Geometry determined by random matrices associated to high-dimensional convex bodies

Nicole Tomczak-Jaegermann

Banach space theory workshop

BIRS, March 5 - March 9, 2012

Series of joint papers by (subsets of): Radosław Adamczak, Olivier Guédon, Rafał Latała, Alexander Litvak, Alain Pajor, NT-J. Series of joint papers by (subsets of): Radosław Adamczak, Olivier Guédon, Rafał Latała, Alexander Litvak, Alain Pajor, NT-J.

Motivation coming from

- Convexity and Computational Geometry;
- Compressed sensing, in particular approximate reconstruction problems and the Restricted Isometry Property;
- Point of view of Random Matrix Theory.

Notation, Isotropicity

 \mathbb{R}^n with the canonical inner product $\langle \cdot, \cdot \rangle$. $|\cdot|$ is the natural Euclidean norm, also the normalized volume on \mathbb{R}^n , or the cardinality of a set.

By a random vector $X \in \mathbb{R}^n$, we mean a measurable function defined on a probability space and taking values in \mathbb{R}^n . \mathbb{E} is the expectation.

Notation, Isotropicity

 \mathbb{R}^n with the canonical inner product $\langle \cdot, \cdot \rangle$. $|\cdot|$ is the natural Euclidean norm, also the normalized volume on \mathbb{R}^n , or the cardinality of a set.

By a random vector $X \in \mathbb{R}^n$, we mean a measurable function defined on a probability space and taking values in \mathbb{R}^n . \mathbb{E} is the expectation.

A random vector $X \in \mathbb{R}^n$ is called isotropic if

$$\mathbb{E}\langle X,y\rangle=0,\quad \mathbb{E}\,|\langle X,y\rangle|^2=|y|^2\quad {\rm for \ all}\ y\in\mathbb{R}^n.$$

In other words, if X is centered and its covariance matrix is the identity:

$$\mathbb{E} X \otimes X = \mathrm{Id.}$$

 $(X \otimes X \text{ is the linear operator on } \mathbb{R}^n$ given by the $n \times n$ matrix $[x_i x_j]_{i,j}$ where x_i is the ith coordinnate of X.)

For every random vector X not supported on any n - 1 dimensional hyperplane, there exists an affine map T: $\mathbb{R}^n \to \mathbb{R}^n$ such that TX is isotropic.

A measure μ on \mathbb{R}^n is log-concave if for any measurable subsets A, B of \mathbb{R}^n and any $\theta \in [0, 1]$,

$$\mu(\theta A + (1 - \theta)B) \ge \mu(A)^{\theta} \mu(B)^{(1 - \theta)}$$

whenever the following Minkowski sum is measurable:

$$\theta A + (1 - \theta)B = \{\theta x_1 + (1 - \theta)x_2 : x_1 \in A, x_2 \in B\}$$

[Borell] Log-concave measures not supported by any (n-1) dimensional hyperplanes are exactly those which are absolutely continuous w.r. to the Lebesgue measure, and have log-concave densities, that is, densities of the form exp(-V(x)), where $V \colon \mathbb{R}^n \to (-\infty, \infty]$ is convex.

Examples

1. Let $K \subset \mathbb{R}^n$ be a convex body (= compact convex, with non-empty interior) (symmetric means -K = K).

X a random vector uniformly distributed in K. Then the corresponding probability measure on \mathbb{R}^n

$$\mu_{\mathsf{K}}(\mathsf{A}) = \frac{|\mathsf{K} \cap \mathsf{A}|}{|\mathsf{K}|}$$

is log-concave (by Brunn-Minkowski).

Moreover, for every convex body K there exists an affine map T such that μ_{TK} is isotropic.

Examples

1. Let $K \subset \mathbb{R}^n$ be a convex body (= compact convex, with non-empty interior) (symmetric means -K = K).

X a random vector uniformly distributed in K. Then the corresponding probability measure on \mathbb{R}^n

$$\mu_{\mathsf{K}}(\mathsf{A}) = \frac{|\mathsf{K} \cap \mathsf{A}|}{|\mathsf{K}|}$$

is log-concave (by Brunn-Minkowski).

Moreover, for every convex body K there exists an affine map T such that μ_{TK} is isotropic.

2. The Gaussian vector $G = (g_1, ..., g_n)$, where g_i 's have $\mathcal{N}(0, 1)$ distribution, is isotropic and log-concave.

1. Let $K \subset \mathbb{R}^n$ be a convex body (= compact convex, with non-empty interior) (symmetric means -K = K).

X a random vector uniformly distributed in K. Then the corresponding probability measure on \mathbb{R}^n

$$\mu_{\mathsf{K}}(\mathsf{A}) = \frac{|\mathsf{K} \cap \mathsf{A}|}{|\mathsf{K}|}$$

is log-concave (by Brunn-Minkowski).

Moreover, for every convex body K there exists an affine map T such that μ_{TK} is isotropic.

2. The Gaussian vector $G = (g_1, ..., g_n)$, where g_i 's have $\mathcal{N}(0, 1)$ distribution, is isotropic and log-concave.

3. Similarly the vector $X = (\xi_1, ..., \xi_n)$, where ξ_i 's have exponential distribution (i.e., with density $f(t) = \frac{1}{\sqrt{2}} \exp(-\sqrt{2}|t|)$, for $t \in \mathbb{R}$) is isotropic and log-concave.

n, N \geq 1, X $\in \mathbb{R}^n$ isotropic log-concave, $(X_i)_{i \leq N}$ independent copies of X. By law of large numbers, the empirical covariance matrix converges to Id.

$$\frac{1}{N}\sum_{i=1}^N X_i\otimes X_i \longrightarrow Id \qquad \text{ as } N\to\infty \quad \text{a.s.}$$

Kannan-Lovász-Simonovits asked (around 1995), motivated by a problem of complexity in computing volume in high dimension:

 $X \in \mathbb{R}^n$ isotropic log-concave. Given $\varepsilon \in (0, 1)$ estimate N for which

$$\left\|\frac{1}{N}\sum_{i=1}^N X_i\otimes X_i - \mathsf{Id}\right\| \leqslant \epsilon$$

holds with high probability.

Kannan-Lovász-Simonovits asked (around 1995), motivated by a problem of complexity in computing volume in high dimension:

 $X \in \mathbb{R}^n$ isotropic log-concave. Given $\epsilon \in (0,1)$ estimate N for which

$$\sup_{y \in S^{n-1}} \Big| \frac{1}{N} \sum_{i=1}^N |\langle X_i, y \rangle|^2 - 1 \Big| = \Big\| \frac{1}{N} \sum_{i=1}^N X_i \otimes X_i - Id \Big\| \leqslant \epsilon$$

holds with high probability.

Kannan-Lovász-Simonovits asked (around 1995), motivated by a problem of complexity in computing volume in high dimension:

 $X \in \mathbb{R}^n$ isotropic log-concave. Given $\epsilon \in (0,1)$ estimate N for which

$$\sup_{y\in S^{n-1}} \Big|\frac{1}{N}\sum_{i=1}^N |\langle X_i,y\rangle|^2 - 1\Big| = \Big\|\frac{1}{N}\sum_{i=1}^N X_i\otimes X_i - \text{Id}\Big\|\leqslant \epsilon$$

holds with high probability.

KLS showed that for any $\varepsilon, \delta \in (0, 1)$ (under a finite third moment assumption), $N \ge (C/\varepsilon\delta)n^2$ gives the required approximation, with probability $1 - \delta$.

Bourgain (1996): for any $\varepsilon, \delta \in (0, 1)$, there exists $C(\varepsilon, \delta) > 0$ such that $N = C(\varepsilon, \delta) n \log^3 n$ gives the approximation with probability $1 - \delta$.

The question generated a lot of activity; Improvement of powers of logarithms by: Rudelson, Giannopoulos, Paouris...

Random matrices with i.i.d.log-concave columns

 $n, N \ge 1, X \in \mathbb{R}^n$ isotropic log-concave, $(X_i)_{i \le N}$ independent copies of X. Γ is a $n \times N$ matrix with X_i as columns;

$$\label{eq:sup_yestimate} \begin{split} \mbox{sup}_{y\in S^{n-1}}\langle (\sum_{i=1}^N X_i\otimes X_i)y,y\rangle = \mbox{sup}_{y\in S^{n-1}}\langle \Gamma\,\Gamma^*y,y\rangle = \|\Gamma:\ell_2^N\to \ell_2^n\|^2, \end{split}$$
 with the operator norm $\|\Gamma\|.$

Question An upper bound for $\|\Gamma\|$, with some (large?) probability?

Random matrices with i.i.d.log-concave columns

n, N \ge 1, X $\in \mathbb{R}^n$ isotropic log-concave, $(X_i)_{i \le N}$ independent copies of X. Γ is a n \times N matrix with X_i as columns;

$$\label{eq:sup_y} \begin{split} & \text{sup}_{y\in S^{n-1}}\langle (\sum_{i=1}^N X_i\otimes X_i)y,y\rangle = \text{sup}_{y\in S^{n-1}}\langle \Gamma\,\Gamma^*y,y\rangle = \|\Gamma:\ell_2^N\to \ell_2^n\|^2, \\ & \text{with the operator norm } \|\Gamma\|. \end{split}$$

Question An upper bound for $\|\Gamma\|$, with some (large?) probability?

Note $\mathbb{E} \|\Gamma\|^2 \ge \mathbb{E} |X_i|^2 = n$ (comparing with norms of columns); denoting the rows of Γ by Y_j we also have

$$\mathbb{E}\|\Gamma\|^2 \geqslant \max_{j \leqslant N} \mathbb{E}|Y_j|^2 \geqslant \frac{1}{n} \sum_{j=1}^n \mathbb{E}|Y_j|^2 \geqslant N.$$

Consequently, with positive probability, $\|\Gamma\| \ge max(\sqrt{n}, \sqrt{N})$.

We will show: with overwhelming probability, this is asymptotically the right order: $\|\Gamma\| \leq C \max(\sqrt{n}, \sqrt{N}).$

The same behaviour as e.g., random Gaussian matrix (with N(0, 1) independent entries)

Norm of matrices with i.i.d. log-concave columns

Given $1 \leq k \leq N$, we let

$$\Gamma(k) = \sup_{\substack{z \in S^{N-1} \\ |\operatorname{supp} z| \leqslant k}} |\Gamma z|,$$

the norm of Γ on k-sparse vectors.

Theorem 1 [ALPT] Let $n \ge 1$ and $1 \le N \le e^{\sqrt{n}}$. Let $X \in \mathbb{R}^n$ be isotropic log-concave random vector and X_1, \ldots, X_N be i.i.d. copies of X. Let Γ be the $n \times N$ random matrix having the X_i s as the columns. Then for any $t \ge 1$, the following holds with probability $\ge 1 - e^{-ct\sqrt{n}}$:

$$\forall k \leqslant N \, : \, \Gamma(k) \leqslant Ct\left(\sqrt{n} + \sqrt{k}\log \frac{2N}{k}
ight),$$

where C,c>0 are absolute constants. In particular, with the same probability,

$$\|\Gamma\| \leqslant \operatorname{Ct}(\sqrt{n} + \sqrt{N}).$$

The norm estimate is optimal, up to universal constants, as seen for the exponential distribution.

Let $X \in \mathbb{R}^n$ be isotropic log-concave random vector.

Consider the matrix that consists of just one column then its norm is equal to |X|.

Note that $(\mathbb{E}|X|^2)^{1/2} = \sqrt{n}$. What is the large deviation

 $\mathbb{P}\left\{ \left|X\right| \geqslant t\sqrt{n} \right\} \leqslant ? \quad \text{for } t \geqslant C_0 \text{ where } C_0 > 1 \text{ an absolute constant.}$

Let $X \in \mathbb{R}^n$ be isotropic log-concave random vector.

Consider the matrix that consists of just one column then its norm is equal to |X|.

Note that $(\mathbb{E}|X|^2)^{1/2} = \sqrt{n}$. What is the large deviation

 $\mathbb{P}\left\{ \left|X\right| \geqslant t\sqrt{n} \right\} \leqslant ? \quad \text{for } t \geqslant C_0 \text{ where } C_0 > 1 \text{ an absolute constant.}$

Paouris' large deviation theorem (2005): *There exist constants* $C_0 > 1$, c > 0 *such that the following holds: Let* X *be an isotropic, log-concave random vector on* \mathbb{R}^n . Then for all $t \ge C_0$,

$$\mathbb{P}\left\{|X| \geqslant t\sqrt{n}\right\} \leqslant \text{exp}(-ct\sqrt{n}).$$

Note that $\mathbb{E}|X| \sim \sqrt{n} = (\mathbb{E}|X|^2)^{1/2}$.

Norm of random matrices, for specialists

Theorem 1 remains valid for a larger class of distributions. Let $1 \le p < \infty$. For a (real valued) random variable Z,

 $\|Y\|_{\psi_1} = \inf\{C > 0; \mathbb{E} \exp(|Z|^p/C) \leq 2\}.$

For p = 2 so-called *subgaussian*; for p = 1 a large class – for example, all log-concave distributions are ψ_1 .

Theorem 2 Let n, N be integers and $X_1, ..., X_N$ be independent random vectors in \mathbb{R}^n such that

$$\sup_{i \leqslant N} \sup_{y \in S^{n-1}} \| \langle X_i, y \rangle \|_{\psi_1} \leqslant \psi.$$

Then for every $k \leq N$ and $t \geq 1$ one has

$$\begin{split} \mathbb{P} & \left(\Gamma(k) \geqslant \max_{i \leqslant N} |X_i| + C \psi t \sqrt{k} \log \frac{2N}{k} \right) \\ \leqslant \quad (1 + 2 \log m) \exp \left(- t \sqrt{k} \log \frac{2N}{k} \right). \end{split}$$

Theorem 3 [ALPT] Let $(X_i)_{i \leq N}$ be independent isotropic log-concave random vectors on \mathbb{R}^n . Then with probability at least $1 - 2\exp(-c\sqrt{n})$ one has

$$\sup_{y\in S^{n-1}}\Big|\frac{1}{N}\sum_{i=1}^{N}\Big(|\langle X_{i},y\rangle|^{2}-\mathbb{E}|\langle X_{i},y\rangle|^{2}\Big|\Big)\leqslant C\sqrt{n/N},$$

where C, c > 0 are universal constants.

It uses the full strength of Theorem 1, which provided deviation inequalities for *norms on sparse vectors*. So in fact we reduced a concentration inequality above to deviation inequalities.

The proof by a natural approach for empirical processes.

This of course implies that for every $\epsilon \in (0, 1)$ the appropriate difference is $\leq \epsilon$, whenever $N \ge C'n/\epsilon^2$.

Random Matrix Theory studies matrices of finite size whose entries are random variables, traditionally they are *i.i.d.*; we look for **limiting** results as the size $\rightarrow \infty$.

In AGA: we consider finite matrices with a fixed size; typically we expect results in form of inequalities or estimates with constants independent on the size; the size might be required to be "sufficiently large" depending on parameters of the problem, and in this sense we study **asymptotic** behaviour.

This approach is recently actively developed in various frameworks. Notable contributions to this general direction by Mark Rudelson and Roman Vershynin

It follows from our results that properties of log-concave random vectors and spectral properties of matrices with independent log-concave rows (or columns); in high dimensions behave similarly as if the coordinates were independent; or even independent Gaussian.

I will just give one example.

Fix $\beta \in (0, 1)$ and let $\lim_{n} \frac{n}{N} = \beta$.

Bai-Yin showed that if random $n \times N$ matrices $A^{(n)}$ have i.i.d entries (which satisfy some mild moment assumptions) then

$$\label{eq:lim} \ensuremath{\text{lim}} \lambda_n(A^{(n)*}A^{(n)})/N = (1-\sqrt{\beta})^2 \qquad \ensuremath{\text{lim}} \lambda_1(A^{(n)*}A^{(n)})/N = (1+\sqrt{\beta})^2$$

I will just give one example.

Fix $\beta \in (0, 1)$ and let $\lim_{n} \frac{n}{N} = \beta$.

Bai-Yin showed that if random $n \times N$ matrices $A^{(n)}$ have i.i.d entries (which satisfy some mild moment assumptions) then

$$\label{eq:lim} \mbox{lim}\,\lambda_n(A^{(n)*}A^{(n)})/N = (1-\sqrt{\beta})^2 \qquad \mbox{lim}\,\lambda_1(A^{(n)*}A^{(n)})/N = (1+\sqrt{\beta})^2$$

In contrast, Theorem 3 implies quantitative estimates:

There is $C\geqslant 1$ such that setting $\beta=\frac{n}{N}\in(0,1),$ we get with overwhelming probability and for every $1\leqslant j\leqslant n,$

$$\left|\frac{\sqrt{\lambda_j}}{\sqrt{N}} - 1\right| \leqslant C\sqrt{\beta}.$$

Let $1 \leqslant n \leqslant N$. Let $X \in \mathbb{R}^n$ be an isotropic log-concave random vector let X_1, \ldots, X_N be i.i.d. copies of X. Let Γ be the $n \times N$ random matrix having the X_i s as the columns. $\Gamma : \ell_2^N \to \ell_2^n$ and $\Gamma^* : \ell_2^n \to \ell_2^N$

Singular values of Γ = eigenvalues of $\sqrt{\Gamma\Gamma^*}$.

$$\|\Gamma\| = s_1(\Gamma) \ge \ldots \ge s_n(\Gamma) = \frac{1}{\|(\Gamma^*)^{-1}\|}.$$

The smallest $\ne 0$ singular value of $\Gamma =$ the smallest $\ne 0$ singular value of $\Gamma^* = inf_{y\in S^{n-1}} \, |\Gamma^*y|$

Theorem 4 [AGLPT] Let Γ be an $n \times n$ matrix whose columns are i.i.d. distributed according to an isotropic log-concave random vector in \mathbb{R}^n . For every $\varepsilon \in (0, 1)$,

$$\mathbb{P}\left(\inf_{y\in S^{n-1}}|\Gamma^*y|\leqslant c\varepsilon n^{-1/2}\right)\leqslant C\min\left\{n\varepsilon,\varepsilon+e^{-c\sqrt{n}}\right\}\leqslant C\varepsilon^{1/2},$$

if n sufficiently large, and c, C are absolute positive constants.

Theorem 4 [AGLPT] Let Γ be an $n \times n$ matrix whose columns are i.i.d. distributed according to an isotropic log-concave random vector in \mathbb{R}^n . For every $\varepsilon \in (0, 1)$,

$$\mathbb{P}\left(\inf_{\mathbf{y}\in S^{n-1}}|\Gamma^*\mathbf{y}|\leqslant c\varepsilon n^{-1/2}\right)\leqslant C\min\left\{n\varepsilon,\varepsilon+e^{-c\sqrt{n}}\right\}\leqslant C\varepsilon^{1/2},$$

if n *sufficiently large, and* c, C *are absolute positive constants.*

One of the points is that we get probability small, with fixed n, by choice of ε .

This gives a lower bound for $s_n(\Gamma)$ with large probability. Note that for a Gaussian matrix the same type of estimate is valid, with the only change in probability, which is $\leq C\varepsilon$ (independently by Edelstein and Szarek). Let $1 \leq m \leq n \leq N$ and let $X_1, \ldots, X_N \in \mathbb{R}^n$. Denote by Γ the $n \times N$ matrix with X_1, \ldots, X_N as columns and by $K(\Gamma) = K(X_1, \ldots, X_N)$ the convex hull of $\pm X_1, \ldots, \pm X_N$.

Recall that a centrally symmetric convex polytope is m-centrally-neighborly if any set of less than m vertices containing no-opposite pairs, is the vertex set of a face. D. Donoho proved that the following are equivalent:

- i) $K(\Gamma)$ has 2N vertices and is m-neighborly
- *ii*) given $y \in \mathbb{R}^n$ of a form $y = \Gamma z$ for some $z \in \mathbb{R}^N$ having at most m non-zero coordinates (in other words z is m-sparse), then z is the unique solution of the problem

(P) $\min \|t\|_{\ell_1}, \quad \Gamma t = y.$

Here the ℓ_1 -norm is defined by $\|t\|_{\ell_1} = \sum_{i=1}^N |t_i|$ for any $t = (t_i)_{i=1}^N \in \mathbb{R}^N$.

introduced by E. Candes and T. Tao (2005):

Let M be a $n \times N$ matrix. For any $1 \le m \le \min(n, N)$, the isometry constant of M is defined as the smallest number $\delta_m = \delta_m(M)$ so that

$$(1 - \delta_{\mathfrak{m}})|z|^2 \leqslant |Mz|^2 \leqslant (1 + \delta_{\mathfrak{m}})|z|^2$$

holds for all m-sparse vectors $z \in \mathbb{R}^N$. The matrix M is said to satisfy the Restricted Isometry Property of order m with parameter δ , if $0 \leq \delta_m(M) < \delta$.

It provides a quantitative sufficient condition for the basis pursuit condition (ii). Huge literature and many statements of the type: if $\delta_{2m}(M) < \sqrt{2} - 1$ then (ii) is satisfied (hence also (i)) (Candes, 2008)

Let $1 \leq m \leq n \leq N$. Let $X_1, \ldots, X_N \in \mathbb{R}^n$ be i.i.d. log-concave random vectors and let Γ be the matrix having the X_i 's as columns. Then, for any $N \leq \exp(\sqrt{n})$, with probability at least $1 - C \exp(-c\sqrt{n})$, the polytope $K(\Gamma)$ is m-centrally-neighborly, whenever

 $\mathfrak{m} \leq \mathfrak{cn}/\log^2(\mathfrak{CN}/\mathfrak{n}),$

where C, c > 0 are universal constants.

From Theorem 3 it follows that Γ satisfies the RIP of order m.

Note that the definition of the RIP agrees with the structure of Γ given by independent column vectors.

We assume as before that $n \leq N$, but now we wish to define the $n \times N$ matrix by rows rather than columns.

Let $Y_1, \ldots, Y_n \in \mathbb{R}^N$ be independent log-concave random vectors and let A be the $n \times N$ random matrix with rows Y_i .

This may be the case of an "exact reconstruction" problem when we consider a small number – namely n – of random measurements in \mathbb{R}^N , and we might be interested in the solution of an ℓ_1 -minimization algorithm.

But the RIP condition is expressed in terms of any subset of m columns of A, which destroys the row structure.

A is an $n \times N$ matrix. Let $1 \leq k \leq N$ and $1 \leq m \leq n$. Set

$$A_{k,m}^2 = \sup_{y \in S^{N-1} \atop |supp \ y| \leqslant m} \sup_{I \subset \{1,\dots,n\} \atop |I| = k} \sum_{i \in I} |\langle Y_i, y \rangle|^2.$$

Theorem 5 [ALLPT] Let $1 \le n \le N$, and let A be an $n \times N$ random matrix with independent isotropic log-concave rows. For any integers $k \le n$, $m \le N$ and any $t \ge 1$, we have

 $\mathbb{P}\left(A_{k,\mathfrak{m}} \geqslant Ct\lambda\right) \leqslant exp(-t\lambda/\sqrt{log(3\mathfrak{m})}),$

where $\lambda = \sqrt{\text{log} \, \text{log}(3m)} \sqrt{m} \, \text{log}(eN/m) + \sqrt{k} \, \text{log}(en/k).$

The estimate is optimal, up to the factor of $\sqrt{\log \log(3m)}$. Assuming additionally unconditionality of the distributions of the rows, we can remove this factor and get a sharp estimate.

Theorem 6 [ALLPT] Let $0 < \theta < 1$, $1 \le n \le N$. Let A be an $n \times N$ random matrix with independent isotropic log-concave rows. There exists $c(\theta) > 0$ such that $\delta_m(A/\sqrt{n}) \le \theta$ with overwhelming probability whenever

 $m \log^2(2N/m) \log \log 3m \leqslant c(\theta)n.$

We extend Paouris's theorem to the following bound on deviations of norm of projections of an isotropic log-concave vector, uniform over all coordinate projections P_I of a fixed rank.

Theorem 7 [ALLPT] Let $m \leq N$ and X be an isotropic log-concave vector in \mathbb{R}^N . Then for every $t \geq 1$ one has

$$\mathbb{P}\left(\sup_{I \subset \{1,\dots,N\} \atop |I| = m} |P_I X| \ge Ct\sqrt{m} \log\left(\frac{eN}{m}\right)\right) \leqslant \exp\left(-t\frac{\sqrt{m}}{\sqrt{\log(em)}} \log\left(\frac{eN}{m}\right)\right).$$

Actually our applications require a stronger result in which the bound for probability is improved by involving the parameter σ_X and its inverse σ_X^{-1} .

$$\sigma_{\mathbf{X}}(\mathbf{p}) = \sup_{\mathbf{t} \in S^{N-1}} (\mathbb{E}|\langle \mathbf{t}, \mathbf{X} \rangle|^{\mathbf{p}})^{1/\mathbf{p}}.$$