Strictly singular non-compact operators in asymptotic ℓ_p spaces

Anna Pelczar-Barwacz

Jagiellonian University Kraków

March 5, 2012

- D.Kutzarova, A.Manoussakis, A.Pelczar-Barwacz, Isomorphisms and strictly singular operators in mixed Tsirelson spaces, J. Math. Anal. Appl. 388 (2012) 1040-1060.
- A.Pelczar-Barwacz, Strictly singular operators in asymptotic l_p spaces, submitted.

Identify a list of classes of Banach space which are:

Identify a list of classes of Banach space which are:

• *hereditary*, i.e. if a space belongs to a given class, then all its subspaces belong to the same class as well,

Identify a list of classes of Banach space which are:

- *hereditary*, i.e. if a space belongs to a given class, then all its subspaces belong to the same class as well,
- inevitable, i.e. any space has a subspace in one of the classes,

Identify a list of classes of Banach space which are:

- *hereditary*, i.e. if a space belongs to a given class, then all its subspaces belong to the same class as well,
- inevitable, i.e. any space has a subspace in one of the classes,
- defined in terms of family of bounded operators on/in a space.

Identify a list of classes of Banach space which are:

- *hereditary*, i.e. if a space belongs to a given class, then all its subspaces belong to the same class as well,
- inevitable, i.e. any space has a subspace in one of the classes,
- defined in terms of family of bounded operators on/in a space.

 \circ Gowers' dichotomy: spaces with unconditional basis versus hereditarily indecomposable spaces.

Identify a list of classes of Banach space which are:

- *hereditary*, i.e. if a space belongs to a given class, then all its subspaces belong to the same class as well,
- inevitable, i.e. any space has a subspace in one of the classes,
- defined in terms of family of bounded operators on/in a space.

 \circ Gowers' dichotomy: spaces with unconditional basis versus hereditarily indecomposable spaces.

 \circ A.Tcaciuc: strongly $\ell_{p}\text{-}\mathsf{asymptotic}$ spaces versus uniformly inhomogeneous spaces.

Identify a list of classes of Banach space which are:

- *hereditary*, i.e. if a space belongs to a given class, then all its subspaces belong to the same class as well,
- inevitable, i.e. any space has a subspace in one of the classes,
- defined in terms of family of bounded operators on/in a space.

 \circ Gowers' dichotomy: spaces with unconditional basis versus hereditarily indecomposable spaces.

 \circ A.Tcaciuc: strongly ℓ_{p} -asymptotic spaces versus uniformly inhomogeneous spaces.

 \circ V.Ferenczi and C.Rosendal: minimality versus tightness (different types).

Identify a list of classes of Banach space which are:

- *hereditary*, i.e. if a space belongs to a given class, then all its subspaces belong to the same class as well,
- inevitable, i.e. any space has a subspace in one of the classes,
- defined in terms of family of bounded operators on/in a space.

 \circ Gowers' dichotomy: spaces with unconditional basis versus hereditarily indecomposable spaces.

 \circ A.Tcaciuc: strongly ℓ_p -asymptotic spaces versus uniformly inhomogeneous spaces.

• V.Ferenczi and C.Rosendal: minimality versus tightness (different types).

• Th.Schlumprecht: Class 1 and Class 2.

• quasiminimal if any subspaces Y, Z of X contain further subspaces $Y' \subset Y, Z' \subset Z$ which are isomorphic,

- quasiminimal if any subspaces Y, Z of X contain further subspaces $Y' \subset Y, Z' \subset Z$ which are isomorphic,
- sequentially minimal if any subspace of X admits a basic sequence (x_n) such that any subspace of X contains a basic sequence equivalent to some subsequence of (x_n) ,

- quasiminimal if any subspaces Y, Z of X contain further subspaces $Y' \subset Y, Z' \subset Z$ which are isomorphic,
- sequentially minimal if any subspace of X admits a basic sequence (x_n) such that any subspace of X contains a basic sequence equivalent to some subsequence of (x_n) ,
- minimal if any subspace of X contains an isomorphic copy of X.

- quasiminimal if any subspaces Y, Z of X contain further subspaces $Y' \subset Y, Z' \subset Z$ which are isomorphic,
- sequentially minimal if any subspace of X admits a basic sequence (x_n) such that any subspace of X contains a basic sequence equivalent to some subsequence of (x_n) ,
- minimal if any subspace of X contains an isomorphic copy of X.

Theorem (W.T.Gowers '02, V.Ferenczi and C.Rosendal '09)

- quasiminimal if any subspaces Y, Z of X contain further subspaces $Y' \subset Y, Z' \subset Z$ which are isomorphic,
- sequentially minimal if any subspace of X admits a basic sequence (x_n) such that any subspace of X contains a basic sequence equivalent to some subsequence of (x_n) ,
- minimal if any subspace of X contains an isomorphic copy of X.

Theorem (W.T.Gowers '02, V.Ferenczi and C.Rosendal '09)

Any Banach space with an unconditional basis contains a block subspace Y with one of the following properties:

• no two disjointly supported block subspaces of Y are isomorphic (example of W.T.Gowers),

- quasiminimal if any subspaces Y, Z of X contain further subspaces $Y' \subset Y, Z' \subset Z$ which are isomorphic,
- sequentially minimal if any subspace of X admits a basic sequence (x_n) such that any subspace of X contains a basic sequence equivalent to some subsequence of (x_n) ,
- minimal if any subspace of X contains an isomorphic copy of X.

Theorem (W.T.Gowers '02, V.Ferenczi and C.Rosendal '09)

- no two disjointly supported block subspaces of Y are isomorphic (example of W.T.Gowers),
- Y is quasiminimal and no two block subspaces of Y with disjoint ranges are comparable,

- quasiminimal if any subspaces Y, Z of X contain further subspaces $Y' \subset Y, Z' \subset Z$ which are isomorphic,
- sequentially minimal if any subspace of X admits a basic sequence (x_n) such that any subspace of X contains a basic sequence equivalent to some subsequence of (x_n) ,
- minimal if any subspace of X contains an isomorphic copy of X.

Theorem (W.T.Gowers '02, V.Ferenczi and C.Rosendal '09)

- no two disjointly supported block subspaces of Y are isomorphic (example of W.T.Gowers),
- Y is quasiminimal and no two block subspaces of Y with disjoint ranges are comparable,
- Y is sequentially minimal with no minimal subspace (Tsirelson space),

- quasiminimal if any subspaces Y, Z of X contain further subspaces $Y' \subset Y, Z' \subset Z$ which are isomorphic,
- sequentially minimal if any subspace of X admits a basic sequence (x_n) such that any subspace of X contains a basic sequence equivalent to some subsequence of (x_n) ,
- minimal if any subspace of X contains an isomorphic copy of X.

Theorem (W.T.Gowers '02, V.Ferenczi and C.Rosendal '09)

- no two disjointly supported block subspaces of Y are isomorphic (example of W.T.Gowers),
- Y is quasiminimal and no two block subspaces of Y with disjoint ranges are comparable,
- Y is sequentially minimal with no minimal subspace (Tsirelson space),
- Y is minimal $(\ell_p, c_0, \text{Schlumprecht space, dual to Tsirelson space})$.

Let X be a Banach space with a basis.

Anna Pelczar-Barwacz Strictly singular non-compact operators in asymptotic ℓ_p spaces

Let X be a Banach space with a basis.

 X is in Class 1, if any normalized block sequence in X has a subsequence equivalent to a subsequence of the basis (lp, c0, Tsirelson space and its dual),

Let X be a Banach space with a basis.

- X is in Class 1, if any normalized block sequence in X has a subsequence equivalent to a subsequence of the basis (lp, c0, Tsirelson space and its dual),
- X is in Class 2, if any block subspace of X contains normalized block sequences (x_n) , (y_n) such that the mapping $x_n \mapsto y_n$ extends to a bounded strictly singular operator (Schlumprecht space).

Let X be a Banach space with a basis.

- X is in Class 1, if any normalized block sequence in X has a subsequence equivalent to a subsequence of the basis (lp, c0, Tsirelson space and its dual),
- X is in Class 2, if any block subspace of X contains normalized block sequences (x_n) , (y_n) such that the mapping $x_n \mapsto y_n$ extends to a bounded strictly singular operator (Schlumprecht space).

Theorem [KMP]

Tzafriri space is saturated with subspaces of Class 1.

Let X be a Banach space with a basis.

- X is in Class 1, if any normalized block sequence in X has a subsequence equivalent to a subsequence of the basis (lp, c0, Tsirelson space and its dual),
- X is in Class 2, if any block subspace of X contains normalized block sequences (x_n) , (y_n) such that the mapping $x_n \mapsto y_n$ extends to a bounded strictly singular operator (Schlumprecht space).

Theorem [KMP]

Tzafriri space is saturated with subspaces of Class 1. In general: let X be a mixed Tsirelson space $T[(\mathcal{A}_n, \frac{c_n}{\sqrt[q]{n}})_n]$, with some q > 1 and $(c_n) \subset (0, 1)$.

- If $c_n \rightarrow 0$, then X is of Class 2 (Schlumprecht space type).
- If inf $c_n > 0$, then X is saturated with asymptotic ℓ_p spaces of Class 1, with $\frac{1}{p} + \frac{1}{q} = 1$ (Tzafriri space type).

Schreier families $(S_{\alpha})_{\alpha < \omega_1}$ (D.Alspach, S.Argyros)

$$\mathcal{S}_0 = \{\{n\}: n \in \mathbb{N}\} \cup \{\emptyset\}$$
$$\mathcal{S}_{\alpha+1} = \{\bigcup_{i=1}^k F_i: k \le F_1 < \dots < F_k, F_i \in \mathcal{S}_\alpha, k \in \mathbb{N}\}, \alpha < \omega_1$$

Given a limit $\alpha < \omega_1$ pick $\alpha_n \nearrow \alpha$ and let

$$\mathcal{S}_{\alpha} = \{ F \in \mathcal{S}_{\alpha_n} : n \leq F, n \in \mathbb{N} \}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Schreier families $(S_{\alpha})_{\alpha < \omega_1}$ (D.Alspach, S.Argyros)

$$\mathcal{S}_0 = \{\{n\}: n \in \mathbb{N}\} \cup \{\emptyset\}$$
$$\mathcal{S}_{\alpha+1} = \{\bigcup_{i=1}^k F_i: k \le F_1 < \dots < F_k, F_i \in \mathcal{S}_\alpha, k \in \mathbb{N}\}, \alpha < \omega_1$$

Given a limit $\alpha < \omega_1$ pick $\alpha_n \nearrow \alpha$ and let

$$\mathcal{S}_{\alpha} = \{ F \in \mathcal{S}_{\alpha_{n}} : n \leq F, n \in \mathbb{N} \}$$

Let X be a Banach space with a basis.

A sequence (x_1, \ldots, x_k) in X is called S_{α} -admissible, if it is a block sequence with (min supp x_1, \ldots , min supp x_k) $\in S_{\alpha}$.

Schreier families $(S_{\alpha})_{\alpha < \omega_1}$ (D.Alspach, S.Argyros)

$$\begin{aligned} \mathcal{S}_0 &= \{\{n\}: \ n \in \mathbb{N}\} \cup \{\emptyset\} \\ \mathcal{S}_{\alpha+1} &= \{\cup_{i=1}^k F_i: \ k \le F_1 < \dots < F_k, \ F_i \in \mathcal{S}_\alpha, \ k \in \mathbb{N}\}, \ \alpha < \omega_1 \end{aligned}$$

Given a limit $\alpha < \omega_1$ pick $\alpha_n \nearrow \alpha$ and let

$$\mathcal{S}_{\alpha} = \{ F \in \mathcal{S}_{\alpha_{n}} : n \leq F, n \in \mathbb{N} \}$$

Let X be a Banach space with a basis.

A sequence (x_1, \ldots, x_k) in X is called S_{α} -*admissible*, if it is a block sequence with (min supp x_1, \ldots , min supp x_k) $\in S_{\alpha}$.

An (S_{α}, θ) -operation, $0 < \theta < 1$, is an operation which associates with any vectors $f_1, \ldots, f_k \in c_{00}$ satisfying (min supp f_1, \ldots , min supp f_k) $\in S_{\alpha}$ the vector

$$f = \theta(f_1 + \cdots + f_k) \in c_{00}.$$

(물) (물)

3

Mixed Tsirelson space and its modified version

Let $D \subset c_{00}$ be the smallest set containing $\{\pm e_i^*\}_i$ and closed under (S_{k_n}, θ_n) -operations on block sequences (resp. sequences of vectors with pairwise disjoint supports), for all $n \in \mathbb{N}$.

Mixed Tsirelson space and its modified version

Let $D \subset c_{00}$ be the smallest set containing $\{\pm e_i^*\}_i$ and closed under (S_{k_n}, θ_n) -operations on block sequences (resp. sequences of vectors with pairwise disjoint supports), for all $n \in \mathbb{N}$.

Mixed Tsirelson space $T[(S_{k_n}, \theta_n)_n]$ (resp. modified mixed Tsirelson space $T_M[(S_{k_n}, \theta_n)_n]$) is the completion of c_{00} with the norm defined by D as its norming set.

Mixed Tsirelson space and its modified version

Let $D \subset c_{00}$ be the smallest set containing $\{\pm e_i^*\}_i$ and closed under (S_{k_n}, θ_n) -operations on block sequences (resp. sequences of vectors with pairwise disjoint supports), for all $n \in \mathbb{N}$.

Mixed Tsirelson space $T[(S_{k_n}, \theta_n)_n]$ (resp. modified mixed Tsirelson space $T_M[(S_{k_n}, \theta_n)_n]$) is the completion of c_{00} with the norm defined by D as its norming set.

Taking $k_n = k \in \mathbb{N}$ and $\theta_n = \theta \in (0, 1)$ for any $n \in \mathbb{N}$ we obtain a classical Tsirelson type space $T[S_k, \theta]$ or its modified version.

Mixed Tsirelson space and its modified version

Let $D \subset c_{00}$ be the smallest set containing $\{\pm e_i^*\}_i$ and closed under (S_{k_n}, θ_n) -operations on block sequences (resp. sequences of vectors with pairwise disjoint supports), for all $n \in \mathbb{N}$.

Mixed Tsirelson space $T[(S_{k_n}, \theta_n)_n]$ (resp. modified mixed Tsirelson space $T_M[(S_{k_n}, \theta_n)_n]$) is the completion of c_{00} with the norm defined by D as its norming set.

Taking $k_n = k \in \mathbb{N}$ and $\theta_n = \theta \in (0, 1)$ for any $n \in \mathbb{N}$ we obtain a classical Tsirelson type space $T[S_k, \theta]$ or its modified version.

Tsirelson space is $T[S_1, \frac{1}{2}]$.

Mixed Tsirelson space and its modified version

Let $D \subset c_{00}$ be the smallest set containing $\{\pm e_i^*\}_i$ and closed under (S_{k_n}, θ_n) -operations on block sequences (resp. sequences of vectors with pairwise disjoint supports), for all $n \in \mathbb{N}$.

Mixed Tsirelson space $T[(S_{k_n}, \theta_n)_n]$ (resp. modified mixed Tsirelson space $T_M[(S_{k_n}, \theta_n)_n]$) is the completion of c_{00} with the norm defined by D as its norming set.

Taking $k_n = k \in \mathbb{N}$ and $\theta_n = \theta \in (0, 1)$ for any $n \in \mathbb{N}$ we obtain a classical Tsirelson type space $T[S_k, \theta]$ or its modified version.

Tsirelson space is $T[S_1, \frac{1}{2}]$. Each (modified) mixed Tsirelson space is isometric to a "regular" space $T[(S_n, \theta_n)_n]$ (resp. $T_M[(S_n, \theta_n)_n]$) with $\theta_n^{1/n} \to \theta \in (0, 1]$.

$$||x_1 + \cdots + x_k||^{\rho} \simeq^{C} ||x_1||^{\rho} + \cdots + ||x_k||^{\rho}.$$

$$||x_1 + \cdots + x_k||^p \simeq^C ||x_1||^p + \cdots + ||x_k||^p.$$

For any $n \in \mathbb{N}$ define a *lower asymptotic constant* θ_n as the biggest constant such that any S_n -admissible sequence (x_1, \ldots, x_k) satisfies

$$||x_1 + \cdots + x_k||^p \ge \theta_n(||x_1||^p + \cdots + ||x_k||^p).$$

$$||x_1 + \cdots + x_k||^p \simeq^C ||x_1||^p + \cdots + ||x_k||^p.$$

For any $n \in \mathbb{N}$ define a *lower asymptotic constant* θ_n as the biggest constant such that any S_n -admissible sequence (x_1, \ldots, x_k) satisfies

$$||x_1 + \cdots + x_k||^p \ge \theta_n(||x_1||^p + \cdots + ||x_k||^p).$$

Let $\theta = \lim_{n \to 0} \theta_n^{1/n}$. $T^{(p)}[S_1, \theta]$ denotes the *p*-convexification of $T[S_1, \theta]$. Note, that $T^{(p)}[S_1, \theta] = \ell_p$ for $\theta = 1$.

$$||x_1 + \cdots + x_k||^p \simeq^C ||x_1||^p + \cdots + ||x_k||^p.$$

For any $n \in \mathbb{N}$ define a *lower asymptotic constant* θ_n as the biggest constant such that any S_n -admissible sequence (x_1, \ldots, x_k) satisfies

$$||x_1 + \cdots + x_k||^p \ge \theta_n(||x_1||^p + \cdots + ||x_k||^p).$$

Let $\theta = \lim_{n \to 0} \theta_n^{1/n}$. $T^{(p)}[S_1, \theta]$ denotes the *p*-convexification of $T[S_1, \theta]$. Note, that $T^{(p)}[S_1, \theta] = \ell_p$ for $\theta = 1$.

Theorem [KMP, P]

Any block subspace of X contains for any $M \in \mathbb{N}$ an infinite normalized block sequence (x_i) satisfying

$$3\|\sum_{i\in G}a_ix_i\| \geq \|\sum_{i\in G}a_ie_{\min\operatorname{supp}x_i}\|_{T^{(p)}[\mathcal{S}_1,\theta]}$$

for any $G \in \mathcal{S}_M$ and scalars $(a_i)_{i \in G}$.

Let Z be a modified mixed Tsirelson space $T_M[(S_n, \theta_n)_n]$ with $(\frac{\theta_n}{\theta^n}) \searrow$.

-

Let Z be a modified mixed Tsirelson space $T_M[(S_n, \theta_n)_n]$ with $(\frac{\theta_n}{\theta^n}) \searrow$. Then

• any block subspace of Z contains for any $M \in \mathbb{N}$ a block sequence $(x_i) \ S_M$ -equivalent to the subsequence $(e_{\min \operatorname{supp} x_i})$ of the basis of $T[S_1, \theta]$ (with a uniform constant),

Let Z be a modified mixed Tsirelson space $T_M[(S_n, \theta_n)_n]$ with $(\frac{\theta_n}{\theta^n}) \searrow$. Then

- any block subspace of Z contains for any $M \in \mathbb{N}$ a block sequence $(x_i) \ S_M$ -equivalent to the subsequence $(e_{\min \text{ supp } x_i})$ of the basis of $T[S_1, \theta]$ (with a uniform constant),
- Z is sequentially minimal,

Let Z be a modified mixed Tsirelson space $T_M[(S_n, \theta_n)_n]$ with $(\frac{\theta_n}{\theta^n}) \searrow$. Then

- any block subspace of Z contains for any $M \in \mathbb{N}$ a block sequence $(x_i) \ S_M$ -equivalent to the subsequence $(e_{\min \text{ supp } \times_i})$ of the basis of $T[S_1, \theta]$ (with a uniform constant),
- Z is sequentially minimal,
- if moreover $\frac{\theta_n}{\theta^n} \to 0$, then Z is arbitrarily distortable.

Construction of non-compact strictly singular operators on subspaces based on different types of asymptotic behaviour of basic sequences with respect to an auxiliary basic sequence:

 G.Androulakis, E.Odell, Th.Schlumprecht, N.Tomczak-Jaegermann,
G.Androulakis, F.Sanacory: construction based on Krivine theorem and spreading models,

 \circ Th.Schlumprecht: construction based on asymptotic behaviour of higher order of basic sequences with respect to the u.v.b of ℓ_1 .

Let X be a Banach space with an \mathcal{S}_{α} -unconditional basis, for limit $\alpha < \omega_1$.

Let E be a Banach space with an unconditional basis (e_i) dominated by all its subsequences, not containing uniformly c_0^n 's (on vectors with disjoint supports).

Let X be a Banach space with an \mathcal{S}_{α} -unconditional basis, for limit $\alpha < \omega_1$.

Let E be a Banach space with an unconditional basis (e_i) dominated by all its subsequences, not containing uniformly c_0^n 's (on vectors with disjoint supports).

Assume that for some $\alpha_n \nearrow \alpha$ the following is satisfied

• X contains a normalized block sequence (x_i) satisfying

$$\left\|\sum_{i} a_{i} x_{i}\right\| \leq \max_{n \in \mathbb{N}} \delta_{n} \max_{n \leq F \in \mathcal{S}_{\alpha_{n}}} \left\|\sum_{i \in F} a_{i} e_{\min \operatorname{supp} x_{i}}\right\|_{E}$$

for any scalars (a_i) and universal $\delta_n \rightarrow 0$.

Let X be a Banach space with an \mathcal{S}_{α} -unconditional basis, for limit $\alpha < \omega_1$.

Let E be a Banach space with an unconditional basis (e_i) dominated by all its subsequences, not containing uniformly c_0^n 's (on vectors with disjoint supports).

Assume that for some $\alpha_n \nearrow \alpha$ the following is satisfied

3 X contains a normalized block sequence (x_i) satisfying

$$\left\|\sum_{i} a_{i} x_{i}\right\| \leq \max_{n \in \mathbb{N}} \delta_{n} \max_{n \leq F \in \mathcal{S}_{\alpha_{n}}} \left\|\sum_{i \in F} a_{i} e_{\min \operatorname{supp} x_{i}}\right\|_{E}$$

for any scalars (a_i) and universal $\delta_n \rightarrow 0$.

Of or any n∈ N there is a normalized block sequence (x_iⁿ)_i such that (x_iⁿ)_{i∈F} C-dominates (e_i)_{i∈F} for any F ∈ S_{α_n} and universal C ≥ 1

Let X be a Banach space with an \mathcal{S}_{α} -unconditional basis, for limit $\alpha < \omega_1$.

Let E be a Banach space with an unconditional basis (e_i) dominated by all its subsequences, not containing uniformly c_0^n 's (on vectors with disjoint supports).

Assume that for some $\alpha_n \nearrow \alpha$ the following is satisfied

3 X contains a normalized block sequence (x_i) satisfying

$$\left\|\sum_{i} a_{i} x_{i}\right\| \leq \max_{n \in \mathbb{N}} \delta_{n} \max_{n \leq F \in \mathcal{S}_{\alpha_{n}}} \left\|\sum_{i \in F} a_{i} e_{\min \operatorname{supp} x_{i}}\right\|_{E}$$

for any scalars (a_i) and universal $\delta_n \rightarrow 0$.

for any n∈ N there is a normalized block sequence (x_iⁿ)_i such that (x_iⁿ)_{i∈F} C-dominates (e_i)_{i∈F} for any F ∈ S_{α_n} and universal C ≥ 1 and (supp x_iⁿ)_i ⊂ S_{r_n}, for some r_n ∈ N.

Let X be a Banach space with an \mathcal{S}_{α} -unconditional basis, for limit $\alpha < \omega_1$.

Let E be a Banach space with an unconditional basis (e_i) dominated by all its subsequences, not containing uniformly c_0^n 's (on vectors with disjoint supports).

Assume that for some $\alpha_n \nearrow \alpha$ the following is satisfied

3 X contains a normalized block sequence (x_i) satisfying

$$\left\|\sum_{i} a_{i} x_{i}\right\| \leq \max_{n \in \mathbb{N}} \delta_{n} \max_{n \leq F \in \mathcal{S}_{\alpha_{n}}} \left\|\sum_{i \in F} a_{i} e_{\min \operatorname{supp} x_{i}}\right\|_{E}$$

for any scalars (a_i) and universal $\delta_n \rightarrow 0$.

② for any $n \in \mathbb{N}$ there is a normalized block sequence $(x_i^n)_i$ such that $(x_i^n)_{i \in F}$ C-dominates $(e_i)_{i \in F}$ for any $F \in S_{\alpha_n}$ and universal $C \ge 1$ and $(\operatorname{supp} x_i^n)_i \subset S_{r_n}$, for some $r_n \in \mathbb{N}$.

Then X admits a bounded strictly singular non-compact operator on a subspace.

Let X be an asymptotic ℓ_p space, $p \in [1, \infty)$, with lower asymptotic constants (θ_n) and an S_{ω} -unconditional basis.

Let X be an asymptotic ℓ_p space, $p \in [1, \infty)$, with lower asymptotic constants (θ_n) and an \mathcal{S}_{ω} -unconditional basis. Assume that X contains a normalized block sequence (x_i) satisfying

$$\left\|\sum_{i} a_{i} x_{i}\right\| \leq \max_{n \in \mathbb{N}} \delta_{n} \max_{n \leq F \in \mathcal{S}_{n}} \left\|\sum_{i \in F} a_{i} e_{\min \operatorname{supp} \times_{i}}\right\|_{\mathcal{T}^{(p)}[\mathcal{S}_{1}, \theta]}$$

for any scalars (a_i) and some universal sequence $\delta_n \rightarrow 0$.

Let X be an asymptotic ℓ_p space, $p \in [1, \infty)$, with lower asymptotic constants (θ_n) and an \mathcal{S}_{ω} -unconditional basis. Assume that X contains a normalized block sequence (x_i) satisfying

$$\left\|\sum_{i} a_{i} x_{i}\right\| \leq \max_{n \in \mathbb{N}} \delta_{n} \max_{n \leq F \in \mathcal{S}_{n}} \left\|\sum_{i \in F} a_{i} e_{\min \operatorname{supp} \times_{i}}\right\|_{\mathcal{T}^{(p)}[\mathcal{S}_{1}, \theta]}$$

for any scalars (a_i) and some universal sequence $\delta_n \to 0$. Then X admits a bounded strictly singular non-compact operator on a subspace.

Let $Z = T^{(p)}[(S_n, \theta_n)_n]$ be a *p*-convexified mixed Tsirelson space with $\frac{\theta_n}{\theta^n} \to 0$, $p \in [1, \infty)$.

-

Let $Z = T^{(p)}[(S_n, \theta_n)_n]$ be a *p*-convexified mixed Tsirelson space with $\frac{\theta_n}{\theta^n} \to 0$, $p \in [1, \infty)$. Let X be a Banach space with a basis $(g_i) S_{\omega}$ -equivalent to the u.v.b. of Z, i.e. $(g_i)_{i \in F}$ and $(e_i)_{i \in F}$ are C-equivalent for any $F \in S_{\omega}$ and universal $C \ge 1$.

Let $Z = T^{(p)}[(S_n, \theta_n)_n]$ be a *p*-convexified mixed Tsirelson space with $\frac{\theta_n}{\theta^n} \to 0$, $p \in [1, \infty)$. Let X be a Banach space with a basis $(g_i) S_{\omega}$ -equivalent to the u.v.b. of Z, i.e. $(g_i)_{i \in F}$ and $(e_i)_{i \in F}$ are C-equivalent for any $F \in S_{\omega}$ and universal $C \ge 1$. Then X admits a bounded strictly singular non-compact operator on a subspace.

Let $Z = T^{(p)}[(S_n, \theta_n)_n]$ be a *p*-convexified mixed Tsirelson space with $\frac{\theta_n}{\theta^n} \to 0$, $p \in [1, \infty)$. Let X be a Banach space with a basis $(g_i) S_{\omega}$ -equivalent to the u.v.b. of Z, i.e. $(g_i)_{i \in F}$ and $(e_i)_{i \in F}$ are C-equivalent for any $F \in S_{\omega}$ and universal $C \ge 1$. Then X admits a bounded strictly singular non-compact operator on a subspace.

Applications include spaces built on the basis of spaces $T[(S_n, \theta_n)_n]$ and their convexifications including HI spaces (G.Androulakis-K.Beanland, I.Deliyanni-A.Manoussakis). The construction relies on the unconditional components building the considered space.

Thank you

Anna Pelczar-Barwacz Strictly singular non-compact operators in asymptotic ℓ_p spaces

・回・ ・ヨ・ ・ヨ・

- 문