Geometry determined by random matrices associated to high-dimensional convex bodies

Nicole Tomczak-Jaegermann

Banach space theory workshop

BIRS, March 5 - March 9, 2012

Motivation

Series of joint papers by (subsets of): Radosław Adamczak, Olivier Guédon, Rafał Latała, Alexander Litvak, Alain Pajor, NT-J.

Motivation

Series of joint papers by (subsets of):
Radosław Adamczak,
Olivier Guédon, Rafał Latała, Alexander Litvak, Alain Pajor, NT-J.

Motivation coming from

- Convexity and Computational Geometry;
- Compressed sensing, in particular approximate reconstruction problems and the Restricted Isometry Property;
- Point of view of Random Matrix Theory.

Notation, Isotropicity

\mathbb{R}^{n} with the canonical inner product $\langle\cdot, \cdot\rangle . \quad|\cdot|$ is the natural Euclidean norm, also the normalized volume on \mathbb{R}^{n}, or the cardinality of a set.

By a random vector $X \in \mathbb{R}^{n}$, we mean a measurable function defined on a probability space and taking values in \mathbb{R}^{n}. \mathbb{E} is the expectation.

Notation, Isotropicity

\mathbb{R}^{n} with the canonical inner product $\langle\cdot, \cdot\rangle . \quad|\cdot|$ is the natural Euclidean norm, also the normalized volume on \mathbb{R}^{n}, or the cardinality of a set.

By a random vector $X \in \mathbb{R}^{n}$, we mean a measurable function defined on a probability space and taking values in \mathbb{R}^{n}. \mathbb{E} is the expectation.

A random vector $X \in \mathbb{R}^{n}$ is called isotropic if

$$
\mathbb{E}\langle X, y\rangle=0, \quad \mathbb{E}|\langle X, y\rangle|^{2}=|y|^{2} \quad \text { for all } y \in \mathbb{R}^{n} .
$$

In other words, if X is centered and its covariance matrix is the identity:

$$
\mathbb{E} X \otimes X=\mathrm{Id} .
$$

($X \otimes X$ is the linear operator on \mathbb{R}^{n} given by the $n \times n$ matrix $\left[x_{i} x_{j}\right]_{i, j}$ where x_{i} is the ith coordinnate of X.)

For every random vector X not supported on any $\mathrm{n}-1$ dimensional hyperplane, there exists an affine map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $T X$ is isotropic.

Notation, log-concavity

A measure μ on \mathbb{R}^{n} is log-concave if for any measurable subsets A, B of \mathbb{R}^{n} and any $\theta \in[0,1]$,

$$
\mu(\theta A+(1-\theta) B) \geqslant \mu(A)^{\theta} \mu(B)^{(1-\theta)}
$$

whenever the following Minkowski sum is measurable:

$$
\theta A+(1-\theta) B=\left\{\theta x_{1}+(1-\theta) x_{2}: x_{1} \in A, x_{2} \in B\right\}
$$

[Borell] Log-concave measures not supported by any ($n-1$) dimensional hyperplanes are exactly those which are absolutely continuous w.r. to the Lebesgue measure, and have log-concave densities, that is, densities of the form $\exp (-\mathrm{V}(\mathrm{x}))$, where $\mathrm{V}: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ is convex.

Examples

1. Let $\mathrm{K} \subset \mathbb{R}^{\mathrm{n}}$ be a convex body (= compact convex, with non-empty interior) (symmetric means $-\mathrm{K}=\mathrm{K}$).
X a random vector uniformly distributed in K . Then the corresponding probability measure on \mathbb{R}^{n}

$$
\mu_{K}(A)=\frac{|K \cap A|}{|K|}
$$

is log-concave (by Brunn-Minkowski).
Moreover, for every convex body K there exists an affine map T such that μ_{TK} is isotropic.

Examples

1. Let $\mathrm{K} \subset \mathbb{R}^{n}$ be a convex body (= compact convex, with non-empty interior) (symmetric means $-\mathrm{K}=\mathrm{K}$).
X a random vector uniformly distributed in K. Then the corresponding probability measure on \mathbb{R}^{n}

$$
\mu_{K}(A)=\frac{|K \cap A|}{|K|}
$$

is log-concave (by Brunn-Minkowski).
Moreover, for every convex body K there exists an affine map T such that μ_{TK} is isotropic.
2. The Gaussian vector $G=\left(g_{1}, \ldots, g_{n}\right)$, where g_{i} 's have $\mathcal{N}(0,1)$ distribution, is isotropic and log-concave.

Examples

1. Let $K \subset \mathbb{R}^{n}$ be a convex body (= compact convex, with non-empty interior) (symmetric means $-\mathrm{K}=\mathrm{K}$).
X a random vector uniformly distributed in K. Then the corresponding probability measure on \mathbb{R}^{n}

$$
\mu_{K}(A)=\frac{|K \cap A|}{|K|}
$$

is log-concave (by Brunn-Minkowski).
Moreover, for every convex body K there exists an affine map T such that μ_{TK} is isotropic.
2. The Gaussian vector $G=\left(g_{1}, \ldots, g_{n}\right)$, where g_{i} 's have $\mathcal{N}(0,1)$ distribution, is isotropic and log-concave.
3. Similarly the vector $X=\left(\xi_{1}, \ldots, \xi_{n}\right)$, where ξ_{i} 's have exponential distribution (i.e., with density $f(t)=\frac{1}{\sqrt{2}} \exp (-\sqrt{2}|t|)$, for $t \in \mathbb{R}$)
is isotropic and log-concave.

KLS question, I

$n, N \geqslant 1, X \in \mathbb{R}^{n}$ isotropic log-concave, $\left(X_{i}\right)_{i \leqslant N}$ independent copies of X. By law of large numbers, the empirical covariance matrix converges to Id.

$$
\frac{1}{N} \sum_{i=1}^{N} X_{i} \otimes X_{i} \longrightarrow I d \quad \text { as } N \rightarrow \infty \quad \text { a.s. }
$$

KLS question, II

Kannan-Lovász-Simonovits asked (around 1995), motivated by a problem of complexity in computing volume in high dimension:
$X \in \mathbb{R}^{n}$ isotropic \log-concave. Given $\varepsilon \in(0,1)$ estimate N for which

$$
\left\|\frac{1}{N} \sum_{i=1}^{N} X_{i} \otimes X_{i}-I d\right\| \leqslant \varepsilon
$$

holds with high probability.

KLS question, II

Kannan-Lovász-Simonovits asked (around 1995), motivated by a problem of complexity in computing volume in high dimension:
$X \in \mathbb{R}^{n}$ isotropic \log-concave. Given $\varepsilon \in(0,1)$ estimate N for which

$$
\left.\left.\sup _{y \in S^{n-1}}\left|\frac{1}{N} \sum_{i=1}^{N}\right|\left\langle X_{i}, y\right\rangle\right|^{2}-1 \right\rvert\,=\left\|\frac{1}{N} \sum_{i=1}^{N} X_{i} \otimes X_{i}-\operatorname{ld}\right\| \leqslant \varepsilon
$$

holds with high probability.

KLS question, II

Kannan-Lovász-Simonovits asked (around 1995), motivated by a problem of complexity in computing volume in high dimension:
$\mathrm{X} \in \mathbb{R}^{\mathrm{n}}$ isotropic log-concave. Given $\varepsilon \in(0,1)$ estimate N for which

$$
\left.\left.\sup _{y \in S^{n-1}}\left|\frac{1}{N} \sum_{i=1}^{N}\right|\left\langle X_{i}, y\right\rangle\right|^{2}-1 \right\rvert\,=\left\|\frac{1}{N} \sum_{i=1}^{N} X_{i} \otimes X_{i}-I d\right\| \leqslant \varepsilon
$$

holds with high probability.
KLS showed that for any $\varepsilon, \delta \in(0,1)$ (under a finite third moment assumption), $\mathrm{N} \geqslant(\mathrm{C} / \varepsilon \delta) \mathrm{n}^{2}$ gives the required approximation, with probability $1-\delta$.

Bourgain (1996): for any $\varepsilon, \delta \in(0,1)$, there exists $C(\varepsilon, \delta)>0$ such that $N=C(\varepsilon, \delta) n \log ^{3} n$ gives the approximation with probability $1-\delta$.

The question generated a lot of activity; Improvement of powers of logarithms by: Rudelson, Giannopoulos, Paouris...

Random matrices with i.i.d.log-concave columns

$n, N \geqslant 1, X \in \mathbb{R}^{n}$ isotropic log-concave, $\left(X_{i}\right)_{i \leqslant N}$ independent copies of X. Γ is a $n \times N$ matrix with X_{i} as columns;

$$
\sup _{y \in S^{n-1}}\left\langle\left(\sum_{i=1}^{N} X_{i} \otimes X_{i}\right) y, y\right\rangle=\sup _{y \in S^{n-1}}\left\langle\Gamma \Gamma^{*} y, y\right\rangle=\left\|\Gamma: \ell_{2}^{N} \rightarrow \ell_{2}^{n}\right\|^{2}
$$ with the operator norm $\|\Gamma\|$.

Question An upper bound for $\|\Gamma\|$, with some (large?) probability?

Random matrices with i.i.d.log-concave columns

$n, N \geqslant 1, X \in \mathbb{R}^{n}$ isotropic log-concave, $\left(X_{i}\right)_{i \leqslant N}$ independent copies of X. Γ is a $n \times N$ matrix with X_{i} as columns;

$$
\sup _{y \in S^{n-1}}\left\langle\left(\sum_{i=1}^{N} X_{i} \otimes X_{i}\right) y, y\right\rangle=\sup _{y \in S^{n-1}}\left\langle\Gamma \Gamma^{*} y, y\right\rangle=\left\|\Gamma: \ell_{2}^{N} \rightarrow \ell_{2}^{n}\right\|^{2},
$$ with the operator norm $\|\Gamma\|$.

Question An upper bound for $\|\Gamma\|$, with some (large?) probability?
Note $\mathbb{E}\|\Gamma\|^{2} \geqslant \mathbb{E}\left|X_{i}\right|^{2}=\mathrm{n}$ (comparing with norms of columns); denoting the rows of Γ by Y_{j} we also have

$$
\mathbb{E}\|\Gamma\|^{2} \geqslant \max _{j \leqslant N} \mathbb{E}\left|Y_{j}\right|^{2} \geqslant \frac{1}{n} \sum_{j=1}^{n} \mathbb{E}\left|Y_{j}\right|^{2} \geqslant N .
$$

Consequently, with positive probability, $\|\Gamma\| \geqslant \max (\sqrt{n}, \sqrt{N})$.
We will show: with overwhelming probability, this is asymptotically the right order:

$$
\|\Gamma\| \leqslant C \max (\sqrt{n}, \sqrt{N}) .
$$

The same behaviour as e.g., random Gaussian matrix (with $\mathrm{N}(0,1)$ independent entries)

Norm of matrices with i.i.d. log-concave columns

Given $1 \leqslant k \leqslant N$, we let

$$
\Gamma(k)=\sup _{\substack{z \in S N-1 \\ \mid \text { supp } z \mid \leqslant k}}|\Gamma z|,
$$

the norm of Γ on k-sparse vectors.
Theorem 1 [ALPT] Let $n \geqslant 1$ and $1 \leqslant N \leqslant e^{\sqrt{n}}$. Let $X \in \mathbb{R}^{n}$ be isotropic log-concave random vector and $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{N}}$ be i.i.d. copies of X . Let Γ be the $n \times N$ random matrix having the $X_{i} s$ as the columns. Then for any $t \geqslant 1$, the following holds with probability $\geqslant 1-e^{-c t \sqrt{n}}$:

$$
\forall k \leqslant N: \Gamma(k) \leqslant C t\left(\sqrt{n}+\sqrt{k} \log \frac{2 N}{k}\right)
$$

where C, c > 0 are absolute constants. In particular, with the same probability,

$$
\|\Gamma\| \leqslant \operatorname{Ct}(\sqrt{n}+\sqrt{N}) .
$$

The norm estimate is optimal, up to universal constants, as seen for the exponential distribution.

Paouris' large deviation estimate

Let $X \in \mathbb{R}^{n}$ be isotropic log-concave random vector. Consider the matrix that consists of just one column then its norm is equal to $|X|$.
Note that $\left(\mathbb{E}|X|^{2}\right)^{1 / 2}=\sqrt{n}$. What is the large deviation
$\mathbb{P}\{|X| \geqslant t \sqrt{n}\} \leqslant$? for $t \geqslant C_{0}$ where $C_{0}>1$ an absolute constant.

Paouris' large deviation estimate

Let $X \in \mathbb{R}^{n}$ be isotropic log-concave random vector.
Consider the matrix that consists of just one column then its norm is equal to $|X|$.
Note that $\left(\mathbb{E}|X|^{2}\right)^{1 / 2}=\sqrt{n}$. What is the large deviation
$\mathbb{P}\{|X| \geqslant t \sqrt{n}\} \leqslant ?$ for $t \geqslant C_{0}$ where $C_{0}>1$ an absolute constant.
Paouris' large deviation theorem (2005): There exist constants $C_{0}>1$, c >0 such that the following holds: Let X be an isotropic, log-concave random vector on \mathbb{R}^{n}. Then for all $t \geqslant C_{0}$,

$$
\mathbb{P}\{|X| \geqslant t \sqrt{n}\} \leqslant \exp (-c t \sqrt{n}) .
$$

Note that $\mathbb{E}|X| \sim \sqrt{n}=\left(\mathbb{E}|X|^{2}\right)^{1 / 2}$.

Norm of random matrices, for specialists

Theorem 1 remains valid for a larger class of distributions. Let $1 \leqslant p<\infty$. For a (real valued) random variable Z,

$$
\|Y\|_{\psi_{1}}=\inf \left\{C>0 ; \mathbb{E} \exp \left(|Z|^{p} / C\right) \leqslant 2\right\} .
$$

For $p=2$ so-called subgaussian; for $p=1$ a large class - for example, all log-concave distributions are ψ_{1}.
Theorem 2 Let n, N be integers and $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{N}}$ be independent random vectors in \mathbb{R}^{n} such that

$$
\sup _{i \leqslant N} \sup _{y \in S^{n-1}}\left\|\left\langle X_{i}, y\right\rangle\right\|_{\psi_{1}} \leqslant \psi .
$$

Then for every $\mathrm{k} \leqslant \mathrm{N}$ and $\mathrm{t} \geqslant 1$ one has

$$
\begin{aligned}
& \mathbb{P}\left(\Gamma(k) \geqslant \max _{i \leqslant N}\left|X_{i}\right|+C \psi t \sqrt{k} \log \frac{2 N}{k}\right) \\
& \quad \leqslant(1+2 \log m) \exp \left(-t \sqrt{k} \log \frac{2 N}{k}\right) .
\end{aligned}
$$

Empirical moments, Answer to KLS question

Theorem 3 [ALPT] Let $\left(\mathrm{X}_{\mathrm{i}}\right)_{\mathrm{i} \leqslant \mathrm{N}}$ be independent isotropic log-concave random vectors on \mathbb{R}^{n}. Then with probability at least $1-2 \exp (-c \sqrt{n})$ one has

$$
\sup _{y \in S^{n-1}} \left\lvert\, \frac{1}{N} \sum_{i=1}^{N}\left(\left|\left\langle X_{i}, y\right\rangle\right|^{2}-\mathbb{E}\left|\left\langle X_{i}, y\right\rangle\right|^{2} \mid\right) \leqslant C \sqrt{n / N}\right.,
$$

where $\mathrm{C}, \mathrm{c}>0$ are universal constants.
It uses the full strength of Theorem 1, which provided deviation inequalities for norms on sparse vectors. So in fact we reduced a concentration inequality above to deviation inequalities.
The proof by a natural approach for empirical processes.
This of course implies that for every $\varepsilon \in(0,1)$ the appropriate difference is $\leqslant \varepsilon$, whenever $N \geqslant C^{\prime} n / \varepsilon^{2}$.

Point of view of Random Matrix Theory, I

Random Matrix Theory studies matrices of finite size whose entries are random variables, traditionally they are i.i.d.; we look for limiting results as the size $\rightarrow \infty$.

In AGA: we consider finite matrices with a fixed size; typically we expect results in form of inequalities or estimates with constants independent on the size; the size might be required to be "sufficiently large" depending on parameters of the problem, and in this sense we study asymptotic behaviour.

This approach is recently actively developed in various frameworks. Notable contributions to this general direction by Mark Rudelson and Roman Vershynin

It follows from our results that properties of log-concave random vectors and spectral properties of matrices with independent log-concave rows (or columns); in high dimensions behave similarly as if the coordinates were independent; or even independent Gaussian.

Point of view of Random Matrix Theory, II

I will just give one example.
Fix $\beta \in(0,1)$ and let $\lim _{n} \frac{n}{N}=\beta$.
Bai-Yin showed that if random $n \times N$ matrices $A^{(n)}$ have i.i.d entries (which satisfy some mild moment assumptions) then

$$
\lim \lambda_{n}\left(A^{(n) *} A^{(n)}\right) / N=(1-\sqrt{\beta})^{2} \quad \lim \lambda_{1}\left(A^{(n) *} A^{(n)}\right) / N=(1+\sqrt{\beta})^{2}
$$

Point of view of Random Matrix Theory, II

I will just give one example.
Fix $\beta \in(0,1)$ and let $\lim _{n} \frac{n}{N}=\beta$.
Bai-Yin showed that if random $n \times N$ matrices $A^{(n)}$ have i.i.d entries (which satisfy some mild moment assumptions) then

$$
\lim \lambda_{n}\left(A^{(n) *} A^{(n)}\right) / N=(1-\sqrt{\beta})^{2} \quad \lim \lambda_{1}\left(A^{(n) *} A^{(n)}\right) / N=(1+\sqrt{\beta})^{2}
$$

In contrast, Theorem 3 implies quantitative estimates:
There is $C \geqslant 1$ such that setting $\beta=\frac{n}{N} \in(0,1)$, we get with overwhelming probability and for every $1 \leqslant \mathfrak{j} \leqslant n$,

$$
\left|\frac{\sqrt{\lambda_{j}}}{\sqrt{N}}-1\right| \leqslant C \sqrt{\beta}
$$

Singular Values

Let $1 \leqslant n \leqslant N$. Let $X \in \mathbb{R}^{n}$ be an isotropic log-concave random vector let X_{1}, \ldots, X_{N} be i.i.d. copies of X.
Let Γ be the $n \times N$ random matrix having the $X_{i} s$ as the columns.
$\Gamma: \ell_{2}^{N} \rightarrow \ell_{2}^{n}$ and $\Gamma^{*}: \ell_{2}^{n} \rightarrow \ell_{2}^{N}$
Singular values of $\Gamma=$ eigenvalues of $\sqrt{\Gamma \Gamma^{*}}$.

$$
\|\Gamma\|=s_{1}(\Gamma) \geqslant \ldots \geqslant s_{n}(\Gamma)=\frac{1}{\left\|\left(\Gamma^{*}\right)^{-1}\right\|}
$$

The smallest $\neq 0$ singular value of $\Gamma=$ the smallest $\neq 0$ singular value of $\Gamma^{*}=$ $\inf _{y \in S^{n-1}}\left|\Gamma^{*} y\right|$

Smallest singular numbers, square matrices

Theorem 4 [AGLPT] Let Γ be an $\mathrm{n} \times \mathrm{n}$ matrix whose columns are i.i.d. distributed acording to an isotropic log-concave random vector in \mathbb{R}^{n}. For every $\varepsilon \in(0,1)$,

$$
\mathbb{P}\left(\inf _{y \in S^{n-1}}\left|\Gamma^{*} y\right| \leqslant c \varepsilon n^{-1 / 2}\right) \leqslant C \min \left\{n \varepsilon, \varepsilon+e^{-c \sqrt{n}}\right\} \leqslant C \varepsilon^{1 / 2}
$$

if n sufficiently large, and c, C are absolute positive constants.

Smallest singular numbers, square matrices

Theorem 4 [AGLPT] Let Γ be an $\mathrm{n} \times \mathrm{n}$ matrix whose columns are i.i.d. distributed acording to an isotropic log-concave random vector in \mathbb{R}^{n}. For every $\varepsilon \in(0,1)$,

$$
\mathbb{P}\left(\inf _{y \in S^{n-1}}\left|\Gamma^{*} y\right| \leqslant c \varepsilon n^{-1 / 2}\right) \leqslant C \min \left\{n \varepsilon, \varepsilon+e^{-c \sqrt{n}}\right\} \leqslant C \varepsilon^{1 / 2}
$$

if n sufficiently large, and c, C are absolute positive constants.
One of the points is that we get probability small, with fixed n, by choice of ε.
This gives a lower bound for $s_{n}(\Gamma)$ with large probability.
Note that for a Gaussian matrix the same type of estimate is valid, with the only change in probability, which is $\leqslant C \varepsilon$ (independently by Edelstein and Szarek).

Random polytopes

Let $1 \leqslant m \leqslant n \leqslant N$ and let $X_{1}, \ldots, X_{N} \in \mathbb{R}^{n}$. Denote by Γ the $n \times N$ matrix with X_{1}, \ldots, X_{N} as columns and by $K(\Gamma)=K\left(X_{1}, \ldots, X_{N}\right)$ the convex hull of $\pm X_{1}, \ldots, \pm X_{N}$.
Recall that a centrally symmetric convex polytope is m-centrally-neighborly if any set of less than m vertices containing no-opposite pairs, is the vertex set of a face.
D. Donoho proved that the following are equivalent:
i) $\mathrm{K}(\Gamma)$ has 2 N vertices and is m-neighborly
ii) given $y \in \mathbb{R}^{n}$ of a form $y=\Gamma z$ for some $z \in \mathbb{R}^{N}$ having at most m non-zero coordinates (in other words z is m-sparse), then z is the unique solution of the problem

$$
\text { (P) } \quad \min \|t\|_{\ell_{1}}, \quad \Gamma t=y .
$$

Here the ℓ_{1}-norm is defined by $\|t\|_{\ell_{1}}=\sum_{i=1}^{N}\left|t_{i}\right|$ for any $t=\left(t_{i}\right)_{i=1}^{N} \in \mathbb{R}^{N}$.

Restricted Isometry Property

introduced by E. Candes and T. Tao (2005):
Let M be a $\mathrm{n} \times \mathrm{N}$ matrix. For any $1 \leqslant \mathrm{~m} \leqslant \min (\mathrm{n}, \mathrm{N})$, the isometry constant of M is defined as the smallest number $\delta_{m}=\delta_{\mathfrak{m}}(M)$ so that

$$
\left(1-\delta_{\mathfrak{m}}\right)|z|^{2} \leqslant|M z|^{2} \leqslant\left(1+\delta_{\mathfrak{m}}\right)|z|^{2}
$$

holds for all m-sparse vectors $z \in \mathbb{R}^{N}$. The matrix M is said to satisfy the Restricted Isometry Property of order m with parameter δ, if $0 \leqslant \delta_{\mathfrak{m}}(M)<\delta$.

It provides a quantitative sufficient condition for the basis pursuit condition (ii). Huge literature and many statements of the type: if $\delta_{2 m}(M)<\sqrt{2}-1$ then (ii) is satisfied (hence also (i)) (Candes, 2008)

Log-concave random polytopes and RIP

Let $1 \leqslant m \leqslant n \leqslant N$. Let $X_{1}, \ldots, X_{N} \in \mathbb{R}^{n}$ be i.i.d. log-concave random vectors and let Γ be the matrix having the X_{i} 's as columns. Then, for any $N \leqslant \exp (\sqrt{n})$, with probability at least $1-C \exp (-\mathrm{c} \sqrt{n})$, the polytope $\mathrm{K}(\Gamma)$ is
m-centrally-neighborly, whenever

$$
m \leqslant c n / \log ^{2}(C N / n)
$$

where $\mathrm{C}, \mathrm{c}>0$ are universal constants.
From Theorem 3 it follows that Γ satisfies the RIP of order m.
Note that the definition of the RIP agrees with the structure of Γ given by independent column vectors.

Matrices with log-concave rows

We assume as before that $n \leqslant N$, but now we wish to define the $n \times N$ matrix by rows rather than columns.
Let $Y_{1}, \ldots, Y_{n} \in \mathbb{R}^{N}$ be independent log-concave random vectors and let A be the $n \times N$ random matrix with rows Y_{i}.
This may be the case of an "exact reconstruction" problem when we consider a small number - namely n - of random measurements in \mathbb{R}^{N}, and we might be interested in the solution of an ℓ_{1}-minimiization algorithm.
But the RIP condition is expressed in terms of any subset of m columns of A, which destroys the row structure.

Matrices with log-concave rows, II

A is an $n \times N$ matrix. Let $1 \leqslant k \leqslant N$ and $1 \leqslant m \leqslant n$. Set

Theorem 5 [ALLPT] Let $1 \leqslant \mathrm{n} \leqslant \mathrm{N}$, and let A be an $\mathrm{n} \times \mathrm{N}$ random matrix with independent isotropic log-concave rows. For any integers $\mathrm{k} \leqslant \mathrm{n}, \mathrm{m} \leqslant \mathrm{N}$ and any $t \geqslant 1$, we have

$$
\mathbb{P}\left(A_{k, m} \geqslant C t \lambda\right) \leqslant \exp (-t \lambda / \sqrt{\log (3 m)})
$$

where $\lambda=\sqrt{\log \log (3 m)} \sqrt{m} \log (\mathrm{eN} / \mathrm{m})+\sqrt{\mathrm{k}} \log (\mathrm{en} / \mathrm{k})$.
The estimate is optimal, up to the factor of $\sqrt{\log \log (3 \mathrm{~m})}$. Assuming additionally unconditionality of the distributions of the rows, we can remove this factor and get a sharp estimate.

RIP

Theorem 6 [ALLPT] Let $0<\theta<1,1 \leqslant n \leqslant N$. Let A be an $n \times N$ random matrix with independent isotropic log-concave rows. There exists $\mathrm{c}(\theta)>0$ such that $\delta_{\mathfrak{m}}(A / \sqrt{n}) \leqslant \theta$ with overwhelming probability whenever $m \log ^{2}(2 N / m) \log \log 3 m \leqslant c(\theta) n$.

Uniform deviation theorem

We extend Paouris's theorem to the following bound on deviations of norm of projections of an isotropic log-concave vector, uniform over all coordinate projections P_{I} of a fixed rank.
Theorem 7 [ALLPT] Let $\mathrm{m} \leqslant \mathrm{N}$ and X be an isotropic log-concave vector in \mathbb{R}^{N}. Then for every $t \geqslant 1$ one has

$$
\mathbb{P}\left(\sup _{\substack{1 \leq\{1, \ldots N\} \\|I|=m}}\left|P_{I} X\right| \geqslant C t \sqrt{m} \log \left(\frac{e N}{m}\right)\right) \leqslant \exp \left(-t \frac{\sqrt{m}}{\sqrt{\log (e m)}} \log \left(\frac{e N}{m}\right)\right) .
$$

Actually our applications require a stronger result in which the bound for probability is improved by involving the parameter σ_{X} and its inverse σ_{X}^{-1}.

$$
\sigma_{X}(p)=\sup _{t \in S^{N-1}}\left(\mathbb{E}|\langle t, X\rangle|^{p}\right)^{1 / p}
$$

