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Notation, Isotropicity

Rn with the canonical inner product 〈 ·, ·〉. | · | is the natural Euclidean norm,
also the normalized volume on Rn, or the cardinality of a set.

By a random vector X ∈ Rn, we mean a measurable function defined on a
probability space and taking values in Rn. E is the expectation.

A random vector X ∈ Rn is called isotropic if

E〈X,y〉 = 0, E |〈X,y〉|2 = |y|2 for all y ∈ Rn.

In other words, if X is centered and its covariance matrix is the identity:

EX⊗ X = Id.

(X⊗ X is the linear operator on Rn given by the n× n matrix [xi xj]i,j where xi is
the ith coordinnate of X.)

For every random vector X not supported on any n− 1 dimensional hyperplane,
there exists an affine map T : Rn → Rn such that TX is isotropic.
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Notation, log-concavity

A measure µ on Rn is log-concave if for any measurable subsets A,B of Rn and
any θ ∈ [0, 1],

µ(θA+ (1 − θ)B) > µ(A)θµ(B)(1−θ)

whenever the following Minkowski sum is measurable:

θA+ (1 − θ)B = {θx1 + (1 − θ)x2 : x1 ∈ A, x2 ∈ B}

[Borell] Log-concave measures not supported by any (n− 1) dimensional
hyperplanes are exactly those which are absolutely continuous w.r. to the
Lebesgue measure, and have log-concave densities, that is, densities of the form
exp(−V(x)), where V : Rn → (−∞,∞] is convex.
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Examples

1. Let K ⊂ Rn be a convex body ( = compact convex, with non-empty interior)
(symmetric means −K = K).
X a random vector uniformly distributed in K. Then the corresponding probability
measure on Rn

µK(A) =
|K ∩A|

|K|

is log-concave (by Brunn-Minkowski).
Moreover, for every convex body K there exists an affine map T such that µTK is
isotropic.

2. The Gaussian vector G = (g1, ...,gn), where gi’s have N(0, 1) distribution, is
isotropic and log-concave.

3. Similarly the vector X = (ξ1, ..., ξn), where ξi’s have exponential distribution
(i.e., with density f(t) = 1√

2
exp(−

√
2|t|), for t ∈ R)

is isotropic and log-concave.
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KLS question, I

n,N > 1, X ∈ Rn isotropic log-concave, (Xi)i6N independent copies of X.
By law of large numbers, the empirical covariance matrix converges to Id.

1
N

N∑
i=1

Xi ⊗ Xi −→ Id as N→∞ a.s.
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KLS question, II

Kannan-Lovász-Simonovits asked (around 1995), motivated by a problem of
complexity in computing volume in high dimension:
X ∈ Rn isotropic log-concave. Given ε ∈ (0, 1) estimate N for which

sup
y∈Sn−1

∣∣∣ 1
N

N∑
i=1

|〈Xi,y〉|2 − 1
∣∣∣ =

∥∥∥ 1
N

N∑
i=1

Xi ⊗ Xi − Id
∥∥∥ 6 ε

holds with high probability.

KLS showed that for any ε, δ ∈ (0, 1) (under a finite third moment assumption),
N > (C/εδ)n2 gives the required approximation, with probability 1 − δ.

Bourgain (1996): for any ε, δ ∈ (0, 1), there exists C(ε, δ) > 0 such that
N = C(ε, δ)n log3 n gives the approximation with probability 1 − δ.

The question generated a lot of activity; Improvement of powers of logarithms by:
Rudelson, Giannopoulos, Paouris...
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Random matrices with i.i.d.log-concave columns
n,N > 1, X ∈ Rn isotropic log-concave, (Xi)i6N independent copies of X.
Γ is a n×N matrix with Xi as columns;

supy∈Sn−1〈(
∑N
i=1 Xi ⊗ Xi)y,y〉 = supy∈Sn−1〈Γ Γ∗y,y〉 = ‖Γ : `N2 → `n2 ‖2,

with the operator norm ‖Γ‖.
Question An upper bound for ‖Γ‖, with some (large?) probability?

Note E‖Γ‖2 > E|Xi|
2 = n (comparing with norms of columns);

denoting the rows of Γ by Yj we also have

E‖Γ‖2 > max
j6N

E|Yj|
2 >

1
n

n∑
j=1

E|Yj|
2 > N.

Consequently, with positive probability, ‖Γ‖ > max(
√
n,
√
N).

We will show: with overwhelming probability, this is asymptotically the right order:

‖Γ‖ 6 Cmax(
√
n,
√
N).

The same behaviour as e.g., random Gaussian matrix (with N(0, 1) independent
entries)
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Norm of matrices with i.i.d. log-concave columns

Given 1 6 k 6 N, we let
Γ(k) = sup

z∈SN−1
| supp z|6k

|Γz|,

the norm of Γ on k-sparse vectors.
Theorem 1 [ALPT] Let n > 1 and 1 6 N 6 e

√
n. Let X ∈ Rn be isotropic

log-concave random vector and X1, . . . ,XN be i.i.d. copies of X. Let Γ be the
n×N random matrix having the Xis as the columns. Then for any t > 1, the
following holds with probability > 1 − e−ct

√
n:

∀k 6 N : Γ(k) 6 Ct

(√
n+
√
k log

2N
k

)
,

where C, c > 0 are absolute constants. In particular, with the same probability,

‖Γ‖ 6 Ct(
√
n+
√
N).

The norm estimate is optimal, up to universal constants, as seen for the
exponential distribution.
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Paouris’ large deviation estimate

Let X ∈ Rn be isotropic log-concave random vector.
Consider the matrix that consists of just one column then its norm is equal to |X|.

Note that (E|X|2)1/2 =
√
n . What is the large deviation

P
{

|X| > t
√
n
}

6? for t > C0 where C0 > 1 an absolute constant.

Paouris’ large deviation theorem (2005): There exist constants C0 > 1, c > 0
such that the following holds: Let X be an isotropic, log-concave random vector on
Rn. Then for all t > C0,

P
{
|X| > t

√
n
}

6 exp(−ct
√
n).

Note that E|X| ∼
√
n = (E|X|2)1/2.
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Norm of random matrices, for specialists

Theorem 1 remains valid for a larger class of distributions. Let 1 6 p <∞. For a
(real valued) random variable Z,

‖Y‖ψ1 = inf {C > 0 ; E exp (|Z|p/C) 6 2} .

For p = 2 so-called subgaussian; for p = 1 a large class – for example, all
log-concave distributions are ψ1.

Theorem 2 Let n, N be integers and X1, . . . ,XN be independent random vectors
in Rn such that

sup
i6N

sup
y∈Sn−1

‖〈Xi,y〉‖ψ1 6 ψ.

Then for every k 6 N and t > 1 one has

P
(
Γ(k) > max

i6N
|Xi| + Cψt

√
k log

2N
k

)
6 (1 + 2 logm) exp

(
−t
√
k log

2N
k

)
.
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Empirical moments, Answer to KLS question

Theorem 3 [ALPT] Let (Xi)i6N be independent isotropic log-concave random
vectors on Rn. Then with probability at least 1 − 2 exp(−c

√
n) one has

sup
y∈Sn−1

∣∣∣ 1
N

N∑
i=1

(
|〈Xi,y〉|2 − E|〈Xi,y〉|2

∣∣∣) 6 C
√
n/N,

where C, c > 0 are universal constants.

It uses the full strength of Theorem 1, which provided deviation inequalities for
norms on sparse vectors. So in fact we reduced a concentration inequality above
to deviation inequalities.
The proof by a natural approach for empirical processes.
This of course implies that for every ε ∈ (0, 1) the appropriate difference is 6 ε,
whenever N > C ′n/ε2.
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Point of view of Random Matrix Theory, I

Random Matrix Theory studies matrices of finite size whose entries are random
variables, traditionally they are i.i.d.; we look for limiting results as the size→∞.

In AGA: we consider finite matrices with a fixed size; typically we expect results in
form of inequalities or estimates with constants independent on the size; the size
might be required to be “sufficiently large” depending on parameters of the
problem, and in this sense we study asymptotic behaviour.

This approach is recently actively developed in various frameworks. Notable
contributions to this general direction by Mark Rudelson and Roman Vershynin

It follows from our results that properties of log-concave random vectors and
spectral properties of matrices with independent log-concave rows (or columns);
in high dimensions behave similarly as if the coordinates were independent; or
even independent Gaussian.
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Point of view of Random Matrix Theory, II

I will just give one example.
Fix β ∈ (0, 1) and let limn n

N = β.
Bai-Yin showed that if random n×N matrices A(n) have i.i.d entries (which
satisfy some mild moment assumptions) then

lim λn(A(n)∗A(n))/N = (1 −
√
β)2 lim λ1(A

(n)∗A(n))/N = (1 +
√
β)2

In contrast, Theorem 3 implies quantitative estimates:
There is C > 1 such that setting β = n

N ∈ (0, 1), we get with overwhelming
probability and for every 1 6 j 6 n,∣∣∣∣∣

√
λj√
N

− 1

∣∣∣∣∣ 6 C
√
β.
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Singular Values

Let 1 6 n 6 N. Let X ∈ Rn be an isotropic log-concave random vector
let X1, . . . ,XN be i.i.d. copies of X.
Let Γ be the n×N random matrix having the Xis as the columns.
Γ : `N2 → `n2 and Γ∗ : `n2 → `N2

Singular values of Γ = eigenvalues of
√
ΓΓ∗.

‖Γ‖ = s1(Γ) > . . . > sn(Γ) =
1

‖(Γ∗)−1‖
.

The smallest 6= 0 singular value of Γ = the smallest 6= 0 singular value of Γ∗ =
infy∈Sn−1 |Γ∗y|
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Smallest singular numbers, square matrices

Theorem 4 [AGLPT] Let Γ be an n× n matrix whose columns are i.i.d.
distributed acording to an isotropic log-concave random vector in Rn. For every
ε ∈ (0, 1),

P
(

inf
y∈Sn−1

|Γ∗y| 6 cεn−1/2
)

6 Cmin
{
nε, ε+ e−c

√
n
}

6 Cε1/2,

if n sufficiently large, and c, C are absolute positive constants.

One of the points is that we get probability small, with fixed n, by choice of ε.

This gives a lower bound for sn(Γ) with large probability.
Note that for a Gaussian matrix the same type of estimate is valid, with the only
change in probability, which is 6 Cε (independently by Edelstein and Szarek).
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Random polytopes

Let 1 6 m 6 n 6 Nand let X1, . . . ,XN ∈ Rn. Denote by Γ the n×N matrix with
X1, . . . ,XN as columns and by K(Γ) = K(X1, . . . ,XN) the convex hull of
±X1, . . . ,±XN.
Recall that a centrally symmetric convex polytope is m-centrally-neighborly if any
set of less than m vertices containing no-opposite pairs, is the vertex set of a face.
D. Donoho proved that the following are equivalent:

i) K(Γ) has 2N vertices and is m-neighborly

ii) given y ∈ Rn of a form y = Γz for some z ∈ RN having at most m non-zero
coordinates (in other words z is m-sparse), then z is the unique solution of
the problem

(P) min ‖t‖`1 , Γt = y.

Here the `1-norm is defined by ‖t‖`1 =
∑N
i=1 |ti| for any t = (ti)

N
i=1 ∈ RN.
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Restricted Isometry Property

introduced by E. Candes and T. Tao (2005):

Let M be a n×N matrix. For any 1 6 m 6 min(n,N), the isometry constant of
M is defined as the smallest number δm = δm(M) so that

(1 − δm)|z|2 6 |Mz|2 6 (1 + δm)|z|2

holds for all m-sparse vectors z ∈ RN. The matrix M is said to satisfy the
Restricted Isometry Property of order m with parameter δ, if 0 6 δm(M) < δ.

It provides a quantitative sufficient condition for the basis pursuit condition (ii).
Huge literature and many statements of the type: if δ2m(M) <

√
2 − 1 then (ii) is

satisfied (hence also (i)) (Candes, 2008)
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Log-concave random polytopes and RIP

Let 1 6 m 6 n 6 N. Let X1, . . . ,XN ∈ Rn be i.i.d. log-concave random vectors
and let Γ be the matrix having the Xi’s as columns. Then, for any N 6 exp(

√
n),

with probability at least 1 − C exp(−c
√
n), the polytope K(Γ) is

m-centrally-neighborly, whenever

m 6 cn
/

log2(CN/n),

where C, c > 0 are universal constants.

From Theorem 3 it follows that Γ satisfies the RIP of order m.

Note that the definition of the RIP agrees with the structure of Γ given by
independent column vectors.
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Matrices with log-concave rows

We assume as before that n 6 N, but now we wish to define the n×N matrix by
rows rather than columns.
Let Y1, . . . ,Yn ∈ RN be independent log-concave random vectors and let A be
the n×N random matrix with rows Yi.
This may be the case of an “exact reconstruction” problem when we consider a
small number – namely n – of random measurements in RN, and we might be
interested in the solution of an `1-minimiization algorithm.
But the RIP condition is expressed in terms of any subset of m columns of A,
which destroys the row structure.
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Matrices with log-concave rows, II

A is an n×N matrix. Let 1 6 k 6 N and 1 6 m 6 n. Set

A2
k,m = sup

y∈SN−1
| supp y|6m

sup
I⊂{1,...,n}

|I|=k

∑
i∈I

|〈Yi,y〉|2.

Theorem 5 [ALLPT] Let 1 6 n 6 N, and let A be an n×N random matrix with
independent isotropic log-concave rows. For any integers k 6 n, m 6 N and any
t > 1, we have

P (Ak,m > Ctλ) 6 exp(−tλ/
√

log(3m)),

where λ =
√

log log(3m)
√
m log(eN/m) +

√
k log(en/k).

The estimate is optimal, up to the factor of
√

log log(3m). Assuming additionally
unconditionality of the distributions of the rows, we can remove this factor and get
a sharp estimate.

Nicole Tomczak-Jaegermann (U of A) BIRS, March 5–9, 2012 21 / 23



RIP

Theorem 6 [ALLPT] Let 0 < θ < 1, 1 6 n 6 N. Let A be an n×N random
matrix with independent isotropic log-concave rows. There exists c(θ) > 0 such
that δm(A/

√
n) 6 θ with overwhelming probability whenever

m log2(2N/m) log log 3m 6 c(θ)n.
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Uniform deviation theorem

We extend Paouris’s theorem to the following bound on deviations of norm of
projections of an isotropic log-concave vector, uniform over all coordinate
projections PI of a fixed rank.
Theorem 7 [ALLPT] Let m 6 N and X be an isotropic log-concave vector in RN.
Then for every t > 1 one has

P

 sup
I⊂{1,...,N}

|I|=m

|PIX| > Ct
√
m log

(
eN

m

) 6 exp

(
−t

√
m√

log(em)
log
(
eN

m

))
.

Actually our applications require a stronger result in which the bound for
probability is improved by involving the parameter σX and its inverse σ−1

X .

σX(p) = sup
t∈SN−1

(E|〈t,X〉|p)1/p.
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