xkj to ej, are
1 + δn isomorphic.

. . . . . . . . . . . .

x1 x2 xn xk1
xk2 xkn

. . . . . .

e1 e2 en

. . .

T :
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Motivation

Theorem (E. Odell and Th. Schlumprecht)
There exists a reflexive space X such that every space generated by a
spreading model of X does not contain any isomorphic copy of `p, for
p ∈ [1,∞), or c0.

In the same paper they ask the following concerning the k-iterated
spreading models.

Problem
Does for every Banach space X exist a natural number k such that X
admits a k-iterated spreading model equivalent to the usual basis of
`p, for some p ∈ [1,∞), or c0?
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The extended definition of a spreading model

For every Banach space X and every countable ordinal ξ we
assign to X the family of ξ-order spreading models denoted by
SMξ(X).

The transfinite hierarchy (SMξ(X))ξ<ω1 is increasing and the
ξ-spreading models of X have a weaker asymptotic connection to
X as ξ tends to ω1. Moreover, the Brunel-Sucheston spreading
models coincide with the order one spreading models(
SM1(X)

)
.

The definition of the ξ-order spreading models pass through the
notion of the F-spreading models.
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The F-spreading models

In order to define the F-spreading models we introduce the following
two concepts.

The first one is the F-sequences (xs)s∈F , where F is a family of
finite subsets of N satisfying certain properties. These sequences
will replace the common sequences (xn)n∈N in a Banach space.

The second one is the concept of plegma families. These families
specify the finite subsequences of an F-sequence which
determine the spreading model.
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On finite subsets of N

The F-sequences are an extension of the notion of the sequence. First
we need to recall some terminology concerning families of finite
subsets of N.

A family F of finite subsets of N is called

hereditary if for every s ∈ F and t ⊆ s we have that t ∈ F .
spreading if for every s ∈ F and t ∈ [N]<∞ such that

1 |s| = |t|
2 s(i) ≤ t(i), for all 1 ≤ i ≤ |s|,

we have that t ∈ F .

compact, if it is closed in {0, 1}N and

thin if there are no s, t ∈ F with s @ t.

The thin families have been defined by C. Nash-Williams and
further studied by P. Pudlak, V. Rodl and S. Todorcevic.
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The order of a family F

An important feature of a family F of finite subsets of N, is the order
of F , denoted by o(F). We consider the set

F̂ = {t ∈ [N]<∞ : ∃s ∈ F with t v s}.

If F̂ is compact, we set o(F) to be the rank of ∅ in the well founded
partial ordered set F̂ endowed with the inverse initial segment
inclusion.
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Regular thin families

We will consider a special class of thin families, which we will call
regular thin families.

A family F is called regular thin if
F is thin and
F̂ is regular, i.e. F̂ is hereditary, spreading and compact.

Typical examples of low order regular thin families are the
families of k-subsets of N, [N]k with o([N]k) = k as well as the
maximal elements of the Schreier family,
Fω = {s ⊂ N : min s = |s|} with o(Fω) = ω.

By recursion on ordinals one can define regular thin families of
order ξ for every ξ < ω1.
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F-sequences

Given a regular thin family F and a set X, by the term
F-sequence in X we will mean a map ϕ : F → X. Setting for
each s ∈ F , xs = ϕ(s) an F-sequence will be denoted by
(xs)s∈F .

Also by taking restrictions of F to infinite subsets L of N, we
define the F-subsequences, denoted by (xs)s∈F�L, where
F � L = {s ∈ F : s ⊂ L}.
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Plegma families

Rather than giving the explicit definition of the plegma families, we
will try to describe them.

Roughly speaking the plegma families are tuples (s1, . . . , sl) of
pairwise disjoint finite subsets of N satisfying the following
property.

The first elements of si, 1 ≤ i ≤ l are in increasing order and
they lie before their second elements which are also in increasing
order and so on.

The plegma families do not necessarily include sets of equal size.
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An example of a plegma family

For instance, let
s1 = {n1 < n2 < n3},
s2 = {m1 < m2 < m3 < m4} and
s3 = {k1 < k2 < k3 < k4 < k5}. The 3-tuple (s1, s2, s3) is plegma if it
has the following form.

n1 k1m1

n2 k2m2

n3 k3m3

k4m4

k5
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The Ramsey property of the plegma families

There are several combinatorial properties concerning the plegma
families consisting of elements belonging to a regular thin families.

Given a regular thin family F , M ∈ [N]∞ and l ∈ N, let
Plml(F � M) be the set of all plegma families (s1, . . . , sl) with
each si ∈ F � M. Moreover we set
Plm(F � M) = ∪∞l=1Plml(F � M).

The crucial property of the plegma families is the following.

Proposition

Let M ∈ [N]∞, l ∈ N and F be a regular thin family. Then for every
finite coloring of Plml(F � M) there exists L ∈ [M]∞ such that
Plml(F � L) is monochromatic.
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Plegma compatibility from higher to lower order families

Concerning the maps between regular thin families we have the
following results.

The first one allows the plegma preserving embeddings of
regular thin families into ones with lower order.

Theorem

Let F ,G be regular thin families. If o(F) ≤ o(G) then there exist
N ∈ [N]∞ and a map ϕ : G � N → F such that for every
(si)

l
i=1 ∈ Plm(G � N), we have that (ϕ(si))

l
i=1 ∈ Plm(F).

The above theorem is based on the following proposition.

Proposition
LetH1,H2 be regular families of finite subsets of N with
o(H1) ≤ o(H2). Then there exists L ∈ [N]∞ such thatH1(L) ⊆ H2.
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Plegma incompatibility from lower to higher order families

The second one forbids the plegma preserving embeddings of
regular thin families into ones with higher order.

Theorem
Let F ,G be regular thin families. If o(F) < o(G) then for every
ϕ : F → G and M ∈ [N]∞ there exists L ∈ [M]∞ such that for every
plegma pair (s1, s2) in F � L neither (φ(s1), φ(s2)) nor (φ(s2), φ(s1))
is a plegma pair.
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plegma pair (s1, s2) in F � L neither (φ(s1), φ(s2)) nor (φ(s2), φ(s1))
is a plegma pair.
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Definition of the F-spreading models

Let X be a Banach space, F be a regular thin family, (xs)s∈F be an
F-sequence in X and M ∈ [N]∞. We will say that the F-subsequence
(xs)s∈F�M generates a sequence (en)n as an F-spreading model, if
there exists a null sequence of positive reals (δn)n satisfying the
following. For every n ∈ N and every plegma family (si)

n
i=1 of length

n in F � M with min s1 ≥ M(n), the spaces < xs1 , . . . , xsn > and
< e1, . . . , en >, through the linear operator sending each xsi to ei, are
1 + δn isomorphic.

. . . . . .
e1 e2 en

xs1 xs2

xsn

T :
(si)

n
i=1 is plegma

with min s1 ≥ M(n)
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Existence of the F-spreading models

Theorem
Let X be a Banach space and F be a regular thin family. Then every
bounded F-sequence in X contains an F-subsequence generating an
F-spreading model.
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Independence of the family F

A consequence of the plegma compatibility from higher to lower
order families is the following.

Proposition

Let X be a Banach space. If o(F) = o(G) then (en)n is an
F-spreading model of X if and only if (en)n is a G-spreading model of
X. More generally, if o(F) ≤ o(G) and (en)n is an F-spreading
model of X then (en)n is a G-spreading model of X.
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The hierarchy of spreading models

This proposition permits us to classify the spreading models in a
transfinite hierarchy as follows.

Definition
Let X be a Banach space and ξ be a countable ordinal. We will say
that (en)n is a ξ-order spreading model of X if there exists a regular
thin family F with o(F) = ξ such that (en)n is an F-spreading model
of X.

The set of all ξ-order spreading models of X will be denoted by
SMξ(X).
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The hierarchy of spreading models

The preceding proposition yields that the above defined
transfinite hierarchy of spreading models is increasing, i.e. for
every Banach space X and 1 ≤ ζ < ξ < ω1 we have that

SMζ(X) ⊆ SMξ(X)
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An open problem

Problem
Is it true that for every separable Banach space X there is a countable
ordinal ξ such that for every ζ > ξ, SMζ(X) = SMξ(X)?
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Examples establishing the hierarchy

Another natural question is whether for every ξ < ω1 there exists
a Banach space X such that SMζ(X) 6= SMξ(X), for all ζ < ξ.
Towards this direction we have the following result.

Theorem
Let ξ be a finite or a limit countable ordinal. Then there exists a
reflexive space X with an unconditional basis satisfying the following
properties:

1 The space X admits `1 as a ξ-order spreading model.

2 For every ordinal ζ < ξ, the space X does not admit `1 as a ζ-order
spreading model.
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A reflexive space not admitting `p or c0 as a spreading
model

Odell and Schlumprecht asked if there exist a Banach space X
such that for every k ∈ N, X does not admit `p or c0, 1 ≤ p <∞
as a k-iterated spreading model.

The answer to the above problem is affirmative. Actually the
following more general result holds.

Theorem
There exists a reflexive space X with an unconditional basis such that
for every ξ < ω1 and every (en)n ∈ SMξ(X), the space
E = < (en)n > is reflexive and does not contain any isomorphic copy
of c0 or `p, for all 1 ≤ p <∞.
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Some comments

The space X is similar to the one constructed by Odell and
Schlumprecht. However the proof requires a systematic analysis
of the generic form of the F-sequences with weakly relatively
compact range.

The above theorem shows that the finite representability of `p,
1 ≤ p ≤ ∞, asserted by Krivine’s theorem, cannot be recovered
by the higher order spreading models that we introduced here.
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Cesàro summability vs `1-spreading models

We define the k-Cesàro summability as follows.

Definition

Let X be a Banach space, x0 ∈ X, k ∈ N, (xs)s∈[N]k be a [N]k-sequence
in X and M ∈ [N]∞. We will say that the [N]k-subsequence (xs)s∈[M]k

is k-Cesàro summable to x0 if

1
#[M|n]k

∑
s∈[M|n]k

xs
‖·‖
−→

n→∞
x0

where M|n = {M(1), ...,M(n)}.
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Cesàro summability vs `1-spreading models

We prove the following lemma.

Lemma
Let δ > 0 and k, l ∈ N. Then there exists N0 ∈ N such that for every
N ≥ N0 and every subset A of the set [{1, . . . ,N}]k of all k-subsets of
{1, . . . ,N} of size at least δ(N

k), there is a plegma l-tuple (sj)
l
j=1 in A.

While for the case k = 1 the above is immediate, for k ≥ 2 the
proof seems to require the multidimensional Szemeredi’s
theorem of H. Furstenberg and Y. Katznelson (1978).
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Cesàro summability vs `1-spreading models

Using the above lemma we get the following extension of a well
known result of H. P. Rosenthal (which corresponds to the case
k = 1).

Theorem

Let X be a Banach space, k ∈ N and (xs)s∈[N]k be a wrc [N]k-sequence
in X. Then there exists M ∈ [N]∞ such that at least one of the
following holds:

The subsequence (xs)s∈[M]k generates a k-order spreading model
equivalent to the standard basis of `1.

There exists x0 ∈ X such that for every L ∈ [M]∞ the
subsequence (xs)s∈[L]k is k-Cesàro summable to x0.

While for k = 1 the two alternatives of the above theorem are
exclusive, for k ≥ 2 this does not remain valid.
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