Hereditarily α -universal Banach spaces

Pavlos Motakis (joint work with Spiros A. Argyros)

Department of Mathematics National Technical University of Athens Athens, Greece

2012 / Banff

イロト イポト イヨト イヨト

During the present lecture, the notion of hereditary α -universality is going to be discussed. More precisely, the construction of a transfinite class of Banach spaces $\mathfrak{X}_{\xi}, \xi < \omega_1$ is going to be described. The spaces \mathfrak{X}_{ξ} are reflexive HI spaces, the main property of which, is that every Schauder basic sequence ω^{ξ} -embeds into every subspace of \mathfrak{X}_{ξ} . The construction is based on a variant of the method of saturation under constraints, which was described in the previous lecture.

Hereditary universal finite representability

- In 1996 E. Odell and Th. Schlumprecht present a new reflexive HI space, having the remarkable and unexpected property, that any Banach space with a monotone basis is 1+ε block finitely representable in every block subspace.
- We shall present a transfinite extension of this result.

Hereditary universal finite representability

- In 1996 E. Odell and Th. Schlumprecht present a new reflexive HI space, having the remarkable and unexpected property, that any Banach space with a monotone basis is 1+ε block finitely representable in every block subspace.
- We shall present a transfinite extension of this result.

Hereditary universal finite representability

- In 1996 E. Odell and Th. Schlumprecht present a new reflexive HI space, having the remarkable and unexpected property, that any Banach space with a monotone basis is 1+ε block finitely representable in every block subspace.
- We shall present a transfinite extension of this result.

- The rank of a tree is an ordinal index, which, among others, determines the complexity of the finite representability of a Schauder basic sequence into an arbitrary Banach space *X*.
- For a well founded tree T with a root, denoted as Ø, the rank of T rank(T) is recursively defined.
- For *s* a maximal node of \mathcal{T} , set $\rho(s) = 0$.
- For *s* a non maximal node, set $\rho(s) = \sup\{\rho(t) + 1 : s < t\}$.
- Then the rank of *T* is defined as rank(*T*) = sup{ρ(s) + 1 : s ∈ *T*} = ρ(Ø) + 1.

- The rank of a tree is an ordinal index, which, among others, determines the complexity of the finite representability of a Schauder basic sequence into an arbitrary Banach space *X*.
- For a well founded tree T with a root, denoted as Ø, the rank of T rank(T) is recursively defined.
- For *s* a maximal node of \mathcal{T} , set $\rho(s) = 0$.
- For *s* a non maximal node, set $\rho(s) = \sup\{\rho(t) + 1 : s < t\}$.
- Then the rank of T is defined as rank $(T) = \sup\{\rho(s) + 1 : s \in T\} = \rho(\emptyset) + 1.$

- The rank of a tree is an ordinal index, which, among others, determines the complexity of the finite representability of a Schauder basic sequence into an arbitrary Banach space *X*.
- For a well founded tree T with a root, denoted as Ø, the rank of T rank(T) is recursively defined.
- For *s* a maximal node of T, set $\rho(s) = 0$.
- For *s* a non maximal node, set $\rho(s) = \sup\{\rho(t) + 1 : s < t\}$.
- Then the rank of T is defined as rank $(T) = \sup\{\rho(s) + 1 : s \in T\} = \rho(\emptyset) + 1.$

- The rank of a tree is an ordinal index, which, among others, determines the complexity of the finite representability of a Schauder basic sequence into an arbitrary Banach space *X*.
- For a well founded tree T with a root, denoted as Ø, the rank of T rank(T) is recursively defined.
- For *s* a maximal node of \mathcal{T} , set $\rho(s) = 0$.
- For *s* a non maximal node, set $\rho(s) = \sup{\{\rho(t) + 1 : s < t\}}$.

 Then the rank of *T* is defined as rank(*T*) = sup{ρ(s) + 1 : s ∈ *T*} = ρ(Ø) + 1.

- The rank of a tree is an ordinal index, which, among others, determines the complexity of the finite representability of a Schauder basic sequence into an arbitrary Banach space *X*.
- For a well founded tree T with a root, denoted as Ø, the rank of T rank(T) is recursively defined.
- For *s* a maximal node of \mathcal{T} , set $\rho(s) = 0$.
- For *s* a non maximal node, set $\rho(s) = \sup\{\rho(t) + 1 : s < t\}$.

• Then the rank of T is defined as rank $(T) = \sup\{\rho(s) + 1 : s \in T\} = \rho(\emptyset) + 1.$

- The rank of a tree is an ordinal index, which, among others, determines the complexity of the finite representability of a Schauder basic sequence into an arbitrary Banach space *X*.
- For a well founded tree T with a root, denoted as Ø, the rank of T rank(T) is recursively defined.
- For *s* a maximal node of \mathcal{T} , set $\rho(s) = 0$.
- For *s* a non maximal node, set $\rho(s) = \sup\{\rho(t) + 1 : s < t\}$.
- Then the rank of *T* is defined as rank(*T*) = sup{ρ(s) + 1 : s ∈ *T*} = ρ(∅) + 1.

- Given a Schauder basic sequence {e_k}_k and a Banach space X, one would like to study, the complexity of the finite representation of {e_k}_k into X.
- An approach to this problem, is to determine the rank of the Bourgain embedability tree of {*e_k*}_k into X (J. Bourgain 1980), which is defined as follows.
- For a constant C ≥ 1, we set T({e_k}_k, C, X) to be the tree of all finite block sequences {x_k}^m_{k=1}, such that {x_k}^m_{k=1} is C-equivalent to {e_k}^m_{k=1}.

- Given a Schauder basic sequence {*e_k*}_k and a Banach space *X*, one would like to study, the complexity of the finite representation of {*e_k*}_k into *X*.
- An approach to this problem, is to determine the rank of the Bourgain embedability tree of {*e_k*}_k into X (J. Bourgain 1980), which is defined as follows.
- For a constant C ≥ 1, we set T({e_k}_k, C, X) to be the tree of all finite block sequences {x_k}^m_{k=1}, such that {x_k}^m_{k=1} is C-equivalent to {e_k}^m_{k=1}.

- Given a Schauder basic sequence {e_k}_k and a Banach space X, one would like to study, the complexity of the finite representation of {e_k}_k into X.
- An approach to this problem, is to determine the rank of the Bourgain embedability tree of {*e_k*}_k into X (J. Bourgain 1980), which is defined as follows.
- For a constant C ≥ 1, we set T({e_k}_k, C, X) to be the tree of all finite block sequences {x_k}^m_{k=1}, such that {x_k}^m_{k=1} is C-equivalent to {e_k}^m_{k=1}.

- Given a Schauder basic sequence {e_k}_k and a Banach space X, one would like to study, the complexity of the finite representation of {e_k}_k into X.
- An approach to this problem, is to determine the rank of the Bourgain embedability tree of {*e_k*}_k into X (J. Bourgain 1980), which is defined as follows.
- For a constant C ≥ 1, we set T({e_k}_k, C, X) to be the tree of all finite block sequences {x_k}^m_{k=1}, such that {x_k}^m_{k=1} is C-equivalent to {e_k}^m_{k=1}.

• The embedability rank of $\{e_k\}_k$ into X is defined as $\operatorname{Emb}(\{e_k\}_k, X) = \sup_{C \ge 1} \operatorname{rank} \left(\mathcal{T}(\{e_k\}_k, C, X)\right)$

• We say that $\{e_k\}_k \alpha$ -embeds into X, if $\text{Emb}(\{e_k\}_k, X) \ge \alpha$

• The embedability rank of $\{e_k\}_k$ into X is defined as $\operatorname{Emb}(\{e_k\}_k, X) = \sup_{C \ge 1} \operatorname{rank} \left(\mathcal{T}(\{e_k\}_k, C, X)\right)$

• We say that $\{e_k\}_k \alpha$ -embeds into X, if $\text{Emb}(\{e_k\}_k, X) \ge \alpha$

- The embedability rank of $\{e_k\}_k$ into X is defined as $\operatorname{Emb}(\{e_k\}_k, X) = \sup_{C \ge 1} \operatorname{rank} \left(\mathcal{T}(\{e_k\}_k, C, X)\right)$
- We say that $\{e_k\}_k \alpha$ -embeds into X, if $\text{Emb}(\{e_k\}_k, X) \ge \alpha$

- In the previous lecture, the definitions of α-averages and the (θ, F, α) operation were discussed, leading to the notion of saturation under constraints.
- The advantage of saturation under constraints, is that it permits the space to admit many *c*₀ spreading models.
- In turn, c₀ spreading models allow the construction of vectors having specific properties, which are used to prove the existence of certain structures in the space.
- While saturation under constrains allows c₀ spreading models to appear everywhere, it completely rules out the existence of higher order c₀ spreading models.

- In the previous lecture, the definitions of α-averages and the (θ, F, α) operation were discussed, leading to the notion of saturation under constraints.
- The advantage of saturation under constraints, is that it permits the space to admit many *c*₀ spreading models.
- In turn, c₀ spreading models allow the construction of vectors having specific properties, which are used to prove the existence of certain structures in the space.
- While saturation under constrains allows c₀ spreading models to appear everywhere, it completely rules out the existence of higher order c₀ spreading models.

- In the previous lecture, the definitions of α-averages and the (θ, F, α) operation were discussed, leading to the notion of saturation under constraints.
- The advantage of saturation under constraints, is that it permits the space to admit many *c*₀ spreading models.
- In turn, c₀ spreading models allow the construction of vectors having specific properties, which are used to prove the existence of certain structures in the space.
- While saturation under constrains allows c₀ spreading models to appear everywhere, it completely rules out the existence of higher order c₀ spreading models.

- In the previous lecture, the definitions of α-averages and the (θ, F, α) operation were discussed, leading to the notion of saturation under constraints.
- The advantage of saturation under constraints, is that it permits the space to admit many *c*₀ spreading models.
- In turn, c₀ spreading models allow the construction of vectors having specific properties, which are used to prove the existence of certain structures in the space.
- While saturation under constrains allows *c*₀ spreading models to appear everywhere, it completely rules out the existence of higher order *c*₀ spreading models.

- In the previous lecture, the definitions of α-averages and the (θ, F, α) operation were discussed, leading to the notion of saturation under constraints.
- The advantage of saturation under constraints, is that it permits the space to admit many *c*₀ spreading models.
- In turn, c₀ spreading models allow the construction of vectors having specific properties, which are used to prove the existence of certain structures in the space.
- While saturation under constrains allows c₀ spreading models to appear everywhere, it completely rules out the existence of higher order c₀ spreading models.

 For a seminormalized Schauder basic sequence {x_k}_k and ξ a countable ordinal, we say that {x_k}_k generates a c₀^ξ spreading model, if there exists a constant C > 0, such that for every F ∈ S_ξ

$\|\sum_{k\in F} x_k\| \leqslant C$

• The spaces $T_{0,1}$ and $\mathfrak{X}_{\text{ISP}}$, described in the previous lecture, do not admit a c_0^2 spreading model.

 For a seminormalized Schauder basic sequence {x_k}_k and ξ a countable ordinal, we say that {x_k}_k generates a c₀^ξ spreading model, if there exists a constant C > 0, such that for every F ∈ S_ξ

$\|\sum_{k\in F} x_k\| \leqslant C$

• The spaces $T_{0,1}$ and $\mathfrak{X}_{\text{ISP}}$, described in the previous lecture, do not admit a c_0^2 spreading model.

 For a seminormalized Schauder basic sequence {x_k}_k and ξ a countable ordinal, we say that {x_k}_k generates a c₀^ξ spreading model, if there exists a constant C > 0, such that for every F ∈ S_ξ

$\|\sum_{k\in F} x_k\| \leqslant C$

• The spaces $T_{0,1}$ and $\mathfrak{X}_{\text{ISP}}$, described in the previous lecture, do not admit a c_0^2 spreading model.

 For a seminormalized Schauder basic sequence {x_k}_k and ξ a countable ordinal, we say that {x_k}_k generates a c₀^ξ spreading model, if there exists a constant C > 0, such that for every F ∈ S_ξ

$$\|\sum_{k\in F} x_k\| \leqslant C$$

 The spaces T_{0,1} and X_{ISP}, described in the previous lecture, do not admit a c₀² spreading model.

- Higher order c₀ spreading models are desirable, in order to obtain certain structures, which are of transfinite nature, for instance the ω^ξ-embedability of a sequence into a space.
- In order to achieve this, a variation of the method of saturation under constraints can be used.
- More precisely, instead of α-averages, α-special convex combinations (α-s.c.c), are used in the construction of the norming set.
- Special convex combinations are generalized averages of higher complexity. This higher complexity imposes the existence of higher order *c*₀ spreading models.

- Higher order c₀ spreading models are desirable, in order to obtain certain structures, which are of transfinite nature, for instance the ω^ξ-embedability of a sequence into a space.
- In order to achieve this, a variation of the method of saturation under constraints can be used.
- More precisely, instead of α-averages, α-special convex combinations (α-s.c.c), are used in the construction of the norming set.
- Special convex combinations are generalized averages of higher complexity. This higher complexity imposes the existence of higher order *c*₀ spreading models.

- Higher order c₀ spreading models are desirable, in order to obtain certain structures, which are of transfinite nature, for instance the ω^ξ-embedability of a sequence into a space.
- In order to achieve this, a variation of the method of saturation under constraints can be used.
- More precisely, instead of α-averages, α-special convex combinations (α-s.c.c), are used in the construction of the norming set.
- Special convex combinations are generalized averages of higher complexity. This higher complexity imposes the existence of higher order *c*₀ spreading models.

- Higher order c₀ spreading models are desirable, in order to obtain certain structures, which are of transfinite nature, for instance the ω^ξ-embedability of a sequence into a space.
- In order to achieve this, a variation of the method of saturation under constraints can be used.
- More precisely, instead of α-averages, α-special convex combinations (α-s.c.c), are used in the construction of the norming set.
- Special convex combinations are generalized averages of higher complexity. This higher complexity imposes the existence of higher order *c*₀ spreading models.

- Higher order c₀ spreading models are desirable, in order to obtain certain structures, which are of transfinite nature, for instance the ω^ξ-embedability of a sequence into a space.
- In order to achieve this, a variation of the method of saturation under constraints can be used.
- More precisely, instead of α-averages, α-special convex combinations (α-s.c.c), are used in the construction of the norming set.
- Special convex combinations are generalized averages of higher complexity. This higher complexity imposes the existence of higher order *c*₀ spreading models.

- Let *F*₀ ⊂ *F*₁ ⊂ ··· ⊂ *F_j* ⊂ ··· be an increasing sequence of regular families of increasing complexity.
- ((j, ε) basic s.c.c). A convex combination ∑_{i∈F} c_ie_i in c₀₀ is said to be a

 (j, ε) b.s.c.c. with respect to $\{\mathcal{F}_j\}_{j=0}^{\infty}$ if $F \in \mathcal{F}_j$ and for $G \subset F, G \in \mathcal{F}_{j-1}$

 $\sum_{i\in G} c_i < \varepsilon$

• $((j, \varepsilon) \text{ s.c.c.})$ Let $x_1 < \cdots < x_m$ be vectors in c_{00} and $\psi(k) = \min \operatorname{supp} x_k$. Then $x = \sum_{k=1}^m c_k x_k$ is said to be a (j, ε) s.c.c. with respect to $\{\mathcal{F}_j\}_{j=0}^\infty$, if $\sum_{k=1}^m c_k e_{\psi(k)}$ is a (j, ε) b.s.c.c.

- Let *F*₀ ⊂ *F*₁ ⊂ ··· ⊂ *F_j* ⊂ ··· be an increasing sequence of regular families of increasing complexity.
- ((j, ε) basic s.c.c). A convex combination ∑_{i∈F} c_ie_i in c₀₀ is said to be a

 (j, ε) b.s.c.c. with respect to $\{\mathcal{F}_j\}_{j=0}^{\infty}$ if $F \in \mathcal{F}_j$ and for $G \subset F, G \in \mathcal{F}_{j-1}$

 $\sum_{i\in G} c_i < \varepsilon$

• $((j, \varepsilon) \text{ s.c.c.})$ Let $x_1 < \cdots < x_m$ be vectors in c_{00} and $\psi(k) = \min \operatorname{supp} x_k$. Then $x = \sum_{k=1}^m c_k x_k$ is said to be a (j, ε) s.c.c. with respect to $\{\mathcal{F}_j\}_{j=0}^{\infty}$, if $\sum_{k=1}^m c_k e_{\psi(k)}$ is a (j, ε) b.s.c.c.

- Let *F*₀ ⊂ *F*₁ ⊂ ··· ⊂ *F_j* ⊂ ··· be an increasing sequence of regular families of increasing complexity.
- ((j, ε) basic s.c.c). A convex combination ∑_{i∈F} c_ie_i in c₀₀ is said to be a

 (j, ε) b.s.c.c. with respect to $\{\mathcal{F}_j\}_{j=0}^{\infty}$ $F \in \mathcal{F}_j$ and for $G \subset F, G \in \mathcal{F}_{j-1}$

 $\sum_{i\in G} c_i < \varepsilon$

• $((j, \varepsilon) \text{ s.c.c.})$ Let $x_1 < \cdots < x_m$ be vectors in c_{00} and $\psi(k) = \min \operatorname{supp} x_k$. Then $x = \sum_{k=1}^m c_k x_k$ is said to be a (j, ε) s.c.c. with respect to $\{\mathcal{F}_j\}_{j=0}^\infty$, if $\sum_{k=1}^m c_k e_{\psi(k)}$ is a (j, ε) b.s.c.c.

- Let *F*₀ ⊂ *F*₁ ⊂ ··· ⊂ *F_j* ⊂ ··· be an increasing sequence of regular families of increasing complexity.
- ((j, ε) basic s.c.c). A convex combination ∑_{i∈F} c_ie_i in c₀₀ is said to be a

 (j, ε) b.s.c.c. with respect to $\{\mathcal{F}_j\}_{j=0}^{\infty}$ if $F \in \mathcal{F}_j$ and for $G \subset F, G \in \mathcal{F}_{j-1}$

 $\sum_{i\in G} c_i < \varepsilon$

• $((j, \varepsilon) \text{ s.c.c.})$ Let $x_1 < \cdots < x_m$ be vectors in c_{00} and $\psi(k) = \min \operatorname{supp} x_k$. Then $x = \sum_{k=1}^m c_k x_k$ is said to be a (j, ε) s.c.c. with respect to $\{\mathcal{F}_j\}_{j=0}^\infty$, if $\sum_{k=1}^m c_k e_{\psi(k)}$ is a (j, ε) b.s.c.c.

S.c.c. with respect to a sequence of regular families

- Let *F*₀ ⊂ *F*₁ ⊂ ··· ⊂ *F_j* ⊂ ··· be an increasing sequence of regular families of increasing complexity.
- ((j, ε) basic s.c.c). A convex combination ∑_{i∈F} c_ie_i in c₀₀ is said to be a

 (j, ε) b.s.c.c. with respect to $\{\mathcal{F}_j\}_{j=0}^{\infty}$ if $F \in \mathcal{F}_j$ and for $G \subset F, G \in \mathcal{F}_{j-1}$

 $\sum_{i\in G} c_i < \varepsilon$

• $((j, \varepsilon) \text{ s.c.c.})$ Let $x_1 < \cdots < x_m$ be vectors in c_{00} and $\psi(k) = \min \operatorname{supp} x_k$. Then $x = \sum_{k=1}^m c_k x_k$ is said to be a (j, ε) s.c.c. with respect to $\{\mathcal{F}_j\}_{j=0}^\infty$, if $\sum_{k=1}^m c_k e_{\psi(k)}$ is a (j, ε) b.s.c.c.

S.c.c. with respect to a sequence of regular families

- Let *F*₀ ⊂ *F*₁ ⊂ ··· ⊂ *F_j* ⊂ ··· be an increasing sequence of regular families of increasing complexity.
- ((j, ε) basic s.c.c). A convex combination ∑_{i∈F} c_ie_i in c₀₀ is said to be a

 (j, ε) b.s.c.c. with respect to $\{\mathcal{F}_j\}_{j=0}^{\infty}$ if $F \in \mathcal{F}_j$ and for $G \subset F, G \in \mathcal{F}_{j-1}$

 $\sum_{i\in G} c_i < \varepsilon$

• $((j, \varepsilon) \text{ s.c.c.})$ Let $x_1 < \cdots < x_m$ be vectors in c_{00} and $\psi(k) = \min \operatorname{supp} x_k$. Then $x = \sum_{k=1}^m c_k x_k$ is said to be a (j, ε) s.c.c. with respect to $\{\mathcal{F}_j\}_{j=0}^\infty$, if $\sum_{k=1}^m c_k e_{\psi(k)}$ is a (j, ε) b.s.c.c.

- We fix *F*₀ ⊂ *F*₁ ⊂ · · · ⊂ *F_j* ⊂ · · · an increasing sequence of regular families of increasing complexity.
- A vector α in a norming set W is said to be an α-s.c.c. of size s(α) = j, if there exist f₁ < ··· < f_k in W, such that

 $\alpha = \sum_{k=1}^{m} \lambda_k f_k$ is a $(j, \frac{1}{2^{j+1}})$ s.c.c. with respect to $\{\mathcal{F}_j\}_{j=0}^{\infty}$.

A sequence α₁ < α₂ < · · · < α_n < · · · is very fast growing (v.f.g.), if for n > 1

- We fix *F*₀ ⊂ *F*₁ ⊂ · · · ⊂ *F_j* ⊂ · · · an increasing sequence of regular families of increasing complexity.
- A vector α in a norming set W is said to be an α-s.c.c. of size s(α) = j, if there exist f₁ < · · · < f_k in W, such that

 $\alpha = \sum_{k=1}^{m} \lambda_k f_k$ is a $(j, \frac{1}{2^{j+1}})$ s.c.c. with respect to $\{\mathcal{F}_j\}_{j=0}^{\infty}$.

A sequence α₁ < α₂ < ··· < α_n < ··· is very fast growing (v.f.g.), if for n > 1

- We fix *F*₀ ⊂ *F*₁ ⊂ · · · ⊂ *F_j* ⊂ · · · an increasing sequence of regular families of increasing complexity.
- A vector α in a norming set W is said to be an α-s.c.c. of size s(α) = j, if there exist f₁ < · · · < f_k in W, such that

 $\alpha = \sum_{k=1}^{m} \lambda_k f_k$ is a $(j, \frac{1}{2^{j+1}})$ s.c.c. with respect to $\{\mathcal{F}_j\}_{j=0}^{\infty}$.

A sequence α₁ < α₂ < ··· < α_n < ··· is very fast growing (v.f.g.), if for n > 1

- We fix *F*₀ ⊂ *F*₁ ⊂ · · · ⊂ *F_j* ⊂ · · · an increasing sequence of regular families of increasing complexity.
- A vector α in a norming set W is said to be an α-s.c.c. of size s(α) = j, if there exist f₁ < · · · < f_k in W, such that

 $\alpha = \sum_{k=1}^{m} \lambda_k f_k$ is a $(j, \frac{1}{2^{j+1}})$ s.c.c. with respect to $\{\mathcal{F}_j\}_{j=0}^{\infty}$.

A sequence α₁ < α₂ < ··· < α_n < ··· is very fast growing (v.f.g.), if for n > 1

- We fix *F*₀ ⊂ *F*₁ ⊂ · · · ⊂ *F_j* ⊂ · · · an increasing sequence of regular families of increasing complexity.
- A vector α in a norming set W is said to be an α-s.c.c. of size s(α) = j, if there exist f₁ < · · · < f_k in W, such that

 $\alpha = \sum_{k=1}^{m} \lambda_k f_k$ is a $(j, \frac{1}{2^{j+1}})$ s.c.c. with respect to $\{\mathcal{F}_j\}_{j=0}^{\infty}$.

A sequence α₁ < α₂ < ··· < α_n < ··· is very fast growing (v.f.g.), if for n > 1

- We fix *F*₀ ⊂ *F*₁ ⊂ · · · ⊂ *F_j* ⊂ · · · an increasing sequence of regular families of increasing complexity.
- A vector α in a norming set W is said to be an α-s.c.c. of size s(α) = j, if there exist f₁ < · · · < f_k in W, such that

 $\alpha = \sum_{k=1}^{m} \lambda_k f_k$ is a $(j, \frac{1}{2^{j+1}})$ s.c.c. with respect to $\{\mathcal{F}_j\}_{j=0}^{\infty}$.

A sequence α₁ < α₂ < ··· < α_n < ··· is very fast growing (v.f.g.), if for n > 1

A norming set W is said to be closed under the
 (θ_j, F_j, α-s.c.c.)_j operations, if for every {α_k}ⁿ_{k=1}
 F_j-admissible and very fast growing family of α-s.c.c. in W,
 the functional

$$f = \theta_j \sum_{k=1}^n \alpha_k$$

(日) (四) (日) (日) (日)

belongs to W.

 A norming set W is said to be closed under the (θ_j, F_j, α-s.c.c.)_j operations, if for every {α_k}ⁿ_{k=1}
 F_j-admissible and very fast growing family of α-s.c.c. in W, the functional

$$f = \theta_j \sum_{k=1}^n \alpha_k$$

《曰》《聞》《臣》《臣》

belongs to W.

 A norming set W is said to be closed under the (θ_j, F_j, α-s.c.c.)_j operations, if for every {α_k}ⁿ_{k=1}
 F_j-admissible and very fast growing family of α-s.c.c. in W, the functional

$$f = \theta_j \sum_{k=1}^n \alpha_k$$

▲口 > ▲圖 > ▲ 国 > ▲ 国 > .

belongs to W.

(i) The space \mathfrak{X}_{ξ_0} is hereditarily indecomposable.

- (ii) There exists ξ ≥ ξ₀, such that every subspace of 𝔅_{ξ0} admits a c₀^ξ spreading model.
- (iii) The sequence $\{u_k\}_k \omega^{\xi_0}$ -embeds into every subspace of \mathfrak{X}_{ξ_0} .

In particular, there exists a uniform constant C, such that for every Y subspace of \mathfrak{X}_{ξ_0}

 $\operatorname{rank}\left(\mathcal{T}(\{u_k\}_k, C, Y)\right) \geqslant \omega^{\xi_0}$

(i) The space \mathfrak{X}_{ξ_0} is hereditarily indecomposable.

- (ii) There exists ξ ≥ ξ₀, such that every subspace of X_{ξ0} admits a c₀^ξ spreading model.
- (iii) The sequence $\{u_k\}_k \omega^{\xi_0}$ -embeds into every subspace of \mathfrak{X}_{ξ_0} .

In particular, there exists a uniform constant C, such that for every Y subspace of \mathfrak{X}_{ξ_0}

 $\operatorname{rank}\left(\mathcal{T}(\{u_k\}_k, C, Y)\right) \geqslant \omega^{\xi_0}$

(i) The space \mathfrak{X}_{ξ_0} is hereditarily indecomposable.

- (ii) There exists ξ ≥ ξ₀, such that every subspace of X_{ξ0} admits a c₀^ξ spreading model.
- (iii) The sequence $\{u_k\}_k \omega^{\xi_0}$ -embeds into every subspace of \mathfrak{X}_{ξ_0} .

In particular, there exists a uniform constant C, such that for every Y subspace of \mathfrak{X}_{ξ_0}

 $\operatorname{rank}\left(\mathcal{T}(\{u_k\}_k, \mathcal{C}, Y)\right) \geqslant \omega^{\xi_0}$

(i) The space \mathfrak{X}_{ξ_0} is hereditarily indecomposable.

- (ii) There exists $\xi \ge \xi_0$, such that every subspace of \mathfrak{X}_{ξ_0} admits a c_0^{ξ} spreading model.
- (iii) The sequence $\{u_k\}_k \omega^{\xi_0}$ -embeds into every subspace of \mathfrak{X}_{ξ_0} .

In particular, there exists a uniform constant C, such that for every Y subspace of \mathfrak{X}_{ξ_0}

 $\operatorname{rank}\left(\mathcal{T}(\{u_k\}_k, C, Y)\right) \geqslant \omega^{\xi_0}$

(i) The space \mathfrak{X}_{ξ_0} is hereditarily indecomposable.

- (ii) There exists $\xi \ge \xi_0$, such that every subspace of \mathfrak{X}_{ξ_0} admits a c_0^{ξ} spreading model.
- (iii) The sequence $\{u_k\}_k \omega^{\xi_0}$ -embeds into every subspace of \mathfrak{X}_{ξ_0} .

In particular, there exists a uniform constant C, such that for every Y subspace of \mathfrak{X}_{ξ_0}

 $\operatorname{rank}\left(\mathcal{T}(\{u_k\}_k, \mathcal{C}, Y)\right) \geqslant \omega^{\xi_0}$

(i) The space \mathfrak{X}_{ξ_0} is hereditarily indecomposable.

- (ii) There exists $\xi \ge \xi_0$, such that every subspace of \mathfrak{X}_{ξ_0} admits a c_0^{ξ} spreading model.
- (iii) The sequence $\{u_k\}_k \omega^{\xi_0}$ -embeds into every subspace of \mathfrak{X}_{ξ_0} .

In particular, there exists a uniform constant C, such that for every Y subspace of \mathfrak{X}_{ξ_0}

 $\operatorname{rank}\left(\mathcal{T}(\{u_k\}_k, \mathcal{C}, Y)\right) \geqslant \omega^{\xi_0}$

(i) The space \mathfrak{X}_{ξ_0} is hereditarily indecomposable.

- (ii) There exists $\xi \ge \xi_0$, such that every subspace of \mathfrak{X}_{ξ_0} admits a c_0^{ξ} spreading model.
- (iii) The sequence $\{u_k\}_k \omega^{\xi_0}$ -embeds into every subspace of \mathfrak{X}_{ξ_0} .

In particular, there exists a uniform constant *C*, such that for every *Y* subspace of \mathfrak{X}_{ξ_0}

$$\operatorname{rank}\left(\mathcal{T}(\{u_k\}_k, \mathcal{C}, \mathcal{Y})\right) \geqslant \omega^{\xi_0}$$

- We fix {m_j}_j, {q_j}_j strictly increasing sequences of naturals satisfying appropriate growth conditions.
- We choose

 $\mathcal{F}_0 \subset \mathcal{G}_1 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{G}_j \subset \mathcal{F}_j \subset \cdot$ egular families satisfying the following

(i) If $\mathcal{F}_{j}^{(2)} = \{F \cup G : F, G \in \mathcal{F}_{j}\}$ and $\mathbb{N}_{j} = \{n : n \ge j\}$, then $((\mathcal{F}_{j}^{(2)})^{q_{j}} * G_{j+1})[\mathbb{N}_{j}] \subset \mathcal{F}_{j+1}$ i.e, for any $F \in (\mathcal{F}_{j}^{(2)})^{q_{j}} * G_{j+1}, j \le \min F, F \in \mathcal{F}_{j+1}$

- We fix {m_j}_j, {q_j}_j strictly increasing sequences of naturals satisfying appropriate growth conditions.
- We choose

 $\mathcal{F}_0 \subset \mathcal{G}_1 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{G}_j \subset \mathcal{F}_j \subset \cdots$

regular families satisfying the following

(i) If $\mathcal{F}_{j}^{(2)} = \{F \cup G : F, G \in \mathcal{F}_{j}\}$ and $\mathbb{N}_{j} = \{n : n \ge j\}$, then $((\mathcal{F}_{j}^{(2)})^{q_{j}} * G_{j+1})[\mathbb{N}_{j}] \subset \mathcal{F}_{j+1}$ i.e, for any $F \in (\mathcal{F}_{j}^{(2)})^{q_{j}} * G_{j+1}, j \le \min F, F \in \mathcal{F}_{j+1}$

- We fix {m_j}_j, {q_j}_j strictly increasing sequences of naturals satisfying appropriate growth conditions.
- We choose

 $\mathcal{F}_0 \subset \mathcal{G}_1 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{G}_j \subset \mathcal{F}_j \subset \cdots$

regular families satisfying the following

(i) If $\mathcal{F}_{j}^{(2)} = \{F \cup G : F, G \in \mathcal{F}_{j}\}$ and $\mathbb{N}_{j} = \{n : n \ge j\}$, then $((\mathcal{F}_{j}^{(2)})^{q_{j}} * G_{j+1})[\mathbb{N}_{j}] \subset \mathcal{F}_{j+1}$ i.e, for any $F \in (\mathcal{F}_{j}^{(2)})^{q_{j}} * G_{j+1}, j \le \min F, F \in \mathcal{F}_{j+1}$

・ロト・西ト・ヨト・ヨー うへぐ

- We fix {m_j}_j, {q_j}_j strictly increasing sequences of naturals satisfying appropriate growth conditions.
- We choose

 $\mathcal{F}_0 \subset \mathcal{G}_1 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{G}_j \subset \mathcal{F}_j \subset \cdots$ regular families satisfying the following (i) If $\mathcal{F}_i^{(2)} = \{F \cup G : F, G \in \mathcal{F}_i\}$ and $\mathbb{N}_i = \{n : n \ge j\}$, then

 $((\mathcal{F}_j^{(2)})^{q_j} * G_{j+1})[\mathbb{N}_j] \subset \mathcal{F}_{j+1}$ i.e, for any $F \in (\mathcal{F}_j^{(2)})^{q_j} * G_{j+1}, j \leqslant \min F, F \in \mathcal{F}_{j+1}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- We fix {m_j}_j, {q_j}_j strictly increasing sequences of naturals satisfying appropriate growth conditions.
- We choose

 $\mathcal{F}_0 \subset \mathcal{G}_1 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{G}_j \subset \mathcal{F}_j \subset \cdots$ regular families satisfying the following

(i) If $\mathcal{F}_{j}^{(2)} = \{F \cup G : F, G \in \mathcal{F}_{j}\}$ and $\mathbb{N}_{j} = \{n : n \ge j\}$, then $((\mathcal{F}_{j}^{(2)})^{q_{j}} * G_{j+1})[\mathbb{N}_{j}] \subset \mathcal{F}_{j+1}$ i.e, for any $F \in (\mathcal{F}_{j}^{(2)})^{q_{j}} * G_{j+1}, j \le \min F, F \in \mathcal{F}_{j+1}$

- We fix {m_j}_j, {q_j}_j strictly increasing sequences of naturals satisfying appropriate growth conditions.
- We choose

 $\mathcal{F}_0 \subset \mathcal{G}_1 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{G}_j \subset \mathcal{F}_j \subset \cdots$ regular families satisfying the following

(i) If
$$\mathcal{F}_{j}^{(2)} = \{F \cup G : F, G \in \mathcal{F}_{j}\}$$
 and $\mathbb{N}_{j} = \{n : n \ge j\}$, then
 $((\mathcal{F}_{j}^{(2)})^{q_{j}} * G_{j+1})[\mathbb{N}_{j}] \subset \mathcal{F}_{j+1}$
i.e, for any $F \in (\mathcal{F}_{j}^{(2)})^{q_{j}} * G_{j+1}, j \le \min F, F \in \mathcal{F}_{j+1}$

- (ii) For *j* and $j' \ge j$, every $F \in \mathcal{G}_j[\mathbb{N}_{j'}]$ maximal set supports a $(j, \frac{1}{2^{j'+2}})$ b.s.c.c. with respect to $\{\mathcal{F}_j\}_{j=0}^{\infty}$
- (iii) The Cantor-Bendixson index of \mathcal{F}_0 is ω^{ξ_0} and there exists a strictly increasing sequence of countable ordinals $\{\xi_j\}_j$ with $\xi_0 < \xi_j$ such that the Cantor-Bendixson index of \mathcal{F}_j is ω^{ξ_j}

From now on we will denote the ordinal $\sup_{i} \xi_j$ by ξ .

(ii) For *j* and $j' \ge j$, every $F \in \mathcal{G}_j[\mathbb{N}_{j'}]$ maximal set supports a $(j, \frac{1}{2^{j'+2}})$ b.s.c.c. with respect to $\{\mathcal{F}_j\}_{j=0}^{\infty}$

(iii) The Cantor-Bendixson index of \mathcal{F}_0 is ω^{ξ_0} and there exists a strictly increasing sequence of countable ordinals $\{\xi_j\}_j$ with $\xi_0 < \xi_j$ such that the Cantor-Bendixson index of \mathcal{F}_j is ω^{ξ_j}

From now on we will denote the ordinal $\sup_{i} \xi_{j}$ by ξ .

- (ii) For *j* and $j' \ge j$, every $F \in \mathcal{G}_j[\mathbb{N}_{j'}]$ maximal set supports a $(j, \frac{1}{2^{j'+2}})$ b.s.c.c. with respect to $\{\mathcal{F}_j\}_{j=0}^{\infty}$
- (iii) The Cantor-Bendixson index of \mathcal{F}_0 is ω^{ξ_0} and there exists a strictly increasing sequence of countable ordinals $\{\xi_j\}_j$ with $\xi_0 < \xi_j$ such that the Cantor-Bendixson index of \mathcal{F}_j is ω^{ξ_j}

From now on we will denote the ordinal $\sup_{i} \xi_j$ by ξ .

- (ii) For *j* and $j' \ge j$, every $F \in \mathcal{G}_j[\mathbb{N}_{j'}]$ maximal set supports a $(j, \frac{1}{2^{j'+2}})$ b.s.c.c. with respect to $\{\mathcal{F}_j\}_{j=0}^{\infty}$
- (iii) The Cantor-Bendixson index of \mathcal{F}_0 is ω^{ξ_0} and there exists a strictly increasing sequence of countable ordinals $\{\xi_j\}_j$ with $\xi_0 < \xi_j$ such that the Cantor-Bendixson index of \mathcal{F}_j is ω^{ξ_j}

From now on we will denote the ordinal sup ξ_j by ξ .

- (ii) For *j* and $j' \ge j$, every $F \in \mathcal{G}_j[\mathbb{N}_{j'}]$ maximal set supports a $(j, \frac{1}{2^{j'+2}})$ b.s.c.c. with respect to $\{\mathcal{F}_j\}_{j=0}^{\infty}$
- (iii) The Cantor-Bendixson index of \mathcal{F}_0 is ω^{ξ_0} and there exists a strictly increasing sequence of countable ordinals $\{\xi_j\}_j$ with $\xi_0 < \xi_j$ such that the Cantor-Bendixson index of \mathcal{F}_j is ω^{ξ_j}

From now on we will denote the ordinal $\sup_{i} \xi_{j}$ by ξ .

- The norming set W_{ξ_0} is the minimal norming set satisfying the following properties.
- (i) (Type I_{α} functionals) The set W_{ξ_0} is closed in the $(\frac{1}{m_j}, \mathcal{F}_j, \alpha$ -s.c.c.) operations, for $j \ge 1$. If *f* is of type I_{α} and is the result of $(\frac{1}{m_j}, \mathcal{F}_j, \alpha$ -s.c.c.) operation, then the weight of *f* is w(f) = j.
- (ii) (Type II functionals) The set W_{ξ_0} includes all $E\phi$, with E an interval of the naturals and $\phi = \frac{1}{2} \sum_{k=1}^{n} \lambda_k f_k$, where $f_1 < \cdots < f_n$ is an \mathcal{F}_0 -admissible special family of type I_α special functionals (a special family satisfies the property, that for k > 1, $w(f_k)$ determines uniquely the sequence $\{f_i\}_{i=1}^{k-1}$.)

- The norming set W_{ξ_0} is the minimal norming set satisfying the following properties.
- (i) (Type I_α functionals) The set W_{ξ0} is closed in the (¹/_{mj}, F_j, α-s.c.c.) operations, for j ≥ 1.
 If *f* is of type I_α and is the result of (¹/_{mj}, F_j, α-s.c.c.) operation, then the weight of *f* is w(f) = j.
- (ii) (Type II functionals) The set W_{ξ_0} includes all $E\phi$, with E an interval of the naturals and $\phi = \frac{1}{2} \sum_{k=1}^{n} \lambda_k f_k$, where $f_1 < \cdots < f_n$ is an \mathcal{F}_0 -admissible special family of type I_α special functionals (a special family satisfies the property, that for k > 1, $w(f_k)$ determines uniquely the sequence $\{f_i\}_{i=1}^{k-1}$.)

- The norming set W_{ξ_0} is the minimal norming set satisfying the following properties.
- (i) (Type I_α functionals) The set W_{ξ0} is closed in the (¹/_{mj}, F_j, α-s.c.c.) operations, for j ≥ 1.
 If *f* is of type I_α and is the result of (¹/_{mj}, F_j, α-s.c.c.) operation, then the weight of *f* is w(f) = j.
- (ii) (Type II functionals) The set W_{ξ_0} includes all $E\phi$, with E an interval of the naturals and $\phi = \frac{1}{2} \sum_{k=1}^{n} \lambda_k f_k$, where $f_1 < \cdots < f_n$ is an \mathcal{F}_0 -admissible special family of type I_α special functionals (a special family satisfies the property, that for k > 1, $w(f_k)$ determines uniquely the sequence $\{f_i\}_{i=1}^{k-1}$.)

- The norming set W_{ξ_0} is the minimal norming set satisfying the following properties.
- (i) (Type I_{α} functionals) The set W_{ξ_0} is closed in the $(\frac{1}{m_j}, \mathcal{F}_j, \alpha$ -s.c.c.) operations, for $j \ge 1$. If *f* is of type I_{α} and is the result of $(\frac{1}{m_j}, \mathcal{F}_j, \alpha$ -s.c.c.) operation, then the weight of *f* is w(f) = j.
- (ii) (Type II functionals) The set W_{ξ_0} includes all $E\phi$, with E an interval of the naturals and $\phi = \frac{1}{2} \sum_{k=1}^{n} \lambda_k f_k$, where $f_1 < \cdots < f_n$ is an \mathcal{F}_0 -admissible special family of type I_α special functionals (a special family satisfies the property, that for k > 1, $w(f_k)$ determines uniquely the sequence $\{f_i\}_{i=1}^{k-1}$.)

- The norming set W_{ξ_0} is the minimal norming set satisfying the following properties.
- (i) (Type I_{α} functionals) The set W_{ξ_0} is closed in the $(\frac{1}{m_j}, \mathcal{F}_j, \alpha$ -s.c.c.) operations, for $j \ge 1$. If *f* is of type I_{α} and is the result of $(\frac{1}{m_j}, \mathcal{F}_j, \alpha$ -s.c.c.) operation, then the weight of *f* is w(f) = j.
- (ii) (Type II functionals) The set W_{ξ_0} includes all $E\phi$, with E an interval of the naturals and $\phi = \frac{1}{2} \sum_{k=1}^{n} \lambda_k f_k$, where $f_1 < \cdots < f_n$ is an \mathcal{F}_0 -admissible special family of type I_α special functionals (a special family satisfies the property, that for k > 1, $w(f_k)$ determines uniquely the sequence $\{f_i\}_{i=1}^{k-1}$.)

- The norming set W_{ξ_0} is the minimal norming set satisfying the following properties.
- (i) (Type I_{α} functionals) The set W_{ξ_0} is closed in the $(\frac{1}{m_j}, \mathcal{F}_j, \alpha$ -s.c.c.) operations, for $j \ge 1$. If *f* is of type I_{α} and is the result of $(\frac{1}{m_j}, \mathcal{F}_j, \alpha$ -s.c.c.) operation, then the weight of *f* is w(f) = j.
- (ii) (Type II functionals) The set W_{ξ_0} includes all $E\phi$, with E an interval of the naturals and $\phi = \frac{1}{2} \sum_{k=1}^{n} \lambda_k f_k$, where $f_1 < \cdots < f_n$ is an \mathcal{F}_0 -admissible special family of type I_α special functionals (a special family satisfies the property, that for k > 1, $w(f_k)$ determines uniquely the sequence $\{f_i\}_{i=1}^{k-1}$.)

For ϕ type II and *E* and interval of the naturals, the weights of $E\phi$ are $\hat{w}(\phi) = \{w(f_k) : E \cap \text{supp } f_k \neq \emptyset\}.$

For $E_1\phi_1$, $E_2\phi_2$ functionals of type II and, we say that the weights of $E_1\phi_1$, $E_2\phi_2$ are incomparable, if there does not exist a functional ϕ of type II, such that

both $\hat{w}(\phi) \cap \hat{w}(\phi_1) \neq \varnothing$ and $\hat{w}(\phi) \cap \hat{w}(\phi_2) \neq \varnothing$.

(β -averages) A β -average is an average $\beta = \frac{1}{n} \sum_{k=1}^{n} E_k \phi_k$, where $E_k \phi_k$ are of type II with pairwise incomparable weights.

The size $s(\beta)$ and very fast growing sequences $(\beta_k)_k$ are defined in the same manner as for α -averages.

For $E_1\phi_1, E_2\phi_2$ functionals of type II and, we say that the weights of $E_1\phi_1, E_2\phi_2$ are incomparable, if there does not exist a functional ϕ of type II, such that both $\hat{w}(\phi) \cap \hat{w}(\phi_1) \neq \emptyset$ and $\hat{w}(\phi) \cap \hat{w}(\phi_2) \neq \emptyset$.

(β -averages) A β -average is an average $\beta = \frac{1}{n} \sum_{k=1}^{n} E_k \phi_k$, where $E_k \phi_k$ are of type II with pairwise incomparable weights.

For $E_1\phi_1$, $E_2\phi_2$ functionals of type II and, we say that the weights of $E_1\phi_1$, $E_2\phi_2$ are incomparable, if there does not exist a functional ϕ of type II, such that

both $\hat{w}(\phi) \cap \hat{w}(\phi_1) \neq \varnothing$ and $\hat{w}(\phi) \cap \hat{w}(\phi_2) \neq \varnothing$.

(β -averages) A β -average is an average $\beta = \frac{1}{n} \sum_{k=1}^{n} E_k \phi_k$, where $E_k \phi_k$ are of type II with pairwise incomparable weights.

For $E_1\phi_1, E_2\phi_2$ functionals of type II and, we say that the weights of $E_1\phi_1, E_2\phi_2$ are incomparable, if there does not exist a functional ϕ of type II, such that

both $\hat{w}(\phi) \cap \hat{w}(\phi_1) \neq \varnothing$ and $\hat{w}(\phi) \cap \hat{w}(\phi_2) \neq \varnothing$.

(β -averages) A β -average is an average $\beta = \frac{1}{n} \sum_{k=1}^{n} E_k \phi_k$, where $E_k \phi_k$ are of type II with pairwise incomparable weights.

For $E_1\phi_1$, $E_2\phi_2$ functionals of type II and, we say that the weights of $E_1\phi_1$, $E_2\phi_2$ are incomparable, if there does not exist a functional ϕ of type II, such that

both $\hat{w}(\phi) \cap \hat{w}(\phi_1) \neq \varnothing$ and $\hat{w}(\phi) \cap \hat{w}(\phi_2) \neq \varnothing$.

(β -averages) A β -average is an average $\beta = \frac{1}{n} \sum_{k=1}^{n} E_k \phi_k$, where $E_k \phi_k$ are of type II with pairwise incomparable weights.

(iii) (Type I_β functionals) The set W_{ξ_0} is closed in the $(\frac{1}{m_j}, \mathcal{F}_j, \beta)$ operations, for $j \ge 1$. If *f* is of type I_β and is the result of $(\frac{1}{m_i}, \mathcal{F}_j, \beta)$ operation, then the weight of *f* is w(f) = j.

★御▶ ★臣▶ ★臣▶

(iii) (Type I_β functionals) The set W_{ξ_0} is closed in the $(\frac{1}{m_j}, \mathcal{F}_j, \beta)$ operations, for $j \ge 1$. If *f* is of type I_β and is the result of $(\frac{1}{m_i}, \mathcal{F}_j, \beta)$ operation, then the weight of *f* is w(f) = j.

- Let *Y* be a block subspace of \mathfrak{X}_{ξ_0} and assume that there exists a normalized block sequence $\{y_k\}_k$ in *Y* generating a c_0^{ξ} spreading model. For any $j \ge 1$, one may find a subset *F* of the naturals, such that $j \le \{\min \text{ supp } y_k : k \in F\}$ is a maximal \mathcal{G}_j set and $\|\sum_{k \in F} y_k\|$ is bounded by a universal constant *K*.
- Thus there exists an α -s.c.c. α of size $s(\alpha) = j$, such that $\alpha(\sum_{k \in F} y_i) > 1 \varepsilon$.
- For $j \ge 1$ By taking $F_1 < \cdots < F_n$ such that
- (i) If $z_k = \sum_{i \in F_k} y_i$, then {min supp $z_k : k = 1, ..., n$ } is a maximal \mathcal{G}_j set.
- (ii) $j_k \leq \{\min \text{ supp } y_i : i \in F_k\}$ is j_k admissible with $j_k > 2^{\max \text{ supp } y_{k-1}}$ for k > 1

- Let Y be a block subspace of X_{ξ0} and assume that there exists a normalized block sequence {y_k}_k in Y generating a c₀^ξ spreading model. For any j ≥ 1, one may find a subset F of the naturals, such that j ≤ {min supp y_k : k ∈ F} is a maximal G_j set and || ∑_{k∈F} y_k|| is bounded by a universal constant K.
- Thus there exists an α -s.c.c. α of size $s(\alpha) = j$, such that $\alpha(\sum_{k \in F} y_i) > 1 \varepsilon$.
- For $j \ge 1$ By taking $F_1 < \cdots < F_n$ such that
- (i) If $z_k = \sum_{i \in F_k} y_i$, then {min supp $z_k : k = 1, ..., n$ } is a maximal \mathcal{G}_j set.
- (ii) $j_k \leq \{\min \text{ supp } y_i : i \in F_k\}$ is j_k admissible with $j_k > 2^{\max \text{ supp } y_{k-1}}$ for k > 1

- Let Y be a block subspace of X_{ξ0} and assume that there exists a normalized block sequence {y_k}_k in Y generating a c₀^ξ spreading model. For any j ≥ 1, one may find a subset F of the naturals, such that j ≤ {min supp y_k : k ∈ F} is a maximal G_j set and || ∑_{k∈F} y_k|| is bounded by a universal constant K.
- Thus there exists an α-s.c.c. α of size s(α) = j, such that α(Σ_{k∈F} y_i) > 1 − ε.
- For $j \ge 1$ By taking $F_1 < \cdots < F_n$ such that
- (i) If $z_k = \sum_{i \in F_k} y_i$, then {min supp $z_k : k = 1, ..., n$ } is a maximal \mathcal{G}_j set.
- (ii) $j_k \leq \{\min \operatorname{supp} y_i : i \in F_k\}$ is j_k admissible with $j_k > 2^{\max \operatorname{supp} y_{k-1}}$ for k > 1

- Let Y be a block subspace of X_{ξ0} and assume that there exists a normalized block sequence {y_k}_k in Y generating a c₀^ξ spreading model. For any j ≥ 1, one may find a subset F of the naturals, such that j ≤ {min supp y_k : k ∈ F} is a maximal G_j set and || ∑_{k∈F} y_k|| is bounded by a universal constant K.
- Thus there exists an α -s.c.c. α of size $s(\alpha) = j$, such that $\alpha(\sum_{k \in F} y_i) > 1 \varepsilon$.
- For $j \ge 1$ By taking $F_1 < \cdots < F_n$ such that
- (i) If $z_k = \sum_{i \in F_k} y_i$, then {min supp $z_k : k = 1, ..., n$ } is a maximal \mathcal{G}_j set.
- (ii) $j_k \leq \{\min \text{ supp } y_i : i \in F_k\}$ is j_k admissible with $j_k > 2^{\max \text{ supp } y_{k-1}}$ for k > 1

- Let Y be a block subspace of X_{ξ₀} and assume that there exists a normalized block sequence {y_k}_k in Y generating a c₀^ξ spreading model. For any j ≥ 1, one may find a subset F of the naturals, such that j ≤ {min supp y_k : k ∈ F} is a maximal G_j set and || ∑_{k∈F} y_k|| is bounded by a universal constant K.
- Thus there exists an α -s.c.c. α of size $s(\alpha) = j$, such that $\alpha(\sum_{k \in F} y_i) > 1 \varepsilon$.
- For $j \ge 1$ By taking $F_1 < \cdots < F_n$ such that
- (i) If $z_k = \sum_{i \in F_k} y_i$, then {min supp $z_k : k = 1, ..., n$ } is a maximal \mathcal{G}_j set.

(ii) $j_k \leq \{\min \operatorname{supp} y_i : i \in F_k\}$ is j_k admissible with $j_k > 2^{\max \operatorname{supp} y_{k-1}}$ for k > 1

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − 釣んで

- Let Y be a block subspace of X_{ξ₀} and assume that there exists a normalized block sequence {y_k}_k in Y generating a c₀^ξ spreading model. For any j ≥ 1, one may find a subset F of the naturals, such that j ≤ {min supp y_k : k ∈ F} is a maximal G_j set and || ∑_{k∈F} y_k|| is bounded by a universal constant K.
- Thus there exists an α -s.c.c. α of size $s(\alpha) = j$, such that $\alpha(\sum_{k \in F} y_i) > 1 \varepsilon$.
- For $j \ge 1$ By taking $F_1 < \cdots < F_n$ such that
- (i) If $z_k = \sum_{i \in F_k} y_i$, then {min supp $z_k : k = 1, ..., n$ } is a maximal \mathcal{G}_j set.
- (ii) $j_k \leq \{\min \text{ supp } y_i : i \in F_k\}$ is j_k admissible with $j_k > 2^{\max \text{ supp } y_{k-1}}$ for k > 1

- Combining the above, we conclude that there exists $\{\alpha_k\}_{k=1}^n$ an \mathcal{F}_j admissible v.f.g. sequence of α -s.c.c. with $\alpha(y_k) > 1 \varepsilon$, thus $f = \frac{1}{m_j} \sum_{k=1}^n \alpha_k$ is a functional of type I_{α} in W_{ξ_0} .
- Then, for $\{c_k\}_{k=1}^n$, such that $w = \sum_{k=1}^n c_k z_k$ is a (j, δ) s.c.c. we have that $f(w) > \frac{1-\varepsilon}{m_j}$.
- Moreover, $\{y_k\}_{k=1}^n$ is RIS, therefore setting $x = \frac{m_j}{f(w)}w$, we conclude that $\{x, f\}$ is a *j*-exact pair, where *f* is a functional of type I_α . Moreover $1 \le ||x|| \le M$, for a universal constant *M*.

- Combining the above, we conclude that there exists $\{\alpha_k\}_{k=1}^n$ an \mathcal{F}_j admissible v.f.g. sequence of α -s.c.c. with $\alpha(y_k) > 1 \varepsilon$, thus $f = \frac{1}{m_j} \sum_{k=1}^n \alpha_k$ is a functional of type I_{α} in W_{ξ_0} .
- Then, for $\{c_k\}_{k=1}^n$, such that $w = \sum_{k=1}^n c_k z_k$ is a (j, δ) s.c.c. we have that $f(w) > \frac{1-\varepsilon}{m_j}$.
- Moreover, $\{y_k\}_{k=1}^n$ is RIS, therefore setting $x = \frac{m_j}{f(w)}w$, we conclude that $\{x, f\}$ is a *j*-exact pair, where *f* is a functional of type I_α . Moreover $1 \le ||x|| \le M$, for a universal constant *M*.

- Combining the above, we conclude that there exists $\{\alpha_k\}_{k=1}^n$ an \mathcal{F}_j admissible v.f.g. sequence of α -s.c.c. with $\alpha(y_k) > 1 \varepsilon$, thus $f = \frac{1}{m_j} \sum_{k=1}^n \alpha_k$ is a functional of type I_{α} in W_{ξ_0} .
- Then, for $\{c_k\}_{k=1}^n$, such that $w = \sum_{k=1}^n c_k z_k$ is a (j, δ) s.c.c. we have that $f(w) > \frac{1-\varepsilon}{m_j}$.
- Moreover, $\{y_k\}_{k=1}^n$ is RIS, therefore setting $x = \frac{m_j}{f(w)}w$, we conclude that $\{x, f\}$ is a *j*-exact pair, where *f* is a functional of type I_α . Moreover $1 \le ||x|| \le M$, for a universal constant *M*.

- Combining the above, we conclude that there exists $\{\alpha_k\}_{k=1}^n$ an \mathcal{F}_j admissible v.f.g. sequence of α -s.c.c. with $\alpha(y_k) > 1 \varepsilon$, thus $f = \frac{1}{m_j} \sum_{k=1}^n \alpha_k$ is a functional of type I_{α} in W_{ξ_0} .
- Then, for $\{c_k\}_{k=1}^n$, such that $w = \sum_{k=1}^n c_k z_k$ is a (j, δ) s.c.c. we have that $f(w) > \frac{1-\varepsilon}{m_j}$.
- Moreover, $\{y_k\}_{k=1}^n$ is RIS, therefore setting $x = \frac{m_j}{f(w)}w$, we conclude that $\{x, f\}$ is a *j*-exact pair, where *f* is a functional of type I_α . Moreover $1 \le ||x|| \le M$, for a universal constant *M*.

Therefore, a dependent sequence {x_k, f_k}^m_{k=1} can be constructed, i.e.

 $\{x_k, f_k\}$ is a j_k -exact pair and $f_{k_1}(x_{k_2}) = \delta_{k_1, k_2}$ $\{f_k\}_{k=1}^m$ is an \mathcal{F}_0 admissible special sequence

• Fix $\{\mu_k\}_{k=1}^m \subset \mathbb{R}$. Since for any $\{\lambda_k\}_{k=1}^m \subset [-1, 1] \cap \mathbb{Q}$, such that $\|\sum_{k=1}^m \lambda_k u_k^*\| \leq 1$ we have that $\frac{1}{2} \sum_{k=1}^m \lambda_k f_k$ is a functional of type II in W_{ξ_0} , we conclude the following.

 $\|\sum_{k=1}^{m} \mu_k x_k\|_{\xi_0} \ge \frac{1}{2} \|\sum_{k=1}^{m} \mu_k u_k\|$

$$\left\|\sum_{k=1}^{m} \mu_k X_k\right\|_{\xi_0} \leqslant \frac{C}{2} \left\|\sum_{k=1}^{m} \mu_k U_k\right\|_{\xi_0} \leqslant \frac{C}{2} \left\|\sum_{k=1}^{m} \mu_k U_k\right\|_{\xi_0} \leqslant \frac{C}{2} \left\|\sum_{k=1}^{m} \mu_k X_k\right\|_{\xi_0} \leqslant \frac{C}{2} \left\|\sum_{k=1}^{m} \mu_k X_k\right\|_{\xi_0}$$

Therefore, a dependent sequence {x_k, f_k}^m_{k=1} can be constructed, i.e.

 $\{x_k, f_k\}$ is a j_k -exact pair and $f_{k_1}(x_{k_2}) = \delta_{k_1, k_2}$ $\{f_k\}_{k=1}^m$ is an \mathcal{F}_0 admissible special sequence

• Fix $\{\mu_k\}_{k=1}^m \subset \mathbb{R}$. Since for any $\{\lambda_k\}_{k=1}^m \subset [-1, 1] \cap \mathbb{Q}$, such that $\|\sum_{k=1}^m \lambda_k u_k^*\| \leq 1$ we have that $\frac{1}{2} \sum_{k=1}^m \lambda_k f_k$ is a functional of type II in W_{ξ_0} , we conclude the following.

 $\|\sum_{k=1}^{m} \mu_k x_k\|_{\xi_0} \ge \frac{1}{2} \|\sum_{k=1}^{m} \mu_k u_k\|$

$$\left\|\sum_{k=1}^{m} \mu_k X_k\right\|_{\xi_0} \leqslant \frac{C}{2} \left\|\sum_{k=1}^{m} \mu_k U_k\right\|_{\xi_0} \leqslant \frac{C}{2} \left\|\sum_{k=1}^{m} \mu_k U_k\right\|_{\xi_0} \leqslant \frac{C}{2} \left\|\sum_{k=1}^{m} \mu_k X_k\right\|_{\xi_0} \leqslant \frac{C}{2} \left\|\sum_{k=1}^{m} \mu_k X_k\right\|_{\xi_0}$$

Therefore, a dependent sequence {x_k, f_k}^m_{k=1} can be constructed, i.e.

 $\{x_k, f_k\}$ is a j_k -exact pair and $f_{k_1}(x_{k_2}) = \delta_{k_1, k_2}$ $\{f_k\}_{k=1}^m$ is an \mathcal{F}_0 admissible special sequence

• Fix $\{\mu_k\}_{k=1}^m \subset \mathbb{R}$. Since for any $\{\lambda_k\}_{k=1}^m \subset [-1, 1] \cap \mathbb{Q}$, such that $\|\sum_{k=1}^m \lambda_k u_k^*\| \leq 1$ we have that $\frac{1}{2} \sum_{k=1}^m \lambda_k f_k$ is a functional of type II in W_{ξ_0} , we conclude the following.

 $\|\sum_{k=1}^{m} \mu_k x_k\|_{\xi_0} \ge \frac{1}{2} \|\sum_{k=1}^{m} \mu_k u_k\|$

$$\left\|\sum_{k=1}^{m} \mu_k X_k\right\|_{\xi_0} \leqslant \frac{C}{2} \left\|\sum_{k=1}^{m} \mu_k U_k\right\|_{\mathfrak{S}}$$

Therefore, a dependent sequence {x_k, f_k}^m_{k=1} can be constructed, i.e.

 $\{x_k, f_k\}$ is a j_k -exact pair and $f_{k_1}(x_{k_2}) = \delta_{k_1, k_2}$ $\{f_k\}_{k=1}^m$ is an \mathcal{F}_0 admissible special sequence

• Fix $\{\mu_k\}_{k=1}^m \subset \mathbb{R}$. Since for any $\{\lambda_k\}_{k=1}^m \subset [-1, 1] \cap \mathbb{Q}$, such that $\|\sum_{k=1}^m \lambda_k u_k^*\| \leq 1$ we have that $\frac{1}{2} \sum_{k=1}^m \lambda_k f_k$ is a functional of type II in W_{ξ_0} , we conclude the following.

 $\|\sum_{k=1}^{m} \mu_k x_k\|_{\xi_0} \ge \frac{1}{2} \|\sum_{k=1}^{m} \mu_k u_k\|$

Therefore, a dependent sequence {x_k, f_k}^m_{k=1} can be constructed, i.e.

 $\{x_k, f_k\}$ is a j_k -exact pair and $f_{k_1}(x_{k_2}) = \delta_{k_1, k_2}$ $\{f_k\}_{k=1}^m$ is an \mathcal{F}_0 admissible special sequence

• Fix $\{\mu_k\}_{k=1}^m \subset \mathbb{R}$. Since for any $\{\lambda_k\}_{k=1}^m \subset [-1, 1] \cap \mathbb{Q}$, such that $\|\sum_{k=1}^m \lambda_k u_k^*\| \leq 1$ we have that $\frac{1}{2} \sum_{k=1}^m \lambda_k f_k$ is a functional of type II in W_{ξ_0} , we conclude the following.

 $\|\sum_{k=1}^{m} \mu_k x_k\|_{\xi_0} \ge \frac{1}{2} \|\sum_{k=1}^{m} \mu_k u_k\|$

$$\left\|\sum_{k=1}^{m} \mu_k X_k\right\|_{\xi_0} \leqslant \frac{C}{2} \left\|\sum_{k=1}^{m} \mu_k U_k\right\|_{\xi_0} \leqslant \frac{C}{2} \leq \frac{1}{2} \leq \frac{$$

Therefore, a dependent sequence {x_k, f_k}^m_{k=1} can be constructed, i.e.

 $\{x_k, f_k\}$ is a j_k -exact pair and $f_{k_1}(x_{k_2}) = \delta_{k_1, k_2}$ $\{f_k\}_{k=1}^m$ is an \mathcal{F}_0 admissible special sequence

• Fix $\{\mu_k\}_{k=1}^m \subset \mathbb{R}$. Since for any $\{\lambda_k\}_{k=1}^m \subset [-1, 1] \cap \mathbb{Q}$, such that $\|\sum_{k=1}^m \lambda_k u_k^*\| \leq 1$ we have that $\frac{1}{2} \sum_{k=1}^m \lambda_k f_k$ is a functional of type II in W_{ξ_0} , we conclude the following.

 $\|\sum_{k=1}^{m} \mu_k x_k\|_{\xi_0} \ge \frac{1}{2} \|\sum_{k=1}^{m} \mu_k u_k\|$

Therefore, a dependent sequence {x_k, f_k}^m_{k=1} can be constructed, i.e.

 $\{x_k, f_k\}$ is a j_k -exact pair and $f_{k_1}(x_{k_2}) = \delta_{k_1, k_2}$ $\{f_k\}_{k=1}^m$ is an \mathcal{F}_0 admissible special sequence

• Fix $\{\mu_k\}_{k=1}^m \subset \mathbb{R}$. Since for any $\{\lambda_k\}_{k=1}^m \subset [-1, 1] \cap \mathbb{Q}$, such that $\|\sum_{k=1}^m \lambda_k u_k^*\| \leq 1$ we have that $\frac{1}{2} \sum_{k=1}^m \lambda_k f_k$ is a functional of type II in W_{ξ_0} , we conclude the following.

 $\|\sum_{k=1}^{m} \mu_k x_k\|_{\xi_0} \ge \frac{1}{2} \|\sum_{k=1}^{m} \mu_k u_k\|$

Therefore, a dependent sequence {x_k, f_k}^m_{k=1} can be constructed, i.e.

 $\{x_k, f_k\}$ is a j_k -exact pair and $f_{k_1}(x_{k_2}) = \delta_{k_1, k_2}$ $\{f_k\}_{k=1}^m$ is an \mathcal{F}_0 admissible special sequence

• Fix $\{\mu_k\}_{k=1}^m \subset \mathbb{R}$. Since for any $\{\lambda_k\}_{k=1}^m \subset [-1, 1] \cap \mathbb{Q}$, such that $\|\sum_{k=1}^m \lambda_k u_k^*\| \leq 1$ we have that $\frac{1}{2} \sum_{k=1}^m \lambda_k f_k$ is a functional of type II in W_{ξ_0} , we conclude the following.

 $\|\sum_{k=1}^{m} \mu_k x_k\|_{\xi_0} \ge \frac{1}{2} \|\sum_{k=1}^{m} \mu_k u_k\|$

$$\|\sum_{k=1}^{m} \mu_k x_k\|_{\xi_0} \leq \frac{C}{2} \|\sum_{k=1}^{m} \mu_k u_k\|$$

• Using the fact that special sequences are \mathcal{F}_0 -admissible and the Cantor-Bendixson index of \mathcal{F}_0 is ω^{ξ_0} and an inductive construction, it is shown that

 $\operatorname{rank}(\mathcal{T}(\{u_k\}_k, C, Y)) \geq \omega^{\xi_0}.$

 Using the fact that special sequences are *F*₀-admissible and the Cantor-Bendixson index of *F*₀ is ω^{ξ₀} and an inductive construction, it is shown that

 $\operatorname{rank}\left(\mathcal{T}(\{u_k\}_k, C, Y)\right) \geqslant \omega^{\xi_0}.$

 Using the fact that special sequences are *F*₀-admissible and the Cantor-Bendixson index of *F*₀ is ω^{ξ₀} and an inductive construction, it is shown that

 $\operatorname{rank}\left(\mathcal{T}(\{u_k\}_k, \mathcal{C}, Y)\right) \geqslant \omega^{\xi_0}.$

- As in the case of the space 𝔅_{ISP}, we associate the behaviour of the α-s.c.c. and β-averages on a sequence, to the spreading models generated by it, by introducing the transfinite hierarchy of α_ζ, β_ζ indices, ζ < ξ.
- Let {x_k}_k be a block sequence in X_{ξ0} and ζ < ξ such that the following is satisfied.

For any *j*, for any very fast growing sequence $\{\alpha_q\}_q$ of α -s.c.c. in W_{ξ_0} and for any $\{F_k\}_k$ increasing sequence of subsets of the naturals, such that $\{\alpha_q\}_{q\in F_k}$ is \mathcal{F}_i -admissible, the following holds.

For any $\{G_k\}_k$ increasing sequence of S_{ζ} sets, we have that

$$\lim_k \sum_{q \in F_k} |\alpha_q(\sum_{i \in G_k} x_i)| = 0.$$

▲□▶▲□▶▲□▶▲□▶ = つへで

- As in the case of the space 𝔅_{ISP}, we associate the behaviour of the α-s.c.c. and β-averages on a sequence, to the spreading models generated by it, by introducing the transfinite hierarchy of α_ζ, β_ζ indices, ζ < ξ.
- Let {x_k}_k be a block sequence in X_{ξ0} and ζ < ξ such that the following is satisfied.

For any *j*, for any very fast growing sequence $\{\alpha_q\}_q$ of α -s.c.c. in W_{ξ_0} and for any $\{F_k\}_k$ increasing sequence of subsets of the naturals, such that $\{\alpha_q\}_{q\in F_k}$ is \mathcal{F}_i -admissible, the following holds.

For any $\{G_k\}_k$ increasing sequence of S_{ζ} sets, we have that

$$\lim_k \sum_{q \in F_k} |\alpha_q(\sum_{i \in G_k} x_i)| = 0.$$

▲□▶▲圖▶▲필▶▲필▶ - ヨーのへで

- As in the case of the space 𝔅_{ISP}, we associate the behaviour of the α-s.c.c. and β-averages on a sequence, to the spreading models generated by it, by introducing the transfinite hierarchy of α_ζ, β_ζ indices, ζ < ξ.
- Let {x_k}_k be a block sequence in X_{ξ0} and ζ < ξ such that the following is satisfied.

For any *j*, for any very fast growing sequence $\{\alpha_q\}_q$ of α -s.c.c. in W_{ξ_0} and for any $\{F_k\}_k$ increasing sequence of subsets of the naturals, such that $\{\alpha_q\}_{q\in F_k}$ is \mathcal{F}_i -admissible, the following holds.

For any $\{G_k\}_k$ increasing sequence of S_{ζ} sets, we have that

$$\lim_k \sum_{q \in F_k} |\alpha_q(\sum_{i \in G_k} x_i)| = 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣 ─ つへで

- As in the case of the space 𝔅_{ISP}, we associate the behaviour of the α-s.c.c. and β-averages on a sequence, to the spreading models generated by it, by introducing the transfinite hierarchy of α_ζ, β_ζ indices, ζ < ξ.
- Let {x_k}_k be a block sequence in X_{ξ0} and ζ < ξ such that the following is satisfied.

For any *j*, for any very fast growing sequence $\{\alpha_q\}_q$ of α -s.c.c. in W_{ξ_0} and for any $\{F_k\}_k$ increasing sequence of subsets of the naturals, such that $\{\alpha_q\}_{q\in F_k}$ is \mathcal{F}_{i} -admissible, the following holds.

For any $\{G_k\}_k$ increasing sequence of S_{ζ} sets, we have that

 $\lim_k \sum_{q \in F_k} |\alpha_q(\sum_{i \in G_k} x_i)| = 0.$

・ロト・西ト・ヨト・ヨー うへぐ

- As in the case of the space X_{ISP}, we associate the behaviour of the α-s.c.c. and β-averages on a sequence, to the spreading models generated by it, by introducing the transfinite hierarchy of α_ζ, β_ζ indices, ζ < ξ.
- Let {x_k}_k be a block sequence in X_{ξ0} and ζ < ξ such that the following is satisfied.

For any *j*, for any very fast growing sequence $\{\alpha_q\}_q$ of α -s.c.c. in W_{ξ_0} and for any $\{F_k\}_k$ increasing sequence of subsets of the naturals, such that $\{\alpha_q\}_{q\in F_k}$ is \mathcal{F}_{i} -admissible, the following holds.

For any $\{G_k\}_k$ increasing sequence of S_{ζ} sets, we have that

$$\lim_k \sum_{q \in F_k} |\alpha_q(\sum_{i \in G_k} x_i)| = 0.$$

Then we say that the α_{ζ} -index of $\{x_k\}_k$ is zero and write $\alpha_{\zeta}(\{x_k\}_k) = 0.$

The β_{ζ} indices are similarly defined.

- The α, β indices provide the following criterion for sequences generating higher order c₀ spreading models.
- Let $\{x_k\}_k$ be a seminormalized block sequence in \mathfrak{X}_{ξ_0} and $\zeta \leq \xi$, such that $\alpha_\eta(\{x_k\}_k) = 0$ and $\beta_\eta(\{x_k\}_k) = 0$ for all $\eta < \zeta$. Then, passing if necessary, to a subsequence, the following holds.
- (i) The sequence $\{x_k\}_k$ generates a c_0^{ζ} spreading model.
- (ii) If $\zeta > 0$, then the sequence $\{x_k\}_k$ is S_{ζ} -RIS, i.e. for any $\{G_k\}$ increasing sequence of S_{ζ} sets, if $y_k = \sum_{i \in G_k} x_i$, then $\{y_k\}_k$ is RIS.

Then we say that the α_{ζ} -index of $\{x_k\}_k$ is zero and write $\alpha_{\zeta}(\{x_k\}_k) = 0.$

The β_{ζ} indices are similarly defined.

- The α, β indices provide the following criterion for sequences generating higher order c₀ spreading models.
- Let $\{x_k\}_k$ be a seminormalized block sequence in \mathfrak{X}_{ξ_0} and $\zeta \leq \xi$, such that $\alpha_\eta(\{x_k\}_k) = 0$ and $\beta_\eta(\{x_k\}_k) = 0$ for all $\eta < \zeta$. Then, passing if necessary, to a subsequence, the following holds.
- (i) The sequence $\{x_k\}_k$ generates a c_0^{ζ} spreading model.
- (ii) If $\zeta > 0$, then the sequence $\{x_k\}_k$ is S_{ζ} -RIS, i.e. for any $\{G_k\}$ increasing sequence of S_{ζ} sets, if $y_k = \sum_{i \in G_k} x_i$, then $\{y_k\}_k$ is RIS.

Then we say that the α_{ζ} -index of $\{x_k\}_k$ is zero and write $\alpha_{\zeta}(\{x_k\}_k) = 0.$ The β_{ζ} indices are similarly defined.

- The α, β indices provide the following criterion for sequences generating higher order c₀ spreading models.
- Let $\{x_k\}_k$ be a seminormalized block sequence in \mathfrak{X}_{ξ_0} and $\zeta \leq \xi$, such that $\alpha_\eta(\{x_k\}_k) = 0$ and $\beta_\eta(\{x_k\}_k) = 0$ for all $\eta < \zeta$. Then, passing if necessary, to a subsequence, the following holds.
- (i) The sequence $\{x_k\}_k$ generates a c_0^{ζ} spreading model.
- (ii) If $\zeta > 0$, then the sequence $\{x_k\}_k$ is S_{ζ} -RIS, i.e. for any $\{G_k\}$ increasing sequence of S_{ζ} sets, if $y_k = \sum_{i \in G_k} x_i$, then $\{y_k\}_k$ is RIS.

Then we say that the α_{ζ} -index of $\{x_k\}_k$ is zero and write $\alpha_{\zeta}(\{x_k\}_k) = 0.$

The β_{ζ} indices are similarly defined.

 The α, β indices provide the following criterion for sequences generating higher order c₀ spreading models.

• Let $\{x_k\}_k$ be a seminormalized block sequence in \mathfrak{X}_{ξ_0} and $\zeta \leq \xi$, such that $\alpha_\eta(\{x_k\}_k) = 0$ and $\beta_\eta(\{x_k\}_k) = 0$ for all $\eta < \zeta$. Then, passing if necessary, to a subsequence, the following holds.

- (i) The sequence $\{x_k\}_k$ generates a c_0^{ζ} spreading model.
- (ii) If $\zeta > 0$, then the sequence $\{x_k\}_k$ is S_{ζ} -RIS, i.e. for any $\{G_k\}$ increasing sequence of S_{ζ} sets, if $y_k = \sum_{i \in G_k} x_i$, then $\{y_k\}_k$ is RIS.

The α and β indices

Then we say that the α_{ζ} -index of $\{x_k\}_k$ is zero and write $\alpha_{\zeta}(\{x_k\}_k) = 0.$

The β_{ζ} indices are similarly defined.

- The α, β indices provide the following criterion for sequences generating higher order c₀ spreading models.
- Let $\{x_k\}_k$ be a seminormalized block sequence in \mathfrak{X}_{ξ_0} and $\zeta \leq \xi$, such that $\alpha_\eta(\{x_k\}_k) = 0$ and $\beta_\eta(\{x_k\}_k) = 0$ for all $\eta < \zeta$. Then, passing if necessary, to a subsequence, the following holds.
- (i) The sequence {*x_k*}_k generates a *c*₀^c spreading model.
 (ii) If ζ > 0, then the sequence {*x_k*}_k is *S*_ζ-RIS, i.e. for any {*G_k*} increasing sequence of *S*_ζ sets, if *y_k* = ∑_{*i*∈*G_k} <i>x_i*, then {*y_k*}_k is RIS.
 </sub>

The α and β indices

Then we say that the α_{ζ} -index of $\{x_k\}_k$ is zero and write $\alpha_{\zeta}(\{x_k\}_k) = 0.$

The β_{ζ} indices are similarly defined.

- The α, β indices provide the following criterion for sequences generating higher order c₀ spreading models.
- Let $\{x_k\}_k$ be a seminormalized block sequence in \mathfrak{X}_{ξ_0} and $\zeta \leq \xi$, such that $\alpha_\eta(\{x_k\}_k) = 0$ and $\beta_\eta(\{x_k\}_k) = 0$ for all $\eta < \zeta$. Then, passing if necessary, to a subsequence, the following holds.
- (i) The sequence $\{x_k\}_k$ generates a c_0^{ζ} spreading model.
- (ii) If $\zeta > 0$, then the sequence $\{x_k\}_k$ is S_{ζ} -RIS, i.e. for any $\{G_k\}$ increasing sequence of S_{ζ} sets, if $y_k = \sum_{i \in G_k} x_i$, then $\{y_k\}_k$ is RIS.

The α and β indices

Then we say that the α_{ζ} -index of $\{x_k\}_k$ is zero and write $\alpha_{\zeta}(\{x_k\}_k) = 0.$

The β_{ζ} indices are similarly defined.

- The α, β indices provide the following criterion for sequences generating higher order c₀ spreading models.
- Let $\{x_k\}_k$ be a seminormalized block sequence in \mathfrak{X}_{ξ_0} and $\zeta \leq \xi$, such that $\alpha_\eta(\{x_k\}_k) = 0$ and $\beta_\eta(\{x_k\}_k) = 0$ for all $\eta < \zeta$. Then, passing if necessary, to a subsequence, the following holds.
- (i) The sequence $\{x_k\}_k$ generates a c_0^{ζ} spreading model.
- (ii) If $\zeta > 0$, then the sequence $\{x_k\}_k$ is S_{ζ} -RIS, i.e. for any $\{G_k\}$ increasing sequence of S_{ζ} sets, if $y_k = \sum_{i \in G_k} x_i$, then $\{y_k\}_k$ is RIS.

- Beginning with an arbitrary normalized block sequence {x_k}_k, we are now going to describe how we may pass to a further normalized block sequence generating a c₀^ξ spreading model.
- Case 1: For every ζ < ξ, for any N ∈ [N] there exists
 L ∈ [N] with α_ζ({x_k}_{k∈L}) = 0 and β_ζ({x_k}_{k∈L}) = 0
 Then passing, if necessary, to a subsequence, we have
 that α_ζ({x_k}_k) = 0 and β_ζ({x_k}_k) = 0 for all ζ < ξ. Hence
 we achieve the desired result.

- Case 2: If the above does not hold, set

 $\zeta_1 = \min\{\zeta : \text{there exists } N \in [\mathbb{N}] \text{ with } \alpha_{\zeta}(\{x_k\}_{k \in L}) \neq 0, \text{ for all } L \in [N]\}$

 $\zeta_2 = \min\{\zeta : \text{there exists } N \in [\mathbb{N}] \text{ with } \beta_{\zeta}(\{x_k\}_{k \in L}) \neq 0, \text{ for all } L \in [N]\}$

- Beginning with an arbitrary normalized block sequence {*x_k*}_k, we are now going to describe how we may pass to a further normalized block sequence generating a *c*₀^ξ spreading model.
- Case 1: For every ζ < ξ, for any N ∈ [N] there exists L ∈ [N] with α_ζ({x_k}_{k∈L}) = 0 and β_ζ({x_k}_{k∈L}) = 0
 Then passing, if necessary, to a subsequence, we have that α_ζ({x_k}_k) = 0 and β_ζ({x_k}_k) = 0 for all ζ < ξ. Hence we achieve the desired result.
- Case 2: If the above does not hold, set

 $\zeta_1 = \min{\{\zeta : \text{there exists } N \in [\mathbb{N}] \text{ with } \alpha_{\zeta}(\{x_k\}_{k \in L}) \neq 0, \text{ for all } L \in [N] \}}$

 $\zeta_2 = \min\{\zeta : \text{there exists } N \in [\mathbb{N}] \text{ with } \beta_{\zeta}(\{x_k\}_{k \in L}) \neq 0, \text{ for all } L \in [N]\}$

・ロト・西ト・西ト・西・ うらの

- Beginning with an arbitrary normalized block sequence {*x_k*}_k, we are now going to describe how we may pass to a further normalized block sequence generating a *c*^ξ₀ spreading model.
- Case 1: For every $\zeta < \xi$, for any $N \in [\mathbb{N}]$ there exists $L \in [N]$ with $\alpha_{\zeta}(\{x_k\}_{k \in L}) = 0$ and $\beta_{\zeta}(\{x_k\}_{k \in L}) = 0$

Then passing, if necessary, to a subsequence, we have that $\alpha_{\zeta}(\{x_k\}_k) = 0$ and $\beta_{\zeta}(\{x_k\}_k) = 0$ for all $\zeta < \xi$. Hence we achieve the desired result.

• Case 2: If the above does not hold, set

 $\zeta_1 = \min{\{\zeta : \text{there exists } N \in [\mathbb{N}] \text{ with } \alpha_{\zeta}(\{x_k\}_{k \in L}) \neq 0, \text{ for all } L \in [N] \}}$

 $\zeta_2 = \min\{\zeta : \text{there exists } N \in [\mathbb{N}] \text{ with } \beta_{\zeta}(\{x_k\}_{k \in L}) \neq 0, \text{ for all } L \in [N]\}$

 Beginning with an arbitrary normalized block sequence {*x_k*}_k, we are now going to describe how we may pass to a further normalized block sequence generating a *c*^ξ₀ spreading model.

 Case 1: For every ζ < ξ, for any N ∈ [N] there exists
 L ∈ [N] with α_ζ({x_k}_{k∈L}) = 0 and β_ζ({x_k}_{k∈L}) = 0
 Then passing, if necessary, to a subsequence, we have
 that α_ζ({x_k}_k) = 0 and β_ζ({x_k}_k) = 0 for all ζ < ξ. Hence
 we achieve the desired result.

Case 2: If the above does not hold, set

 $\zeta_1 = \min\{\zeta : \text{there exists } N \in [\mathbb{N}] \text{ with } \alpha_{\zeta}(\{x_k\}_{k \in L}) \neq 0, \text{ for all } L \in [N]\}$

 $\zeta_2 = \min\{\zeta : \text{there exists } N \in [\mathbb{N}] \text{ with } \beta_{\zeta}(\{x_k\}_{k \in L}) \neq 0, \text{ for all } L \in [N]\}$

・ロト・西ト・西ト・日・ 日・ シック

- Beginning with an arbitrary normalized block sequence {*x_k*}_k, we are now going to describe how we may pass to a further normalized block sequence generating a *c*^ξ₀ spreading model.
- Case 1: For every ζ < ξ, for any N ∈ [N] there exists
 L ∈ [N] with α_ζ({x_k}_{k∈L}) = 0 and β_ζ({x_k}_{k∈L}) = 0
 Then passing, if necessary, to a subsequence, we have
 that α_ζ({x_k}_k) = 0 and β_ζ({x_k}_k) = 0 for all ζ < ξ. Hence
 we achieve the desired result.

- Case 2: If the above does not hold, set

 $\zeta_1 = \min\{\zeta : \text{there exists } N \in [\mathbb{N}] \text{ with } \alpha_{\zeta}(\{x_k\}_{k \in L}) \neq 0, \text{ for all } L \in [N]\}$

 $\zeta_2 = \min{\{\zeta : \text{there exists } N \in [\mathbb{N}] \text{ with } \beta_{\zeta}(\{x_k\}_{k \in L}) \neq 0, \text{ for all } L \in [N] \}}$

- Beginning with an arbitrary normalized block sequence {*x_k*}_k, we are now going to describe how we may pass to a further normalized block sequence generating a *c*^ξ₀ spreading model.
- Case 1: For every ζ < ξ, for any N ∈ [N] there exists
 L ∈ [N] with α_ζ({x_k}_{k∈L}) = 0 and β_ζ({x_k}_{k∈L}) = 0
 Then passing, if necessary, to a subsequence, we have
 that α_ζ({x_k}_k) = 0 and β_ζ({x_k}_k) = 0 for all ζ < ξ. Hence
 we achieve the desired result.

- Case 2: If the above does not hold, set

 $\zeta_1 = \min\{\zeta : \text{there exists } N \in [\mathbb{N}] \text{ with } \alpha_{\zeta}(\{x_k\}_{k \in L}) \neq 0, \text{ for all } L \in [N]\}$

 $\zeta_2 = \min\{\zeta : \text{there exists } N \in [\mathbb{N}] \text{ with } \beta_{\zeta}(\{x_k\}_{k \in L}) \neq 0, \text{ for all } L \in [N] \}$

- Beginning with an arbitrary normalized block sequence {*x_k*}_k, we are now going to describe how we may pass to a further normalized block sequence generating a *c*₀^ξ spreading model.
- Case 1: For every ζ < ξ, for any N ∈ [N] there exists
 L ∈ [N] with α_ζ({x_k}_{k∈L}) = 0 and β_ζ({x_k}_{k∈L}) = 0
 Then passing, if necessary, to a subsequence, we have
 that α_ζ({x_k}_k) = 0 and β_ζ({x_k}_k) = 0 for all ζ < ξ. Hence
 we achieve the desired result.

- Case 2: If the above does not hold, set

 $\zeta_1 = \min\{\zeta : \text{there exists } N \in [\mathbb{N}] \text{ with } \alpha_{\zeta}(\{x_k\}_{k \in L}) \neq 0, \text{ for all } L \in [N]\}$

 $\zeta_2 = \min\{\zeta : \text{there exists } N \in [\mathbb{N}] \text{ with } \beta_{\zeta}(\{x_k\}_{k \in L}) \neq 0, \text{ for all } L \in [N]\}$

- Set $\zeta_0 = \min{\{\zeta_1, \zeta_2\}}$. We distinguish two further subcases.
- Subcase 1: $\zeta_0 > 0$. In this case, passing to a subsequence, $\{x_k\}_k$ generates a $c_0^{\zeta_0}$ spreading model and is S_{ζ_0} -RIS.

Moreover, since $\alpha_{\zeta_0}(\{x_k\}_k) \neq 0$, or $\beta_{\zeta_0}(\{x_k\}_k) \neq 0$, we may construct a sequence of exact pairs $\{z_k, f_k\}_k$, such that the f_k are either of type I_α or of type I_β , such that for any k and any ϕ of type II, $w(f_k) \notin \hat{w}(\phi)$.

It is proven that such a sequence admits a c_0^{ξ} spreading model.

- Set $\zeta_0 = \min{\{\zeta_1, \zeta_2\}}$. We distinguish two further subcases.
- Subcase 1: $\zeta_0 > 0$. In this case, passing to a subsequence, $\{x_k\}_k$ generates a $c_0^{\zeta_0}$ spreading model and is S_{ζ_0} -RIS.

Moreover, since $\alpha_{\zeta_0}(\{x_k\}_k) \neq 0$, or $\beta_{\zeta_0}(\{x_k\}_k) \neq 0$, we may construct a sequence of exact pairs $\{z_k, f_k\}_k$, such that the f_k are either of type I_α or of type I_β , such that for any k and any ϕ of type II, $w(f_k) \notin \hat{w}(\phi)$.

It is proven that such a sequence admits a c_0^{ξ} spreading model.

- Set $\zeta_0 = \min{\{\zeta_1, \zeta_2\}}$. We distinguish two further subcases.
- Subcase 1: $\zeta_0 > 0$. In this case, passing to a subsequence, $\{x_k\}_k$ generates a $c_0^{\zeta_0}$ spreading model and is S_{ζ_0} -RIS.

Moreover, since $\alpha_{\zeta_0}(\{x_k\}_k) \neq 0$, or $\beta_{\zeta_0}(\{x_k\}_k) \neq 0$, we may construct a sequence of exact pairs $\{z_k, f_k\}_k$, such that the f_k are either of type I_α or of type I_β , such that for any k and any ϕ of type II, $w(f_k) \notin \hat{w}(\phi)$.

It is proven that such a sequence admits a c_0^{ξ} spreading model.

$c_0^{arsigma}$ spreading models in subspaces of $\mathfrak{X}_{arsigma_0}$

- Set $\zeta_0 = \min{\{\zeta_1, \zeta_2\}}$. We distinguish two further subcases.
- Subcase 1: $\zeta_0 > 0$. In this case, passing to a subsequence, $\{x_k\}_k$ generates a $c_0^{\zeta_0}$ spreading model and is S_{ζ_0} -RIS.

Moreover, since $\alpha_{\zeta_0}(\{x_k\}_k) \neq 0$, or $\beta_{\zeta_0}(\{x_k\}_k) \neq 0$, we may construct a sequence of exact pairs $\{z_k, f_k\}_k$, such that the f_k are either of type I_α or of type I_β , such that for any k and any ϕ of type II, $w(f_k) \notin \hat{w}(\phi)$.

It is proven that such a sequence admits a c_0^{ξ} spreading model.

$c_0^{arsigma}$ spreading models in subspaces of $\mathfrak{X}_{arsigma_0}$

- Set $\zeta_0 = \min{\{\zeta_1, \zeta_2\}}$. We distinguish two further subcases.
- Subcase 1: $\zeta_0 > 0$. In this case, passing to a subsequence, $\{x_k\}_k$ generates a $c_0^{\zeta_0}$ spreading model and is S_{ζ_0} -RIS.

Moreover, since $\alpha_{\zeta_0}(\{x_k\}_k) \neq 0$, or $\beta_{\zeta_0}(\{x_k\}_k) \neq 0$, we may construct a sequence of exact pairs $\{z_k, f_k\}_k$, such that the f_k are either of type I_α or of type I_β , such that for any k and any ϕ of type II, $w(f_k) \notin \hat{w}(\phi)$.

It is proven that such a sequence admits a c_0^{ξ} spreading model.

$c_0^{arsigma}$ spreading models in subspaces of $\mathfrak{X}_{arsigma_0}$

- Set $\zeta_0 = \min{\{\zeta_1, \zeta_2\}}$. We distinguish two further subcases.
- Subcase 1: $\zeta_0 > 0$. In this case, passing to a subsequence, $\{x_k\}_k$ generates a $c_0^{\zeta_0}$ spreading model and is S_{ζ_0} -RIS.

Moreover, since $\alpha_{\zeta_0}(\{x_k\}_k) \neq 0$, or $\beta_{\zeta_0}(\{x_k\}_k) \neq 0$, we may construct a sequence of exact pairs $\{z_k, f_k\}_k$, such that the f_k are either of type I_α or of type I_β , such that for any k and any ϕ of type II, $w(f_k) \notin \hat{w}(\phi)$.

It is proven that such a sequence admits a c_0^{ξ} spreading model.

- We examine all previous cases for the sequence $\{y_k\}_k$.
- If we happen to end up at subcase 2 once more, then since $\{y_k\}_k$ is RIS, we may construct a sequence of exact pairs $\{z_k, f_k\}_k$, such that the f_k are either of type I_α or of type I_β , such that for any k and any ϕ of type II, $w(f_k) \notin \hat{w}(\phi)$.

• We examine all previous cases for the sequence $\{y_k\}_k$.

• If we happen to end up at subcase 2 once more, then since $\{y_k\}_k$ is RIS, we may construct a sequence of exact pairs $\{z_k, f_k\}_k$, such that the f_k are either of type I_α or of type I_β , such that for any k and any ϕ of type II, $w(f_k) \notin \hat{w}(\phi)$.

- We examine all previous cases for the sequence $\{y_k\}_k$.
- If we happen to end up at subcase 2 once more, then since $\{y_k\}_k$ is RIS, we may construct a sequence of exact pairs $\{z_k, f_k\}_k$, such that the f_k are either of type I_α or of type I_β , such that for any k and any ϕ of type II, $w(f_k) \notin \hat{w}(\phi)$.

- By using the universal basis of Pełczyński {u_k}_k when defining the norming set W_{ξ0}, we obtain a reflexive HI space, such that {u_k}_k ω^{ξ0}-embeds into every subspace of *X*_{ξ0}.
- The following fact can be easily proven.
- If α is a limit ordinal and rank $(\mathcal{T}(\{e_k\}_k, C, X)) \ge \alpha$, then for every $\{e_{k_n}\}_n$ subsequence of $\{e_k\}_k$, we have that rank $(\mathcal{T}(\{e_{k_n}\}_n, C, X)) \ge \alpha$.
- This yields, that the space \mathfrak{X}_{ξ_0} is hereditarily ω^{ξ_0} -universal.
- There seems to be no obstacle, in defining an unconditional version of the space \mathfrak{X}_{ξ_0} , i.e. a space that has an unconditional basis and is hereditarily ω^{ξ_0} -universal for the unconditional basic sequences.

- By using the universal basis of Pełczyński {u_k}_k when defining the norming set W_{ξ0}, we obtain a reflexive HI space, such that {u_k}_k ω^{ξ0}-embeds into every subspace of *X*_{ξ0}.
- The following fact can be easily proven.
- If α is a limit ordinal and rank $(\mathcal{T}(\{e_k\}_k, C, X)) \ge \alpha$, then for every $\{e_{k_n}\}_n$ subsequence of $\{e_k\}_k$, we have that rank $(\mathcal{T}(\{e_{k_n}\}_n, C, X)) \ge \alpha$.
- This yields, that the space \mathfrak{X}_{ξ_0} is hereditarily ω^{ξ_0} -universal.
- There seems to be no obstacle, in defining an unconditional version of the space \mathfrak{X}_{ξ_0} , i.e. a space that has an unconditional basis and is hereditarily ω^{ξ_0} -universal for the unconditional basic sequences.

- By using the universal basis of Pełczyński {u_k}_k when defining the norming set W_{ξ0}, we obtain a reflexive HI space, such that {u_k}_k ω^{ξ0}-embeds into every subspace of *X*_{ξ0}.
- The following fact can be easily proven.
- If α is a limit ordinal and rank $(\mathcal{T}(\{e_k\}_k, C, X)) \ge \alpha$, then for every $\{e_{k_n}\}_n$ subsequence of $\{e_k\}_k$, we have that rank $(\mathcal{T}(\{e_{k_n}\}_n, C, X)) \ge \alpha$.
- This yields, that the space \mathfrak{X}_{ξ_0} is hereditarily ω^{ξ_0} -universal.
- There seems to be no obstacle, in defining an unconditional version of the space \mathfrak{X}_{ξ_0} , i.e. a space that has an unconditional basis and is hereditarily ω^{ξ_0} -universal for the unconditional basic sequences.

- By using the universal basis of Pełczyński {*u_k*}_k when defining the norming set *W_{ξ0}*, we obtain a reflexive HI space, such that {*u_k*}_k ω^{ξ0}-embeds into every subspace of *X_{ξ0}*.
- The following fact can be easily proven.
- If α is a limit ordinal and rank $(\mathcal{T}(\{e_k\}_k, C, X)) \ge \alpha$, then for every $\{e_{k_n}\}_n$ subsequence of $\{e_k\}_k$, we have that rank $(\mathcal{T}(\{e_{k_n}\}_n, C, X)) \ge \alpha$.
- This yields, that the space \mathfrak{X}_{ξ_0} is hereditarily ω^{ξ_0} -universal.
- There seems to be no obstacle, in defining an unconditional version of the space \mathfrak{X}_{ξ_0} , i.e. a space that has an unconditional basis and is hereditarily ω^{ξ_0} -universal for the unconditional basic sequences.

- By using the universal basis of Pełczyński {*u_k*}_k when defining the norming set *W_{ξ0}*, we obtain a reflexive HI space, such that {*u_k*}_k ω^{ξ0}-embeds into every subspace of *X_{ξ0}*.
- The following fact can be easily proven.
- If α is a limit ordinal and rank $(\mathcal{T}(\{e_k\}_k, C, X)) \ge \alpha$, then for every $\{e_{k_n}\}_n$ subsequence of $\{e_k\}_k$, we have that rank $(\mathcal{T}(\{e_{k_n}\}_n, C, X)) \ge \alpha$.
- This yields, that the space \mathfrak{X}_{ξ_0} is hereditarily ω^{ξ_0} -universal.
- There seems to be no obstacle, in defining an unconditional version of the space \mathfrak{X}_{ξ_0} , i.e. a space that has an unconditional basis and is hereditarily ω^{ξ_0} -universal for the unconditional basic sequences.

- By using the universal basis of Pełczyński {u_k}_k when defining the norming set W_{ξ0}, we obtain a reflexive HI space, such that {u_k}_k ω^{ξ0}-embeds into every subspace of \$\mathcal{E}_{ξ0}\$.
- The following fact can be easily proven.
- If α is a limit ordinal and rank $(\mathcal{T}(\{e_k\}_k, C, X)) \ge \alpha$, then for every $\{e_{k_n}\}_n$ subsequence of $\{e_k\}_k$, we have that rank $(\mathcal{T}(\{e_{k_n}\}_n, C, X)) \ge \alpha$.
- This yields, that the space \mathfrak{X}_{ξ_0} is hereditarily ω^{ξ_0} -universal.
- There seems to be no obstacle, in defining an unconditional version of the space \mathfrak{X}_{ξ_0} , i.e. a space that has an unconditional basis and is hereditarily ω^{ξ_0} -universal for the unconditional basic sequences.

HI α -minimal spaces.

- The following definition is due to C. Rodendal.
- Let α be countable ordinal. A Banach X space with a Schauder basis is said to be α-minimal, if any block sequence α-embeds into every subspace Y of X.
- Being hereditarily ω^{ξ_0} -universal, the space \mathfrak{X}_{ξ_0} is also ω^{ξ_0} -minimal.
- Therefore, for every α < ω₁, there exists an α-minimal HI space X_α.
- We would like to add, that there is no method known to us, of constructing an α-minimal HI space, without using the hereditary α-universality.

HI α -minimal spaces.

• The following definition is due to C. Rodendal.

- Let α be countable ordinal. A Banach X space with a Schauder basis is said to be α-minimal, if any block sequence α-embeds into every subspace Y of X.
- Being hereditarily ω^{ξ_0} -universal, the space \mathfrak{X}_{ξ_0} is also ω^{ξ_0} -minimal.
- Therefore, for every α < ω₁, there exists an α-minimal HI space X_α.
- We would like to add, that there is no method known to us, of constructing an α-minimal HI space, without using the hereditary α-universality.

- The following definition is due to C. Rodendal.
- Let α be countable ordinal. A Banach X space with a Schauder basis is said to be α-minimal, if any block sequence α-embeds into every subspace Y of X.
- Being hereditarily ω^{ξ_0} -universal, the space \mathfrak{X}_{ξ_0} is also ω^{ξ_0} -minimal.
- Therefore, for every α < ω₁, there exists an α-minimal HI space X_α.
- We would like to add, that there is no method known to us, of constructing an α-minimal HI space, without using the hereditary α-universality.

- The following definition is due to C. Rodendal.
- Let α be countable ordinal. A Banach X space with a Schauder basis is said to be α-minimal, if any block sequence α-embeds into every subspace Y of X.
- Being hereditarily ω^{ξ_0} -universal, the space \mathfrak{X}_{ξ_0} is also ω^{ξ_0} -minimal.
- Therefore, for every α < ω₁, there exists an α-minimal HI space X_α.
- We would like to add, that there is no method known to us, of constructing an α-minimal HI space, without using the hereditary α-universality.

- The following definition is due to C. Rodendal.
- Let α be countable ordinal. A Banach X space with a Schauder basis is said to be α-minimal, if any block sequence α-embeds into every subspace Y of X.
- Being hereditarily ω^{ξ_0} -universal, the space \mathfrak{X}_{ξ_0} is also ω^{ξ_0} -minimal.
- Therefore, for every α < ω₁, there exists an α-minimal HI space X_α.
- We would like to add, that there is no method known to us, of constructing an α-minimal HI space, without using the hereditary α-universality.

- The following definition is due to C. Rodendal.
- Let α be countable ordinal. A Banach X space with a Schauder basis is said to be α-minimal, if any block sequence α-embeds into every subspace Y of X.
- Being hereditarily ω^{ξ_0} -universal, the space \mathfrak{X}_{ξ_0} is also ω^{ξ_0} -minimal.
- Therefore, for every α < ω₁, there exists an α-minimal HI space X_α.
- We would like to add, that there is no method known to us, of constructing an α-minimal HI space, without using the hereditary α-universality.

Thank you!

▲口 > ▲圖 > ▲ 三 > ▲ 三 > -