Haskell Rosenthal (University of Texas at Austin)

Title: A new direction in classical harmonic analysis with applications to the hyperinvariant subspace problem

Abstract: **Definitions.** Let X be a subspace of $L^0 = L^0[0, 2\pi]$. X is called measurable set determined (msd) if $f \in X$, f = 0 on a set of positive measure implies f = 0 a.e. X is called open set determined (osd) if $f \in X$, f = 0 on a non-empty open subset of $[0, 2\pi]$ implies f = 0 a.e. $E \subset Z$ is called measurable set determining (msd) if L^1_E is msd. (Notation: For B a 'natural' Frechet space contained in L^1 , $B_E = \{f \in B : \hat{f}(n) = 0 \text{ all } n \notin E\}$). A subset E of N is called summable if $\sum_{n \in E} 1/n < \infty$. It is called co-summable if $\mathbb{N} \setminus E$ is summable. For $E \subset \mathbb{N} \cup \{0\}$, $sE = E \cup -E$.

Theorem 1. (A) [R] If E is summable, then L_{sE}^1 is msd. (B) [Mandelbroit, 1935] If E is co-summable, then C_{sE}^{∞} is not osd.

Definition. Let $\beta : \mathbb{Z} \to \mathbb{R}^+$ satisfy (i) $\beta(0) = 1, \beta(n) \ge 1$ and $\beta(-n) = \beta(n)$ for all n. (ii) $\lim_{n\to\infty} \frac{\beta(n+1)}{\beta(n)} = 1$,

$$L_{\beta}^{2} = \{ f \in L^{2}[0, 2\pi] : \left(\sum_{n = -\infty}^{\infty} |\hat{f}(n)|^{2} \beta_{n}^{2} \right)^{1/2} = \|f\|_{L_{\beta}^{2}} < \infty \}$$

Theorem 2. There exists a β as above such that letting $T = M_{e^{i\theta}}$ in L^2_{β} , then (i) T is unitarily equivalent to $T^{-1} = M_{e^{-i\theta}}$ and similar to T^* , (ii) $||T^n|| = e^{\frac{n}{\log(n+1)}}$ for all $n \ge 1$, (iii) L^2_{β} is msd.

The sequence (β_n) is defined as follows: For $n \ge 1, 1 \le j \le n$, (i) $\beta_{n^2+j} = e^{\frac{j}{\log(n+1)}}$ (ii) $\beta_{n^2+n+j} = e^{\frac{n+1-j}{\log(n+1)}}$ (iii) $\beta_{n^2} = 1, \beta_{-n} = \beta_n$.

Conjecture T and T^{-1} have no common non-trivial invariant subspace.