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Joint work with: L. Marcoux and H. Radjavi.

Let X be a Banach space, T ∈ L(X) operator.
Recall : A (closed) subspace Y of X is T-invariant if TY ⊆ Y.

Definition (Androulakis, P., Tcaciuc, Troitsky, ’09)

A subspace Y ⊆ X is T-almost invariant if TY ⊆ Y + F where
dim(F) <∞.

Note: If dim Y <∞ or codim Y <∞ then Y is T-almost invariant for
any T.

Definition (Androulakis, P., Tcaciuc, Troitsky, ’09)

Y is a half-space if dim Y = codim Y =∞.
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Question: Does every T ∈ L(X) have almost invariant half-spaces?

In Hilbert space: Y is T-almost invariant⇐⇒ for the decomposition
H = Y ⊕ Y⊥

T =

[
∗ ∗
R ∗

]
, where rank R <∞.

Brown, Pearcy (’71): For any T ∈ B(H) and ε > 0, there is a
half-space Y ⊆ H such that, for the decomposition H = Y ⊕ Y⊥,

T =

[
∗ ∗
K ∗

]
, where K ∈ K(H) and ‖K‖ 6 ε.

Voiculescu (’76): In fact, can do

T =

[
∗ K1

K2 ∗

]
, where K1,K2 ∈ K(H) and ‖K1‖, ‖K2‖ 6 ε.
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Note: T ∈ L(X) has an almost invariant half-space ⇐⇒ a finite-rank
perturbation of T has an invariant half-space.

Example. S ∈ L(`2) the unilateral shift, S(x1, x2, . . . ) = (0, x1, x2, . . . ).
Obvious invariant subspaces: span{ek : k > n} where n ∈ N.
Fact : S has invariant half-spaces.

Example. D ∈ L(`2) is the Donoghue shift if
D(x1, x2, . . . ) = (0,w1x1,w2x2, . . . ) where 0 6= |wi| ↓ 0.
Fact : All invariant subspaces for D are of the form span{ek : k > n}
where n ∈ N.
In particular: D has no invariant half-spaces.

Remark . D is a compact quasinilpotent operator without eigenvalues.
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Theorem (Androulakis, P., Tcaciuc, Troitsky, ’09)

Let T ∈ L(X) is such that
1 T has no eigenvalues;
2 for some ε > 0, the unbounded component of the resolvent set

contains {0 < |z| < ε};
3 there is e ∈ X such that Tne 6∈ span{Tke : k 6= n} for all n ∈ N.

Then T has an almost invariant half-space.

Corollary (Androulakis, P., Tcaciuc, Troitsky, ’09)

Every Donoghue shift has an almost invariant half-space.
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Theorem (Marcoux, P., Radjavi)

Every polynomially compact on a reflexive Banach space has an
almost invariant half-space.

Recall: T ∈ L(X) is triangularizable if there is a chain C of subspaces
in X such that

1 C is maximal;
2 every Y ∈ C is T-invariant.

Theorem (Marcoux, P., Radjavi)

Let T ∈ L(X) be quasinilpotent, triangularizable and injective. Then T
has an almost invariant half-space.
If X is reflexive, injectivity is not needed.

This shows in particular: For the class of quasinilpotent operators on
the reflexive spaces, the problem of existence of almost invariant
half-spaces is a weakening of the Invariant Subspace Problem.
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Question: Does every triangularizable operator have almost invariant
half-spaces?

Definition

T ∈ B(H) is triangular if the matrix of T is upper-triangular with
respect to some ONB (en)

∞
n=1.

Definition

T ∈ B(H) is bitriangular if both T and T∗ are triangular, perhaps with
respect to different bases.

Davidson, Herrero (’90): T is bitriangular ⇐⇒ T is quasisimilar to its
Jordan form J(T),

J(T) =
⊕
n>1

(⊕
k>1

(λnIk + Jk)
αn,k

)
, where (λn)n>1 = σp(T).
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Theorem (Marcoux, P., Radjavi)

If T ∈ B(H) is bitriangular then either T = λI + F with F ∈ F(H) or T
has a hyperinvariant half-space. In both cases, T admits an invariant
half-space.

8/12



Let A ⊆ L(X) be an algebra.

Definition
A subspace Y ⊆ X is A-almost invariant if for any T ∈ A there is FT

with dim FT <∞ such that TY ⊆ Y + FT . Minimal dimension of FT is
called the defect of Y for T.

Theorem (P., ’10)

Let A be norm closed. The defects for a (fixed) A-almost invariant
half-space corresponding to different T ∈ A are uniformly bounded.

Theorem (P., ’10)

Let A be norm-closed, finitely generated, commutative. If A has an
almost invariant half-space then A has an invariant half-space.
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Theorem (Marcoux, P., Radjavi)

Let A ⊆ L(X) be norm-closed. If A has an almost invariant half-space
that is complemented in X then A has an invariant half-space.
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In Hilbert space:

Recall : A subspace Y ⊆ H is reducing for T ∈ B(H) if Y is invariant
of both T and T∗.

Definition
A subspace Y ⊆ H is T-almost reducing if Y is almost invariant for
both T and T∗.

Example (Marcoux, P., Radjavi)

There exists an operator T ∈ B(H) without reducing subspaces such
that the norm-closed algebra A(T) generated by T has plenty of
almost reducing half-spaces.
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Question: Suppose T has many almost invariant subspaces. What
can we say about T?

Johnson, Parrott (’72): If TP− PT ∈ K(H) for every projection P in a
masa then T = D + K for some D in the masa and K ∈ K(H).

Theorem (Marcoux, P., Radjavi)

LetM be a masa and T ∈ B(H) be such that TP− PT ∈ F(H) for all
projections P ∈M. Then T = D + F for some D ∈M and F ∈ F(H).

Corollary (Marcoux, P., Radjavi)

If T ∈ B(H) is such that every half-space in H is T-almost invariant
then T = λI + F where F ∈ F(H).
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