Haskell Rosenthal (University of Texas at Austin)
Title: A new direction in classical harmonic analysis with applications to the hyperinvariant subspace problem
Abstract: Definitions. Let X be a subspace of $L^{0}=L^{0}[0,2 \pi] . X$ is called measurable set determined (msd) if $f \in X, f=0$ on a set of positive measure implies $f=0$ a.e. X is called open set determined (osd) if $f \in X, f=0$ on a non-empty open subset of $[0,2 \pi]$ implies $f=0$ a.e. $E \subset Z$ is called measurable set determining (msd) if L_{E}^{1} is msd. (Notation: For B a 'natural' Frechet space contained in $L^{1}, B_{E}=\{f \in B: \hat{f}(n)=0$ all $n \notin E\}$). A subset E of \mathbb{N} is called summable if $\sum_{n \in E} 1 / n<\infty$. It is called co-summable if $\mathbb{N} \backslash E$ is summable. For $E \subset \mathbb{N} \cup\{0\}, s E=E \cup-E$.

Theorem 1. (A) $[\mathrm{R}]$ If E is summable, then $L_{s E}^{1}$ is msd.
(B) [Mandelbroit, 1935] If E is co-summable, then $C_{s E}^{\infty}$ is not osd.

Definition. Let $\beta: \mathbb{Z} \rightarrow \mathbb{R}^{+}$satisfy
(i) $\beta(0)=1, \beta(n) \geq 1$ and $\beta(-n)=\beta(n)$ for all n.
(ii) $\lim _{n \rightarrow \infty} \frac{\beta(n+1)}{\beta(n)}=1$,

$$
L_{\beta}^{2}=\left\{f \in L^{2}[0,2 \pi]:\left(\sum_{n=-\infty}^{\infty}|\hat{f}(n)|^{2} \beta_{n}^{2}\right)^{1 / 2}=\|f\|_{L_{\beta}^{2}}<\infty\right\}
$$

Theorem 2. There exists a β as above such that letting $T=M_{e^{i \theta}}$ in L_{β}^{2}, then
(i) T is unitarily equivalent to $T^{-1}=M_{e^{-i \theta}}$ and similar to T^{*},
(ii) $\left\|T^{n}\right\|=e^{\frac{n}{\log (n+1)}}$ for all $n \geq 1$,
(iii) L_{β}^{2} is msd .

The sequence $\left(\beta_{n}\right)$ is defined as follows: For $n \geq 1,1 \leq j \leq n$,
(i) $\beta_{n^{2}+j}=e^{\frac{j}{\log (n+1)}}$
(ii) $\beta_{n^{2}+n+j}=e^{\frac{n+1-j}{\log (n+1)}}$
(iii) $\beta_{n^{2}}=1, \beta_{-n}=\beta_{n}$.

Conjecture T and T^{-1} have no common non-trivial invariant subspace.

