Almost invariant subspaces of operators in Banach spaces

Alexey I. Popov

March 8, 2012

Let *X* be a Banach space, $T \in L(X)$ operator. *Recall*: A (closed) subspace *Y* of *X* is *T*-*invariant* if $TY \subseteq Y$.

Let *X* be a Banach space, $T \in L(X)$ operator. *Recall*: A (closed) subspace *Y* of *X* is *T*-*invariant* if $TY \subseteq Y$.

Definition (Androulakis, P., Tcaciuc, Troitsky, '09)

A subspace $Y \subseteq X$ is *T*-almost invariant if $TY \subseteq Y + F$ where $\dim(F) < \infty$.

Let *X* be a Banach space, $T \in L(X)$ operator. *Recall*: A (closed) subspace *Y* of *X* is *T*-*invariant* if $TY \subseteq Y$.

Definition (Androulakis, P., Tcaciuc, Troitsky, '09)

A subspace $Y \subseteq X$ is *T*-almost invariant if $TY \subseteq Y + F$ where $\dim(F) < \infty$.

<u>*Note*</u>: If dim $Y < \infty$ or codim $Y < \infty$ then Y is T-almost invariant for any T.

Let *X* be a Banach space, $T \in L(X)$ operator. *Recall*: A (closed) subspace *Y* of *X* is *T*-*invariant* if $TY \subseteq Y$.

Definition (Androulakis, P., Tcaciuc, Troitsky, '09)

A subspace $Y \subseteq X$ is *T*-almost invariant if $TY \subseteq Y + F$ where $\dim(F) < \infty$.

<u>*Note*</u>: If dim $Y < \infty$ or codim $Y < \infty$ then Y is T-almost invariant for any T.

Definition (Androulakis, P., Tcaciuc, Troitsky, '09)

Y is a *half-space* if dim $Y = \text{codim } Y = \infty$.

In Hilbert space: *Y* is *T*-almost invariant \iff for the decomposition $\mathcal{H} = Y \oplus Y^{\perp}$

$$T = \begin{bmatrix} * & * \\ R & * \end{bmatrix}$$
, where rank $R < \infty$.

In Hilbert space: *Y* is *T*-almost invariant \iff for the decomposition $\mathcal{H} = Y \oplus Y^{\perp}$

$$T = \begin{bmatrix} * & * \\ R & * \end{bmatrix}$$
, where rank $R < \infty$.

Brown, Pearcy ('71): For any $T \in \mathcal{B}(\mathcal{H})$ and $\varepsilon > 0$, there is a half-space $Y \subseteq \mathcal{H}$ such that, for the decomposition $\mathcal{H} = Y \oplus Y^{\perp}$,

$$T = \begin{bmatrix} * & * \\ K & * \end{bmatrix}$$
, where $K \in \mathcal{K}(\mathcal{H})$ and $||K|| \leq \varepsilon$.

In Hilbert space: *Y* is *T*-almost invariant \iff for the decomposition $\mathcal{H} = Y \oplus Y^{\perp}$

$$T = \begin{bmatrix} * & * \\ R & * \end{bmatrix}$$
, where rank $R < \infty$.

Brown, Pearcy ('71): For any $T \in \mathcal{B}(\mathcal{H})$ and $\varepsilon > 0$, there is a half-space $Y \subseteq \mathcal{H}$ such that, for the decomposition $\mathcal{H} = Y \oplus Y^{\perp}$,

$$T = \begin{bmatrix} * & * \\ K & * \end{bmatrix}$$
, where $K \in \mathcal{K}(\mathcal{H})$ and $||K|| \leq \varepsilon$.

Voiculescu ('76): In fact, can do

$$T = \begin{bmatrix} * & K_1 \\ K_2 & * \end{bmatrix}, \text{ where } K_1, K_2 \in \mathcal{K}(\mathcal{H}) \text{ and } \|K_1\|, \|K_2\| \leqslant \varepsilon.$$

Example. $S \in L(\ell_2)$ the unilateral shift, $S(x_1, x_2, ...) = (0, x_1, x_2, ...)$.

Example. $S \in L(\ell_2)$ the unilateral shift, $S(x_1, x_2, ...) = (0, x_1, x_2, ...)$. Obvious invariant subspaces: $\overline{\text{span}}\{e_k : k \ge n\}$ where $n \in \mathbb{N}$.

Example. $S \in L(\ell_2)$ the unilateral shift, $S(x_1, x_2, ...) = (0, x_1, x_2, ...)$. Obvious invariant subspaces: $\overline{\text{span}}\{e_k : k \ge n\}$ where $n \in \mathbb{N}$. *Fact*: *S* has invariant half-spaces.

Example. $S \in L(\ell_2)$ the unilateral shift, $S(x_1, x_2, ...) = (0, x_1, x_2, ...)$. Obvious invariant subspaces: $\overline{\text{span}}\{e_k : k \ge n\}$ where $n \in \mathbb{N}$. *Fact*: *S* has invariant half-spaces.

Example. $D \in L(\ell_2)$ is the *Donoghue shift* if $D(x_1, x_2, ...) = (0, w_1x_1, w_2x_2, ...)$ where $0 \neq |w_i| \downarrow 0$.

Example. $S \in L(\ell_2)$ the unilateral shift, $S(x_1, x_2, ...) = (0, x_1, x_2, ...)$. Obvious invariant subspaces: $\overline{\text{span}}\{e_k : k \ge n\}$ where $n \in \mathbb{N}$. *Fact*: *S* has invariant half-spaces.

Example. $D \in L(\ell_2)$ is the *Donoghue shift* if $D(x_1, x_2, ...) = (0, w_1x_1, w_2x_2, ...)$ where $0 \neq |w_i| \downarrow 0$. *Fact*: All invariant subspaces for *D* are of the form $\overline{\text{span}}\{e_k : k \ge n\}$ where $n \in \mathbb{N}$. In particular: *D* has no invariant half-spaces.

Example. $S \in L(\ell_2)$ the unilateral shift, $S(x_1, x_2, ...) = (0, x_1, x_2, ...)$. Obvious invariant subspaces: $\overline{\text{span}}\{e_k : k \ge n\}$ where $n \in \mathbb{N}$. *Fact*: *S* has invariant half-spaces.

Example. $D \in L(\ell_2)$ is the *Donoghue shift* if $D(x_1, x_2, ...) = (0, w_1x_1, w_2x_2, ...)$ where $0 \neq |w_i| \downarrow 0$. *Fact*: All invariant subspaces for *D* are of the form $\overline{\text{span}}\{e_k : k \ge n\}$ where $n \in \mathbb{N}$. In particular: *D* has no invariant half-spaces.

<u>*Remark.*</u> D is a compact quasinilpotent operator without eigenvalues.

Theorem (Androulakis, P., Tcaciuc, Troitsky, '09)

Let $T \in L(X)$ is such that

- T has no eigenvalues;
- Of the some ε > 0, the unbounded component of the resolvent set contains {0 < |z| < ε};</p>
- **③** there is $e \in X$ such that $T^n e \notin \overline{span}\{T^k e : k \neq n\}$ for all $n \in \mathbb{N}$.

Then T has an almost invariant half-space.

Theorem (Androulakis, P., Tcaciuc, Troitsky, '09)

Let $T \in L(X)$ is such that

- T has no eigenvalues;
- If for some ε > 0, the unbounded component of the resolvent set contains {0 < |z| < ε};</p>
- **(a)** there is $e \in X$ such that $T^n e \notin \overline{span}\{T^k e : k \neq n\}$ for all $n \in \mathbb{N}$.

Then T has an almost invariant half-space.

Corollary (Androulakis, P., Tcaciuc, Troitsky, '09)

Every Donoghue shift has an almost invariant half-space.

Theorem (Androulakis, P., Tcaciuc, Troitsky, '09)

Let $T \in L(X)$ is such that

Of the some ε > 0, the unbounded component of the resolvent set contains {0 < |z| < ε};</p>

③ there is $e \in X$ such that $T^n e \notin \overline{span}\{T^k e : k \neq n\}$ for all $n \in \mathbb{N}$.

Then T has an almost invariant half-space.

Corollary (Androulakis, P., Tcaciuc, Troitsky, '09)

Every Donoghue shift has an almost invariant half-space.

Every polynomially compact on a reflexive Banach space has an almost invariant half-space.

Every polynomially compact on a reflexive Banach space has an almost invariant half-space.

<u>**Recall</u>**: $T \in L(X)$ is *triangularizable* if there is a chain C of subspaces in X such that</u>

- \bigcirc C is maximal;
- 2 every $Y \in C$ is *T*-invariant.

Every polynomially compact on a reflexive Banach space has an almost invariant half-space.

<u>**Recall</u>**: $T \in L(X)$ is *triangularizable* if there is a chain C of subspaces in X such that</u>

- \bigcirc C is maximal;
- **2** every $Y \in C$ is *T*-invariant.

Theorem (Marcoux, P., Radjavi)

Let $T \in L(X)$ be quasinilpotent, triangularizable and injective. Then T has an almost invariant half-space. If X is reflexive, injectivity is not needed.

Every polynomially compact on a reflexive Banach space has an almost invariant half-space.

<u>**Recall</u>**: $T \in L(X)$ is *triangularizable* if there is a chain C of subspaces in X such that</u>

- C is maximal;
- **2** every $Y \in C$ is *T*-invariant.

Theorem (Marcoux, P., Radjavi)

Let $T \in L(X)$ be quasinilpotent, triangularizable and injective. Then *T* has an almost invariant half-space. If *X* is reflexive, injectivity is not needed.

This shows in particular: For the class of quasinilpotent operators on the reflexive spaces, the problem of existence of almost invariant half-spaces is a *weakening* of the Invariant Subspace Problem.

Definition

 $T \in \mathcal{B}(\mathcal{H})$ is *triangular* if the matrix of *T* is upper-triangular with respect to some ONB $(e_n)_{n=1}^{\infty}$.

Definition

 $T \in \mathcal{B}(\mathcal{H})$ is *triangular* if the matrix of *T* is upper-triangular with respect to some ONB $(e_n)_{n=1}^{\infty}$.

Definition

 $T \in \mathcal{B}(\mathcal{H})$ is *bitriangular* if both *T* and *T*^{*} are triangular, perhaps with respect to different bases.

Definition

 $T \in \mathcal{B}(\mathcal{H})$ is *triangular* if the matrix of *T* is upper-triangular with respect to some ONB $(e_n)_{n=1}^{\infty}$.

Definition

 $T \in \mathcal{B}(\mathcal{H})$ is *bitriangular* if both *T* and *T*^{*} are triangular, perhaps with respect to different bases.

Davidson, Herrero ('90): *T* is bitriangular $\iff T$ is quasisimilar to its Jordan form J(T),

$$J(T) = \bigoplus_{n \ge 1} \left(\bigoplus_{k \ge 1} (\lambda_n I_k + J_k)^{\alpha_{n,k}} \right), \quad \text{where } (\lambda_n)_{n \ge 1} = \sigma_p(T).$$

If $T \in \mathcal{B}(\mathcal{H})$ is bitriangular then either $T = \lambda I + F$ with $F \in \mathcal{F}(\mathcal{H})$ or T has a hyperinvariant half-space. In both cases, T admits an invariant half-space.

Definition

A subspace $Y \subseteq X$ is A-almost invariant if for any $T \in A$ there is F_T with dim $F_T < \infty$ such that $TY \subseteq Y + F_T$.

Definition

A subspace $Y \subseteq X$ is A-almost invariant if for any $T \in A$ there is F_T with dim $F_T < \infty$ such that $TY \subseteq Y + F_T$. Minimal dimension of F_T is called the **defect** of Y for T.

Definition

A subspace $Y \subseteq X$ is A-almost invariant if for any $T \in A$ there is F_T with dim $F_T < \infty$ such that $TY \subseteq Y + F_T$. Minimal dimension of F_T is called the **defect** of Y for T.

Theorem (P., '10)

Let A be norm closed. The defects for a (fixed) A-almost invariant half-space corresponding to different $T \in A$ are uniformly bounded.

Definition

A subspace $Y \subseteq X$ is A-almost invariant if for any $T \in A$ there is F_T with dim $F_T < \infty$ such that $TY \subseteq Y + F_T$. Minimal dimension of F_T is called the **defect** of Y for T.

Theorem (P., '10)

Let A be norm closed. The defects for a (fixed) A-almost invariant half-space corresponding to different $T \in A$ are uniformly bounded.

Theorem (P., '10)

Let A be norm-closed, finitely generated, commutative. If A has an almost invariant half-space then A has an invariant half-space.

Let $A \subseteq L(X)$ be norm-closed. If A has an almost invariant half-space that is complemented in X then A has an invariant half-space.

In Hilbert space:

<u>*Recall*</u>: A subspace $Y \subseteq \mathcal{H}$ is *reducing* for $T \in \mathcal{B}(\mathcal{H})$ if Y is invariant of both T and T^* .

In Hilbert space:

<u>*Recall*</u>: A subspace $Y \subseteq \mathcal{H}$ is *reducing* for $T \in \mathcal{B}(\mathcal{H})$ if Y is invariant of both T and T^* .

Definition

A subspace $Y \subseteq \mathcal{H}$ is *T*-almost reducing if *Y* is almost invariant for both *T* and *T*^{*}.

In Hilbert space:

<u>*Recall*</u>: A subspace $Y \subseteq \mathcal{H}$ is *reducing* for $T \in \mathcal{B}(\mathcal{H})$ if Y is invariant of both T and T^* .

Definition

A subspace $Y \subseteq \mathcal{H}$ is *T*-almost reducing if *Y* is almost invariant for both *T* and *T*^{*}.

Example (Marcoux, P., Radjavi)

There exists an operator $T \in \mathcal{B}(\mathcal{H})$ without reducing subspaces such that the norm-closed algebra $\mathcal{A}(T)$ generated by *T* has plenty of almost reducing half-spaces.

Johnson, Parrott ('72): If $TP - PT \in \mathcal{K}(\mathcal{H})$ for every projection *P* in a masa then T = D + K for some *D* in the masa and $K \in \mathcal{K}(\mathcal{H})$.

Johnson, Parrott ('72): If $TP - PT \in \mathcal{K}(\mathcal{H})$ for every projection *P* in a masa then T = D + K for some *D* in the masa and $K \in \mathcal{K}(\mathcal{H})$.

Theorem (Marcoux, P., Radjavi)

Let \mathcal{M} be a masa and $T \in \mathcal{B}(\mathcal{H})$ be such that $TP - PT \in \mathcal{F}(\mathcal{H})$ for all projections $P \in \mathcal{M}$. Then T = D + F for some $D \in \mathcal{M}$ and $F \in \mathcal{F}(\mathcal{H})$.

Johnson, Parrott ('72): If $TP - PT \in \mathcal{K}(\mathcal{H})$ for every projection *P* in a masa then T = D + K for some *D* in the masa and $K \in \mathcal{K}(\mathcal{H})$.

Theorem (Marcoux, P., Radjavi)

Let \mathcal{M} be a masa and $T \in \mathcal{B}(\mathcal{H})$ be such that $TP - PT \in \mathcal{F}(\mathcal{H})$ for all projections $P \in \mathcal{M}$. Then T = D + F for some $D \in \mathcal{M}$ and $F \in \mathcal{F}(\mathcal{H})$.

Corollary (Marcoux, P., Radjavi)

If $T \in \mathcal{B}(\mathcal{H})$ is such that every half-space in \mathcal{H} is *T*-almost invariant then $T = \lambda I + F$ where $F \in \mathcal{F}(\mathcal{H})$.