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Introduction

During the present lecture, the notion of hereditary
α-universality is going to be discussed. More precisely, the
construction of a transfinite class of Banach spaces Xξ, ξ < ω1
is going to be described. The spaces Xξ are reflexive HI
spaces, the main property of which, is that every Schauder
basic sequence ωξ-embeds into every subspace of Xξ. The
construction is based on a variant of the method of saturation
under constraints, which was described in the previous lecture.



Hereditary universal finite representability

In 1996 E. Odell and Th. Schlumprecht present a new
reflexive HI space, having the remarkable and unexpected
property, that any Banach space with a monotone basis is
1+ε block finitely representable in every block subspace.

We shall present a transfinite extension of this result.
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The rank of a tree

The rank of a tree is an ordinal index, which, among
others, determines the complexity of the finite
representability of a Schauder basic sequence into an
arbitrary Banach space X .
For a well founded tree T with a root, denoted as ∅, the
rank of T rank(T ) is recursively defined.

For s a maximal node of T , set ρ(s) = 0.

For s a non maximal node, set ρ(s) = sup{ρ(t)+ 1 : s < t}.

Then the rank of T is defined as
rank(T ) = sup{ρ(s) + 1 : s ∈ T } = ρ(∅) + 1.
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Rank of embedability of a Schauder basic sequence
into a Banach space

Given a Schauder basic sequence {ek}k and a Banach
space X , one would like to study, the complexity of the
finite representation of {ek}k into X .

An approach to this problem, is to determine the rank of
the Bourgain embedability tree of {ek}k into X (J. Bourgain
1980), which is defined as follows.

For a constant C > 1, we set T ({ek}k ,C,X ) to be the tree
of all finite block sequences {xk}mk=1, such that {xk}mk=1 is
C-equivalent to {ek}mk=1.
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Saturation under constraints

In the previous lecture, the definitions of α-averages and
the (θ,F , α) operation were discussed, leading to the
notion of saturation under constraints.
The advantage of saturation under constraints, is that it
permits the space to admit many c0 spreading models.
In turn, c0 spreading models allow the construction of
vectors having specific properties, which are used to prove
the existence of certain structures in the space.
While saturation under constrains allows c0 spreading
models to appear everywhere, it completely rules out the
existence of higher order c0 spreading models.
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Higher order c0 spreading models

For a seminormalized Schauder basic sequence {xk}k and
ξ a countable ordinal, we say that {xk}k generates a cξ0
spreading model, if there exists a constant C > 0, such
that for every F ∈ Sξ

‖
∑

k∈F xk‖ 6 C

The spaces T0,1 and XISP , described in the previous
lecture, do not admit a c2

0 spreading model.
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Higher order c0 spreading models

Higher order c0 spreading models are desirable, in order to
obtain certain structures, which are of transfinite nature, for
instance the ωξ-embedability of a sequence into a space.

In order to achieve this, a variation of the method of
saturation under constraints can be used.

More precisely, instead of α-averages, α-special convex
combinations (α-s.c.c), are used in the construction of the
norming set.

Special convex combinations are generalized averages of
higher complexity. This higher complexity imposes the
existence of higher order c0 spreading models.
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S.c.c. with respect to a sequence of regular families

Let F0 ⊂ F1 ⊂ · · · ⊂ Fj ⊂ · · · be an increasing sequence
of regular families of increasing complexity.

((j , ε) basic s.c.c). A convex combination
∑

i∈F ciei in c00 is
said to be a

(j , ε) b.s.c.c. with respect to {Fj}∞j=0

if F ∈ Fj and for G ⊂ F ,G ∈ Fj−1∑
i∈G ci < ε

((j , ε) s.c.c.) Let x1 < · · · < xm be vectors in c00 and
ψ(k) = min supp xk . Then x =

∑m
k=1 ckxk is said to be a

(j , ε) s.c.c. with respect to {Fj}∞j=0,

if
∑m

k=1 ckeψ(k) is a (j , ε) b.s.c.c.



S.c.c. with respect to a sequence of regular families

Let F0 ⊂ F1 ⊂ · · · ⊂ Fj ⊂ · · · be an increasing sequence
of regular families of increasing complexity.

((j , ε) basic s.c.c). A convex combination
∑

i∈F ciei in c00 is
said to be a

(j , ε) b.s.c.c. with respect to {Fj}∞j=0

if F ∈ Fj and for G ⊂ F ,G ∈ Fj−1∑
i∈G ci < ε

((j , ε) s.c.c.) Let x1 < · · · < xm be vectors in c00 and
ψ(k) = min supp xk . Then x =

∑m
k=1 ckxk is said to be a

(j , ε) s.c.c. with respect to {Fj}∞j=0,

if
∑m

k=1 ckeψ(k) is a (j , ε) b.s.c.c.



S.c.c. with respect to a sequence of regular families

Let F0 ⊂ F1 ⊂ · · · ⊂ Fj ⊂ · · · be an increasing sequence
of regular families of increasing complexity.

((j , ε) basic s.c.c). A convex combination
∑

i∈F ciei in c00 is
said to be a

(j , ε) b.s.c.c. with respect to {Fj}∞j=0

if F ∈ Fj and for G ⊂ F ,G ∈ Fj−1∑
i∈G ci < ε

((j , ε) s.c.c.) Let x1 < · · · < xm be vectors in c00 and
ψ(k) = min supp xk . Then x =

∑m
k=1 ckxk is said to be a

(j , ε) s.c.c. with respect to {Fj}∞j=0,

if
∑m

k=1 ckeψ(k) is a (j , ε) b.s.c.c.



S.c.c. with respect to a sequence of regular families

Let F0 ⊂ F1 ⊂ · · · ⊂ Fj ⊂ · · · be an increasing sequence
of regular families of increasing complexity.

((j , ε) basic s.c.c). A convex combination
∑

i∈F ciei in c00 is
said to be a

(j , ε) b.s.c.c. with respect to {Fj}∞j=0

if F ∈ Fj and for G ⊂ F ,G ∈ Fj−1∑
i∈G ci < ε

((j , ε) s.c.c.) Let x1 < · · · < xm be vectors in c00 and
ψ(k) = min supp xk . Then x =

∑m
k=1 ckxk is said to be a

(j , ε) s.c.c. with respect to {Fj}∞j=0,

if
∑m

k=1 ckeψ(k) is a (j , ε) b.s.c.c.



S.c.c. with respect to a sequence of regular families

Let F0 ⊂ F1 ⊂ · · · ⊂ Fj ⊂ · · · be an increasing sequence
of regular families of increasing complexity.

((j , ε) basic s.c.c). A convex combination
∑

i∈F ciei in c00 is
said to be a

(j , ε) b.s.c.c. with respect to {Fj}∞j=0

if F ∈ Fj and for G ⊂ F ,G ∈ Fj−1∑
i∈G ci < ε

((j , ε) s.c.c.) Let x1 < · · · < xm be vectors in c00 and
ψ(k) = min supp xk . Then x =

∑m
k=1 ckxk is said to be a

(j , ε) s.c.c. with respect to {Fj}∞j=0,

if
∑m

k=1 ckeψ(k) is a (j , ε) b.s.c.c.



S.c.c. with respect to a sequence of regular families

Let F0 ⊂ F1 ⊂ · · · ⊂ Fj ⊂ · · · be an increasing sequence
of regular families of increasing complexity.

((j , ε) basic s.c.c). A convex combination
∑

i∈F ciei in c00 is
said to be a

(j , ε) b.s.c.c. with respect to {Fj}∞j=0

if F ∈ Fj and for G ⊂ F ,G ∈ Fj−1∑
i∈G ci < ε

((j , ε) s.c.c.) Let x1 < · · · < xm be vectors in c00 and
ψ(k) = min supp xk . Then x =

∑m
k=1 ckxk is said to be a

(j , ε) s.c.c. with respect to {Fj}∞j=0,

if
∑m

k=1 ckeψ(k) is a (j , ε) b.s.c.c.



α-special convex combinations

We fix F0 ⊂ F1 ⊂ · · · ⊂ Fj ⊂ · · · an increasing sequence
of regular families of increasing complexity.

A vector α in a norming set W is said to be an α-s.c.c. of
size s(α) = j , if there exist f1 < · · · < fk in W , such that

α =
∑m

k=1 λk fk is a (j , 1
2j+1 ) s.c.c. with respect to {Fj}∞j=0.

A sequence α1 < α2 < · · · < αn < · · · is very fast growing
(v.f.g.), if for n > 1

s(αn) > 2max suppαn−1
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The (θj ,Fj , α-s.c.c.)j operations

A norming set W is said to be closed under the
(θj ,Fj , α-s.c.c.)j operations, if for every {αk}nk=1
Fj -admissible and very fast growing family of α-s.c.c. in W ,
the functional

f = θj
∑n

k=1 αk
belongs to W .
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The space Xξ0

Theorem (S. A. Argyros, P.M.) For every ξ0 < ω1 and
bimonotone Schauder basic sequence {uk}k , there exists
a reflexive space Xξ0 with a Schauder basis {ek}k
satisfying the following properties.

(i) The space Xξ0 is hereditarily indecomposable.

(ii) There exists ξ > ξ0, such that every subspace of Xξ0

admits a cξ0 spreading model.

(iii) The sequence {uk}k ωξ0-embeds into every subspace of
Xξ0 .
In particular, there exists a uniform constant C, such that
for every Y subspace of Xξ0

rank
(
T ({uk}k ,C,Y )

)
> ωξ0
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The norming set Wξ0

We fix {mj}j , {qj}j strictly increasing sequences of naturals
satisfying appropriate growth conditions.

We choose
F0 ⊂ G1 ⊂ F1 ⊂ · · · ⊂ Gj ⊂ Fj ⊂ · · ·

regular families satisfying the following

(i) If F (2)
j = {F ∪G : F ,G ∈ Fj} and Nj = {n : n > j}, then(

(F (2)
j )qj ∗Gj+1

)
[Nj ] ⊂ Fj+1

i.e, for any F ∈ (F (2)
j )qj ∗Gj+1, j 6 min F ,F ∈ Fj+1
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The norming set Wξ0

(ii) For j and j ′ > j , every F ∈ Gj [Nj ′ ] maximal set supports a
(j , 1

2j′+2 ) b.s.c.c. with respect to {Fj}∞j=0

(iii) The Cantor-Bendixson index of F0 is ωξ0 and there exists a
strictly increasing sequence of countable ordinals {ξj}j with
ξ0 < ξj such that the Cantor-Bendixson index of Fj is ωξj

From now on we will denote the ordinal sup
j
ξj by ξ.

We are now ready to define the norming set Wξ0 . Note that
all s.c.c. will be taken with respect to {Fj}∞j=0.



The norming set Wξ0

(ii) For j and j ′ > j , every F ∈ Gj [Nj ′ ] maximal set supports a
(j , 1

2j′+2 ) b.s.c.c. with respect to {Fj}∞j=0

(iii) The Cantor-Bendixson index of F0 is ωξ0 and there exists a
strictly increasing sequence of countable ordinals {ξj}j with
ξ0 < ξj such that the Cantor-Bendixson index of Fj is ωξj

From now on we will denote the ordinal sup
j
ξj by ξ.

We are now ready to define the norming set Wξ0 . Note that
all s.c.c. will be taken with respect to {Fj}∞j=0.



The norming set Wξ0

(ii) For j and j ′ > j , every F ∈ Gj [Nj ′ ] maximal set supports a
(j , 1

2j′+2 ) b.s.c.c. with respect to {Fj}∞j=0

(iii) The Cantor-Bendixson index of F0 is ωξ0 and there exists a
strictly increasing sequence of countable ordinals {ξj}j with
ξ0 < ξj such that the Cantor-Bendixson index of Fj is ωξj

From now on we will denote the ordinal sup
j
ξj by ξ.

We are now ready to define the norming set Wξ0 . Note that
all s.c.c. will be taken with respect to {Fj}∞j=0.



The norming set Wξ0

(ii) For j and j ′ > j , every F ∈ Gj [Nj ′ ] maximal set supports a
(j , 1

2j′+2 ) b.s.c.c. with respect to {Fj}∞j=0

(iii) The Cantor-Bendixson index of F0 is ωξ0 and there exists a
strictly increasing sequence of countable ordinals {ξj}j with
ξ0 < ξj such that the Cantor-Bendixson index of Fj is ωξj

From now on we will denote the ordinal sup
j
ξj by ξ.

We are now ready to define the norming set Wξ0 . Note that
all s.c.c. will be taken with respect to {Fj}∞j=0.



The norming set Wξ0

(ii) For j and j ′ > j , every F ∈ Gj [Nj ′ ] maximal set supports a
(j , 1

2j′+2 ) b.s.c.c. with respect to {Fj}∞j=0

(iii) The Cantor-Bendixson index of F0 is ωξ0 and there exists a
strictly increasing sequence of countable ordinals {ξj}j with
ξ0 < ξj such that the Cantor-Bendixson index of Fj is ωξj

From now on we will denote the ordinal sup
j
ξj by ξ.

We are now ready to define the norming set Wξ0 . Note that
all s.c.c. will be taken with respect to {Fj}∞j=0.



The norming set Wξ0

The norming set Wξ0 is the minimal norming set satisfying
the following properties.

(i) (Type Iα functionals) The set Wξ0 is closed in the
( 1

mj
,Fj , α-s.c.c.) operations, for j > 1.

If f is of type Iα and is the result of ( 1
mj
,Fj , α-s.c.c.)

operation, then the weight of f is w(f ) = j .

(ii) (Type II functionals) The set Wξ0 includes all Eφ, with E an
interval of the naturals and φ = 1

2
∑n

k=1 λk fk , where
f1 < · · · < fn is an F0-admissible special family of type Iα
special functionals (a special family satisfies the property,
that for k > 1,w(fk ) determines uniquely the sequence
{fi}k−1

i=1 .)

and {λk}k ⊂ [−1,1] ∩Q such that
‖
∑n

k=1 λku∗k‖ 6 1
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The norming set Wξ0

For φ type II and E and interval of the naturals, the weights
of Eφ are ŵ(φ) = {w(fk ) : E ∩ supp fk 6= ∅}.

For E1φ1,E2φ2 functionals of type II and, we say that the
weights of E1φ1,E2φ2 are incomparable, if there does not
exist a functional φ of type II, such that
both ŵ(φ) ∩ ŵ(φ1) 6= ∅ and ŵ(φ) ∩ ŵ(φ2) 6= ∅.

(β-averages) A β-average is an average β = 1
n
∑n

k=1 Ekφk ,
where Ekφk are of type II with pairwise incomparable
weights.
The size s(β) and very fast growing sequences (βk )k are
defined in the same manner as for α-averages.
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The norming set Wξ0

(iii) (Type Iβ functionals) The set Wξ0 is closed in the ( 1
mj
,Fj , β)

operations, for j > 1. If f is of type Iβ and is the result of
( 1

mj
,Fj , β) operation, then the weight of f is w(f ) = j .
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ωξ0-embedability of the sequence {uk}k

Let Y be a block subspace of Xξ0 and assume that there
exists a normalized block sequence {yk}k in Y generating
a cξ0 spreading model. For any j > 1, one may find a
subset F of the naturals, such that
j 6 {min supp yk : k ∈ F} is a maximal Gj set and
‖
∑

k∈F yk‖ is bounded by a universal constant K .

Thus there exists an α-s.c.c. α of size s(α) = j , such that
α(
∑

k∈F yi) > 1− ε.
For j > 1 By taking F1 < · · · < Fn such that

(i) If zk =
∑

i∈Fk
yi , then {min supp zk : k = 1, . . . ,n} is a

maximal Gj set.
(ii) jk 6 {min supp yi : i ∈ Fk} is jk admissible with

jk > 2max supp yk−1 for k > 1
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ωξ0-embedability of the sequence {uk}k

Combining the above, we conclude that there exists
{αk}nk=1 an Fj admissible v.f.g. sequence of α-s.c.c. with
α(yk ) > 1− ε, thus f = 1

mj

∑n
k=1 αk is a functional of type

Iα in Wξ0 .
Then, for {ck}nk=1, such that w =

∑n
k=1 ckzk is a (j , δ)

s.c.c. we have that f (w) > 1−ε
mj

.

Moreover, {yk}nk=1 is RIS, therefore setting x =
mj

f (w)w , we
conclude that {x , f} is a j-exact pair, where f is a functional
of type Iα. Moreover 1 6 ‖x‖ 6 M, for a universal constant
M.
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ωξ0-embedability of the sequence {uk}k

Therefore, a dependent sequence {xk , fk}mk=1 can be
constructed, i.e.
{xk , fk} is a jk -exact pair and fk1(xk2) = δk1,k2

{fk}mk=1 is an F0 admissible special sequence

Fix {µk}mk=1 ⊂ R. Since for any {λk}mk=1 ⊂ [−1,1] ∩Q,
such that ‖

∑m
k=1 λku∗k‖ 6 1 we have that 1

2
∑m

k=1 λk fk is a
functional of type II in Wξ0 , we conclude the following.

‖
∑m

k=1 µkxk‖ξ0 > 1
2‖
∑m

k=1 µkuk‖

With some effort, it can be proven by induction on the tree
complexity of the functionals in Wξ0 , that the action of any
functional not directly associated to {fk}mk=1 is neutralized.
This yields that there exists a universal constant C, such
that

‖
∑m

k=1 µkxk‖ξ0 6 C
2 ‖
∑m

k=1 µkuk‖
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ωξ0-embedability of the sequence {uk}k

Using the fact that special sequences are F0-admissible
and the Cantor-Bendixson index of F0 is ωξ0 and an
inductive construction, it is shown that

rank
(
T ({uk}k ,C,Y )

)
> ωξ0 .
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The α and β indices

As in the case of the space XISP , we associate the
behaviour of the α-s.c.c. and β-averages on a sequence,
to the spreading models generated by it, by introducing the
transfinite hierarchy of αζ , βζ indices, ζ < ξ.

Let {xk}k be a block sequence in Xξ0 and ζ < ξ such that
the following is satisfied.

For any j , for any very fast growing sequence {αq}q of
α-s.c.c. in Wξ0 and for any {Fk}k increasing sequence of
subsets of the naturals, such that {αq}q∈Fk is
Fj -admissible, the following holds.
For any {Gk}k increasing sequence of Sζ sets, we have
that

limk
∑

q∈Fk
|αq(

∑
i∈Gk

xi)| = 0.
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The α and β indices

Then we say that the αζ-index of {xk}k is zero and write
αζ
(
{xk}k

)
= 0.

The βζ indices are similarly defined.

The α, β indices provide the following criterion for
sequences generating higher order c0 spreading models.

Let {xk}k be a seminormalized block sequence in Xξ0 and
ζ 6 ξ, such that αη

(
{xk}k

)
= 0 and βη

(
{xk}k

)
= 0 for all

η < ζ. Then, passing if necessary, to a subsequence, the
following holds.

(i) The sequence {xk}k generates a cζ0 spreading model.
(ii) If ζ > 0, then the sequence {xk}k is Sζ-RIS, i.e. for any
{Gk} increasing sequence of Sζ sets, if yk =

∑
i∈Gk

xi , then
{yk}k is RIS.
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cξ0 spreading models in subspaces of Xξ0

Beginning with an arbitrary normalized block sequence
{xk}k , we are now going to describe how we may pass to a
further normalized block sequence generating a cξ0
spreading model.

Case 1: For every ζ < ξ, for any N ∈ [N] there exists
L ∈ [N] with αζ

(
{xk}k∈L

)
= 0 and βζ

(
{xk}k∈L

)
= 0

Then passing, if necessary, to a subsequence, we have
that αζ

(
{xk}k

)
= 0 and βζ

(
{xk}k

)
= 0 for all ζ < ξ. Hence

we achieve the desired result.

Case 2: If the above does not hold, set
ζ1 = min{ζ : there exists N ∈ [N] with αζ

(
{xk}k∈L

)
6= 0, for

all L ∈ [N]}
ζ2 = min{ζ : there exists N ∈ [N] with βζ

(
{xk}k∈L

)
6= 0, for

all L ∈ [N]}
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cξ0 spreading models in subspaces of Xξ0

Set ζ0 = min{ζ1, ζ2}. We distinguish two further subcases.

Subcase 1: ζ0 > 0. In this case, passing to a subsequence,
{xk}k generates a cζ0

0 spreading model and is Sζ0-RIS.

Moreover, since αζ0

(
{xk}k

)
6= 0, or βζ0

(
{xk}k

)
6= 0, we

may construct a sequence of exact pairs {zk , fk}k , such
that the fk are either of type Iα or of type Iβ, such that for
any k and any φ of type II, w(fk ) /∈ ŵ(φ).

It is proven that such a sequence admits a cξ0 spreading
model.

Subcase 2: ζ0 = 0. In this case, using classical techniques,
we construct a normalized RIS sequence {yk}k
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cξ0 spreading models in subspaces of Xξ0

We examine all previous cases for the sequence {yk}k .

If we happen to end up at subcase 2 once more, then since
{yk}k is RIS, we may construct a sequence of exact pairs
{zk , fk}k , such that the fk are either of type Iα or of type Iβ,
such that for any k and any φ of type II, w(fk ) /∈ ŵ(φ).
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The hereditarily ωξ0-universal version of Xξ0

By using the universal basis of Pełczyński {uk}k when
defining the norming set Wξ0 , we obtain a reflexive HI
space, such that {uk}k ωξ0-embeds into every subspace of
Xξ0 .
The following fact can be easily proven.
If α is a limit ordinal and rank

(
T ({ek}k ,C,X )

)
> α, then

for every {ekn}n subsequence of {ek}k , we have that
rank

(
T ({ekn}n,C,X )

)
> α.

This yields, that the space Xξ0 is hereditarily ωξ0-universal.

There seems to be no obstacle, in defining an
unconditional version of the space Xξ0 , i.e. a space that
has an unconditional basis and is hereditarily ωξ0-universal
for the unconditional basic sequences.
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HI α-minimal spaces.

The following definition is due to C. Rodendal.

Let α be countable ordinal. A Banach X space with a
Schauder basis is said to be α-minimal, if any block
sequence α-embeds into every subspace Y of X .

Being hereditarily ωξ0-universal, the space Xξ0 is also
ωξ0-minimal.

Therefore, for every α < ω1, there exists an α-minimal HI
space Xα.

We would like to add, that there is no method known to us,
of constructing an α-minimal HI space, without using the
hereditary α-universality.



HI α-minimal spaces.

The following definition is due to C. Rodendal.

Let α be countable ordinal. A Banach X space with a
Schauder basis is said to be α-minimal, if any block
sequence α-embeds into every subspace Y of X .

Being hereditarily ωξ0-universal, the space Xξ0 is also
ωξ0-minimal.

Therefore, for every α < ω1, there exists an α-minimal HI
space Xα.

We would like to add, that there is no method known to us,
of constructing an α-minimal HI space, without using the
hereditary α-universality.



HI α-minimal spaces.

The following definition is due to C. Rodendal.

Let α be countable ordinal. A Banach X space with a
Schauder basis is said to be α-minimal, if any block
sequence α-embeds into every subspace Y of X .

Being hereditarily ωξ0-universal, the space Xξ0 is also
ωξ0-minimal.

Therefore, for every α < ω1, there exists an α-minimal HI
space Xα.

We would like to add, that there is no method known to us,
of constructing an α-minimal HI space, without using the
hereditary α-universality.



HI α-minimal spaces.

The following definition is due to C. Rodendal.

Let α be countable ordinal. A Banach X space with a
Schauder basis is said to be α-minimal, if any block
sequence α-embeds into every subspace Y of X .

Being hereditarily ωξ0-universal, the space Xξ0 is also
ωξ0-minimal.

Therefore, for every α < ω1, there exists an α-minimal HI
space Xα.

We would like to add, that there is no method known to us,
of constructing an α-minimal HI space, without using the
hereditary α-universality.



HI α-minimal spaces.

The following definition is due to C. Rodendal.

Let α be countable ordinal. A Banach X space with a
Schauder basis is said to be α-minimal, if any block
sequence α-embeds into every subspace Y of X .

Being hereditarily ωξ0-universal, the space Xξ0 is also
ωξ0-minimal.

Therefore, for every α < ω1, there exists an α-minimal HI
space Xα.

We would like to add, that there is no method known to us,
of constructing an α-minimal HI space, without using the
hereditary α-universality.



HI α-minimal spaces.

The following definition is due to C. Rodendal.

Let α be countable ordinal. A Banach X space with a
Schauder basis is said to be α-minimal, if any block
sequence α-embeds into every subspace Y of X .

Being hereditarily ωξ0-universal, the space Xξ0 is also
ωξ0-minimal.

Therefore, for every α < ω1, there exists an α-minimal HI
space Xα.

We would like to add, that there is no method known to us,
of constructing an α-minimal HI space, without using the
hereditary α-universality.



Thank you!


