Strictly singular non-compact operators on a class of HI spaces

Antonis Manoussakis

Department of Sciences Technical University of Crete

joint work with A. Pelczar-Barwacz.

A. Manoussakis Strictlly singular non-compact operators

Question : find a strictly singular (ss) non-compact operator on the HI spaces defined having as frame either Schlumprecht space or Argyros-Deliyanni mixed Tsirelson spaces.

- G. Androulakis- Th. Schlumprecht: There exist ss and non-compact on W.T. Gowers-B.Maurey space.
- I. Gasparis. There exist ss non-compact operators on the HI spaces based in the mixed Tsirelson spaces $T[S_n, \theta_n]$ "assuming" the existence of c_0^{ω} -spreading model in the dual space.
- Gasparis method was adapted by,
- Argyros-Deliyanni-Tolias for constructing HI spaces with diagonal strictly singular non-compact operators,
- K.Beanland, for constructing non-trivial strictly singular operators on asymptotic ℓ_p HI spaces.

ゆう くほう くほう 二日

Coding function

Let $\mathcal{F}_n = \mathcal{A}_n (= \{F \subset \mathbb{N} : \#F \leq n\})$ or $\mathcal{F}_n = \mathcal{S}_n$ the *n*th-Schreier family for every *n*. Let

$$\mathcal{W} = \{ (f_1, \ldots, f_k) : f_1 < \cdots < f_k \in c_{00}(\mathbb{Q}), \|f_i\|_{\infty} \le 1, \ k \in \mathbb{N} \}$$

Fix an injective function $\sigma : \mathcal{W} \to \mathbb{N}$. Let $(D_n)_n$ be a sequence of families of finite subsets of \mathbb{Q} . A block sequence (f_1, \ldots, f_k) is (σ, \mathcal{F}_n) -admissible w.r. the sets $(D_n)_n$, if (f_1, \ldots, f_k) is \mathcal{F}_n -admissible, $f_1 \in \bigcup_n D_n$ and $f_{i+1} \in D_{\sigma(f_1, \ldots, f_i)}$ for any i < k.

-

Definition of the norming set

Let
$$1 > (\theta_n)_{n \in \mathbb{N}} \searrow 0$$
.
Fix $L \subset \mathbb{N}$ and $1 > (\rho_l)_{l \in L} \searrow 0$ such that $\rho_l \ge \theta_l$ for any $l \in L$.
Let σ be a coding function.
For any $D \subset c_{00}(\mathbb{Q})$ define for $n \in \mathbb{N}$ and $l \in L$,

$$D_n = \{\theta_n \sum_{i=1}^k f_i : f_1, \dots, f_k \in D, (f_1, \dots, f_k) \mathcal{F}_n \text{-admissible}, k \in \mathbb{N}\},\$$
$$D_l^{\sigma} = \{\rho_l \sum_{i=1}^k Ef_i : E \subset \mathbb{N} \text{ interval}, (f_i)_{i=1}^k \subset D (\sigma, \mathcal{F}_l) \text{-admissible w.r.} (D_n)_n\}$$

The elements $\cup_I D_I^{\sigma}$ are called special functionals. For $f \in D_n$ we set $w(f) = \theta_n$ and for $f \in D_I^{\sigma}$, $w(f) = \rho_I$.

글 🖌 🔺 글 🕨

-

Consider a symmetric subset $D \subset c_{00}(\mathbb{Q})$ such that

Take X_D be the completion of $(c_{00}, \|\cdot\|_D)$ where

$$\|x\|_D = \sup\{f(x): f \in D\}.$$

We set X_u be the space defined for $D = \bigcup_n D_n$.

э

Properties of the spaces X_D, X_u .

- 1) $||x||_u \leq ||x||_D$
- 2) The spaces X_D, X_u are reflexive.
- 3) (e_n) is bimonotone a basis for X_D and unconditional basis for X_u .
- 4) The basis of X_D and X_u are asymptotically equivalent i.e.
 [AS] for the families A_n, the spreading model of the basis of X_D is the basis of X_u,
 - -[P] for the families S_n it means that are S_{ω} -equivalent i.e there is $C \ge 1$ and an increasing sequence $(i_n) \subset \mathbb{N}$ such that for any n and $i_n \le F \in S_n$ the sequences $(e_i)_{i \in F}$ in X_u and $(e_i)_{i \in F}$ in X_D are C-equivalent.
 - Schlumprecht's space is the space T[(A_n, 1/log₂(n + 1))_n] taking D^σ_l = Ø.
 Defining the sets D^σ_l we have Gowers-Maurev space.
 - Argyros-Deliyanni mixed Tsireslon spaces are the spaces T[(S_n, θ_n)_n] taking D^σ_i = Ø
 Defining the sets D^σ we have asymptotic ℓ_n. Hispaces

Defining the sets D_l^{σ} we have asymptotic ℓ_1 HI-spaces.

Properties of the spaces X_D, X_u .

- 1) $||x||_u \leq ||x||_D$
- 2) The spaces X_D, X_u are reflexive.
- 3) (e_n) is bimonotone a basis for X_D and unconditional basis for X_u .
- 4) The basis of X_D and X_u are asymptotically equivalent i.e.
 [AS] for the families A_n, the spreading model of the basis of X_D is the basis of X_u,
 - -[P] for the families S_n it means that are S_{ω} -equivalent i.e there is $C \ge 1$ and an increasing sequence $(i_n) \subset \mathbb{N}$ such that for any n and $i_n \le F \in S_n$ the sequences $(e_i)_{i \in F}$ in X_u and $(e_i)_{i \in F}$ in X_D are C-equivalent.
 - Schlumprecht's space is the space T[(A_n, 1/log₂(n + 1))_n] taking D^σ_l = Ø.
 Defining the sets D^σ_l we have Gowers-Maurey space .
 - Argyros-Deliyanni mixed Tsireslon spaces are the spaces T[(S_n, θ_n)_n] taking D^σ_l = Ø
 Defining the sets D^σ_l we have asymptotic ℓ₁ HI-spaces.

Theorem

For the space X_D defined by the families S_n , there exists a bounded, strictly singular, non-compact

$$T: X_D \to X_D$$

provided that there exists c > 0 such that $\lim_{n} \frac{\theta_{n+m}}{\theta_n} > c$ for every m.

Theorem

For the space X_D defined by the families A_n , there exists a bounded,strictly singular, non-compact

 $T: X_D \to X_D$

provided that $\theta_n n^{\alpha} \to +\infty$ for every $\alpha > 0$.

Theorem

For the space X_D defined by the families S_n , there exists a bounded, strictly singular, non-compact

$$T: X_D \to X_D$$

provided that there exists c > 0 such that $\lim_{n} \frac{\theta_{n+m}}{\theta_n} > c$ for every m.

Theorem

For the space X_D defined by the families A_n , there exists a bounded,strictly singular, non-compact

$$T: X_D \to X_D$$

provided that $\theta_n n^{\alpha} \to +\infty$ for every $\alpha > 0$.

() <) <)
 () <)
 () <)
</p>

We shall present the proof for the spaces defined by the Schreier families $(S_n)_n$. The strictly singular non-compact operator will be

$$T(x) = \sum_{n=1}^{\infty} f_n(x) e_{k_n}$$

for an appropriate sequence of seminormalized functionals $(f_n)_n \subset X_D^*$. Our proof inspired by

1) the idea of Androulakis-Schlumprecht, to have an "infinite tree" construction which determines the functionals $(f_n)_n$.

2)[ADT] Let X, Y be Banach spaces such that

- a) there exists $(x_n^*)_n \subset B_{X^*}$ generating c_0 -spreading model.
- b) Y has normalized basis and there exists norming set D of Y such that for all $\varepsilon > 0$ there exists $M_{\varepsilon} \in \mathbb{N}$ such that for all $f \in D$

 $\#\{n: |f(e_n)| > \varepsilon\} \le M_{\varepsilon}.$

Then $\, {\mathcal T}: X o Y, \, {\mathcal T}(x) = \sum x^*_{q_n}(x) e_n$ is bounded non-compact, for

appropriate $(q_n)_n$

We shall present the proof for the spaces defined by the Schreier families $(S_n)_n$. The strictly singular non-compact operator will be

$$T(x) = \sum_{n=1}^{\infty} f_n(x) e_{k_n}$$

for an appropriate sequence of seminormalized functionals $(f_n)_n \subset X_D^*$. Our proof inspired by

1) the idea of Androulakis-Schlumprecht, to have an "infinite tree" construction which determines the functionals $(f_n)_n$.

2)[ADT] Let X, Y be Banach spaces such that

- a) there exists $(x_n^*)_n \subset B_{X^*}$ generating c_0 -spreading model.
- b) Y has normalized basis and there exists norming set D of Y such that for all $\varepsilon > 0$ there exists $M_{\varepsilon} \in \mathbb{N}$ such that for all $f \in D$

$$\#\{n: |f(e_n)| > \varepsilon\} \leq M_{\varepsilon}.$$

Then $T: X \to Y, T(x) = \sum_{n} x_{q_n}^*(x)e_n$ is bounded non-compact, for appropriate $(q_n)_n$

The basic ingredients

 $x = \sum_{i \in F} a_i e_i$ is (n, ε) -basic special convex combination (scc) if

$$F \in \mathcal{S}_n, \ \sum_{i \in F} a_i = 1 \ \text{and} \ \sum_{i \in G} a_i < \varepsilon \ \forall G \in \mathcal{S}_{n-1}.$$

For an (n, ε) -basic scc it holds

$$1 \le \|\theta_n^{-1}x\| \le 1 + \varepsilon.$$

If $(x_i)_{i \in F}$ is a block sequence, $x = \sum_{i \in F} a_i x_i$ is said to be (n, ε) -special convex combination (scc) if $\sum_{i \in F} a_i e_{\max supp x_i}$ is (n, ε) -basic scc. In the sequel we shall omit the numbers ε .

Periodic RIS

Let $n_0, M \in \mathbb{N}$ and $n_1, \ldots, n_M \in \mathbb{N}$. Let $x_{(i-1)M+j}, i \leq N, j \leq M$ be a block sequence such that 1) For every $i \leq N$, $x_{(i-1)M+j}$ is a seminormalized n_j -basic scc. i.e. $x_{(i-1)M+j} = \theta_{n_j}^{-1} \sum_{k \in F_{i,j}} a_k e_k$

2)
$$x = \sum_{i=1}^{N} \sum_{j=1}^{M} a_{(i-1)M+j} x_{(i-1)M+j}$$
 is an $n_0 - scc$.

- a) We call the vector x an (n_0, M) -periodic average.
- b) Taking $(n_j)_{j=1}^M$ "very fast increasing" we call the sequence $(x_{(i-1)M+j})_{i,j}$, (n_0, M) -periodic rapidly increasing sequence (RIS) of height 1.

A B M A B M

- For N = 1 and $(n_j)_j$ appropriate chosen, we have the notion of rapidly increasing sequence of lenght M.
- Vectors similar to periodic averages have used by D. Leung, W-K Tang to provide examples of mixed Tsireslon spaces T[(S_n, θ_n)_n] not isomorphic to their modified version.

- For N = 1 and $(n_j)_j$ appropriate chosen, we have the notion of rapidly increasing sequence of lenght M.
- Vectors similar to periodic averages have used by D. Leung, W-K Tang to provide examples of mixed Tsireslon spaces T[(S_n, θ_n)_n] not isomorphic to their modified version.

< 3 > < 3 >

Let $x^1 = \sum_{i=1}^{N} \sum_{j=1}^{M} a_{(i-1)M_0+j} x_{(i-1)M_0+j}^1$ (n_0, M) -periodic RIS of height 1. We get periodic RIS of height 2 by gluing periodic RIS of height 1 and preserving the characteristics numbers M, n_0, n_1, \dots, n_M of x^1 .

The first line is $(n_0, 2)$ -periodic RIS of height 1. We take two averages with admissibility's $n_1 \ll n_2$. We take repetitions of the two "nodes" to have n_0 -admissibility.

We get periodic average of height 2, by "substituting "

- the first node by an (n_1, M_1) -periodic RIS, with $M_1 >> M$ different admissibility's, $n_{1,1}, n_{1,2}, \ldots, n_{1,M_1}$, and n_1 -admissibility
- **②** and the second node by an (n_2, M_2) -periodic RIS, with $M_2 >> M_1$ different admissibility's, $n_{2,1}, n_{2,2}, \ldots, n_{2,M_2}$, and n_2 -admissibility
- Moreover we take much more repetitions of these two nodes in order to have again S_{n_0} -admissibility.

向下 イヨト イヨト ニヨ

We continue in the same manner to define periodic RIS of height n. We shall use two trees,

- one that determines the number of the different admissibilities and different $\theta'_n s$ that appear in each periodic average,
- the other to index all the elements of the periodic average.

Let $\mathcal{R} \subset \cup_n \mathbb{N}^n$ be an infinite tree with unique root. We set for $\beta \in \mathcal{R}$

- *M_β* = #succ(β) (the number of different admissibilities that appear in each periodic RIS)
- we associate also a parameter m_β (the admissibility of each periodic average)

For each *n* let \mathcal{T}_n be a tree of height *n*, $\upsilon : \mathcal{T}_n \to \mathcal{R}$ such that for every $\alpha \in \mathcal{T}_n$, not terminal

$$\operatorname{succ}(\alpha) = \{\alpha^{\frown}((i-1)M_{\upsilon(\alpha)}+j) : i \leq N_{\alpha}, j \leq M_{\upsilon(\alpha)}\}.$$

Periodic RIS of height *n* (with tree-analysis)

We say that the vector $x_n \in X$ is periodic average of height n, with tree-analysis determined by the core tree \mathcal{R} , if there is a family $(x_{\alpha})_{\alpha \in \mathcal{T}_n}$,

- for any terminal node α ∈ T_n we have |α| = n and x_α = e_{t_α} for some t_α ∈ N,
- Of any node α ∈ T_n with |α| = n − 1 the vector x_α is a seminormalized m_{v(α)}-basic special combination of (x_β)_{β∈succ(α)} i.e.

$$x_{\alpha} = \theta_{m_{\upsilon(\alpha)}}^{-1} \sum_{i \in F_{\alpha}} c_i e_i.$$

§ for any node α ∈ T with |α| < n − 1 the vector x_α is a seminormalized (m_{v(α)}, M_{v(α)})-periodic average of (x_β)_{β∈succ(α)}, i.e.

$$x_{\alpha} = \theta_{m_{\upsilon(\alpha)}}^{-1} \sum_{k=1}^{N_{\alpha}} \sum_{j=1}^{M_{\upsilon(\alpha)}} a_{\alpha^{\frown}((k-1)M_{\upsilon(\alpha)}+j)} x_{\alpha^{\frown}((k-1)M_{\upsilon(\alpha)}+j)}$$
(1)

Proposition

For appropriate choice of the parameters m_{α}, M_{α} of the core tree, it holds that

$$\|x_n\|_D \leq \prod_{i=1}^n (1+3\theta_{n_i})$$

We associate to the periodic RIS x_n in a natural way the functional f_n with tree analysis $(f_{\alpha}^n)_{\alpha \in \mathcal{T}_n}$ where

•
$$f_{\alpha} = e_{\alpha}^*$$
 for α terminal.

$$\ \, {\it e} f^n_\alpha = \theta_{m_{\upsilon(\alpha)}} \sum_{\beta \in {\rm succ}(\alpha)} e^*_\beta \ \, {\rm if} \ \, |\alpha| = n-1.$$

The associated functionals $f_n = f_0^n$ satisfies $f_n(x_n) = 1$ and

$$\prod_{i=1}^{n} (1+3\theta_{n_i})^{-1} \le \|f_n\| \le 1.$$

(B) < B)</p>

Proposition

For appropriate choice of the parameters m_{α}, M_{α} of the core tree, it holds that

$$\|x_n\|_D \leq \prod_{i=1}^n (1+3\theta_{n_i})$$

We associate to the periodic RIS x_n in a natural way the functional f_n with tree analysis $(f_{\alpha}^n)_{\alpha \in \mathcal{T}_n}$ where

$$\begin{array}{l} \bullet \quad f_{\alpha} = e_{\alpha}^{*} \text{ for } \alpha \text{ terminal.} \\ \bullet \quad f_{\alpha}^{n} = \theta_{m_{v(\alpha)}} \sum_{\beta \in \text{succ}(\alpha)} e_{\beta}^{*} \text{ if } |\alpha| = n - 1. \\ \bullet \quad f_{\alpha}^{n} = \theta_{m_{v(\alpha)}} \sum_{\beta \in \text{succ}(\alpha)} f_{\beta}^{n} = \theta_{m_{v(\alpha)}} \sum_{i=1}^{N_{\alpha}} \sum_{j=1}^{M_{v(\alpha)}} f_{\alpha^{\frown}((i-1)M_{v(\alpha)}+j)}. \end{array}$$

The associated functionals $f_n = f_{\emptyset}^n$ satisfies $f_n(x_n) = 1$ and

$$\prod_{i=1}^{n} (1+3\theta_{n_i})^{-1} \le \|f_n\| \le 1.$$

(B) < B)</p>

The functionals f_n will be used to define the operator

$$T(x) = \sum_{n} f_n(x) e_{i_n}$$

The seminormalization of $f'_n s$ yields that T is not compact.

$$||Tx_n - Tx_m|| = ||f_n(x_n)e_{i_n} - f_m(x_me_{i_m})|| \ge 1.$$

We shall make carefully choice of the parameters M_{γ} , m_{γ} , $\gamma \in \mathcal{R}$ to have that T is bounded and strictly singular. How we choose m_{γ} ?

글 🖌 🔺 글 🛌

The choice of the core tree \mathcal{R}

We enumerate the nodes of \mathcal{R} as γ_j following the lexicographic order. We refine the choice of $M_{\gamma_i}, m_{\gamma_i}$, which ensure the seminormalization of $x'_n s$, by choosing for the node γ_j a positive integer k_{γ_i} such that

•
$$\rho_{k_{\gamma_j}}(\sum_{i < j} m_{\gamma_i} + M_{\gamma_i}) = \varepsilon_{\gamma_j}$$
 and $\sum_j \varepsilon_{\gamma_j} < 1$.
(recall that ρ_j are the weights of the special functionals)

$$\hbox{ o we choose } m_{\gamma_j} \hbox{ such that } \frac{\theta_{m_{\gamma_j}}}{\theta_{m_{\gamma_j}+k_{\gamma_j}+\operatorname{ord}(\gamma_j)}} \leq c^{-1}.$$

The last choice is possible by the assumption $\lim_{n} \frac{\theta_{n+m}}{\theta_n} > c$ for every m. To simplify notation $\rho_{k_{\gamma_j}} = \rho_{k_j}$, $f_{k_{\gamma_{n+1}}} = f_n$, $e_{i_{r_{\gamma_{n+1}}}} = e_{i_n}$. We show that the operator

$$T(x) = \sum_{n=1}^{\infty} f_n(x) e_{i_n}$$

is bounded and strictly singular.

If we consider the space X_u it follows easily that T is bounded since

$$\|\sum_{n=1}^{\infty} f_n(x) e_{i_n}\|_u \le \|x\|_u$$
(2)

since it holds $\|\sum_{n} a_n e_{i_n}\| \le \|\sum_{n} a_n u_n\|$, $i_n \le u_n$ is normalized block basis.

< 注入 < 注入 →

Preparatory work

We take any $x \in X_D$ with a finite support and a norming functional f with $f(Tx) = ||Tx||_D$.

- $\textbf{0} \quad \text{It holds that } \forall f \in D, \forall j \in \mathbb{N}, \qquad \qquad \{n : |f(e_n)| > \rho_{k_j}\} \in \mathcal{S}_{k_j}$
- **2** We partition \mathbb{N} to the sets

$$B_j = \{n \in \mathbb{N} : \ \rho_{k_{j+1}} < |f(e_{i_n})| \le \rho_{k_j}\} \in S_{k_{j+1}}$$

Let
$$D_j = B_j \cap \{1, \dots, \sum_{i < j} M_i + \sum_{i < j} m_i\}$$
, the "initial" part of B_j .
For simplicity assume $D_j = \emptyset$ and $f(e_{i_n}) \ge 0$ Then we have

$$||Tx||_D = f(Tx) = \sum_{j=1}^{\infty} \sum_{n \in B_j} f_n(x)f(e_{i_n}).$$

Analyzing the functionals using the tree structure

Set for $\gamma_j \in \mathcal{R}$, $I_{\gamma_j} = \{\beta \in \mathcal{R} : |\beta| = |\gamma_j|, \gamma_j <_{lex} \beta\} \cup \cup_{|\beta| = |\gamma_j|, \beta <_{lex} \gamma_j} \operatorname{succ}(\beta)$ γ_j o o o o

The set I_{γ_i}

We have that for every n,

•
$$f_n = \sum_{\beta \in I_j} \sum_{\alpha \in \mathcal{T}_n: \upsilon(\alpha) = \beta} c_{\beta} f_{\alpha}^n + \sum_{\alpha \in \mathcal{T}_n: \upsilon(\alpha) = \gamma_j} c_{\gamma_j} f_{\alpha}^n.$$

• For every $\beta \in \mathcal{R}$ the set $\{f_{\alpha}^n : \alpha \in \mathcal{T}_n, \upsilon(\alpha) = \beta\} \in \mathcal{S}_{\operatorname{ord}(\beta)}.$

- (注) - (注) - ()

Using the above properties and $rac{ heta_{m_eta}}{ heta_{m_eta+{
m ord}(eta)+k_eta}}\leq c^{-1}$ we get that

 c_0 -behavior of the nodes thar are determined by a node β of the core tree

Lemma

For
$$\beta \in \mathcal{R}$$
 and for every $F \in \mathcal{S}_{k_{\beta}}$, $F > |\beta|$

$$\|\sum_{n\in F}\sum_{\alpha\in\mathcal{T}_n, \upsilon(\alpha)=\beta} f_{\alpha}^n\| \le c^{-1}.$$
(3)

Since for
$$n \in B_j$$
, $f_n = \sum_{\beta \in I_j} \sum_{\alpha \in \mathcal{T}_n: \upsilon(\alpha) = \beta} c_{\beta} f_{\alpha}^n + u_n$, $u_n = \sum_{\alpha \in \mathcal{T}_n: \upsilon(\alpha) = \gamma_j} c_{\gamma_j} f_{\alpha}^n$

Corollary

For any $\gamma_j \in \mathcal{R}$ and $F \in \mathcal{S}_{k_{j+1}}$ with $F > |\gamma_j| + 2$,

$$\|\sum_{n\in F} (f_n - u_n)\| = \|\sum_{\beta\in I_j} \sum_{n\in F} \sum_{\alpha: \upsilon(\alpha) = \gamma_j} c_j f_\alpha^n\| \le \frac{\#l_j}{c}$$

Using the above properties and $rac{ heta_{m_eta}}{ heta_{m_eta+{
m ord}(eta)+k_eta}}\leq c^{-1}$ we get that

 c_0 -behavior of the nodes thar are determined by a node β of the core tree

Lemma

For
$$eta \in \mathcal{R}$$
 and for every $F \in \mathcal{S}_{k_{eta}}$, $F > |eta|$

$$\|\sum_{n\in F}\sum_{\alpha\in\mathcal{T}_n, \upsilon(\alpha)=\beta} f_{\alpha}^n\| \le c^{-1}.$$
(3)

Since for
$$n \in B_j$$
, $f_n = \sum_{\beta \in I_j} \sum_{\alpha \in \mathcal{T}_n: \upsilon(\alpha) = \beta} c_\beta f_\alpha^n + u_n$, $u_n = \sum_{\alpha \in \mathcal{T}_n: \upsilon(\alpha) = \gamma_j} c_{\gamma_j} f_\alpha^n$

Corollary

For any $\gamma_j \in \mathcal{R}$ and $F \in \mathcal{S}_{k_{j+1}}$ with $F > |\gamma_j| + 2$,

$$\|\sum_{n\in F}(f_n-u_n)\|=\|\sum_{\beta\in I_j}\sum_{n\in F}\sum_{\alpha:\upsilon(\alpha)=\gamma_j}c_jf_\alpha^n\|\leq \frac{\#I_j}{c}$$

- E + - E +

T is bounded

$$\|Tx\|_{D} = f(Tx) \le \sum_{j=1}^{\infty} |\sum_{n \in B_{j}} (f_{n} - u_{n})(x)f(e_{i_{n}})| + \|\sum_{j=1}^{\infty} c_{j} \sum_{n \in B_{j}} u_{n}(x)e_{i_{n}}\|$$

Corollary for $F = B_{j}$ yields

$$\sum_{j=1}^{\infty} |\sum_{n \in B_j} (f_n - u_n)(x) f(e_{i_n})| \le \sum_{j=1}^{\infty} ||\sum_{n \in B_j} (f_n - u_n)|| \, ||x||_D \,
ho_{k_j} \le (\sum_{j=1}^{\infty} rac{1}{c2^j}) ||x||_D, ext{ by the choice of }
ho_{k_j}.$$

It follows

$$\|Tx\|_D \leq (\sum_{j=1}^{\infty} \frac{1}{c2^j})\|x\|_D + \|\sum_{j=1}^{\infty} c_j \sum_{n \in B_j} u_n(x)e_{i_n}\|_D$$

T is bounded, second summand

To estimate
$$\|\sum_{j=1}^{\infty} c_j \sum_{n \in B_j} u_n(x) e_{i_n}\|_D$$
 we use the

• the admissibility of the sets B_j

⁽²⁾ The asymptotic equivalence of the basis of X_D and X_u

$$\|\sum_n g_n(x)e_{i_n}\|_u \leq \|x\|_u$$

So partitioning j's according the predecessor of γ_j we get

$$\begin{split} \|\sum_{j=1}^{\infty} c_j \sum_{n \in B_j} u_n(x) e_{i_n} \|_D &\leq \sum_{k=0}^{\infty} c_k \theta_{m_k} \|\sum_{\gamma_j \in \text{succ}(\gamma_k)} \sum_{n \in B_j} u_n(x) e_{i_n} \|_D \\ &\leq C \sum_{k=0}^{\infty} \theta_{m_k} \|\sum_{\gamma_j \in \text{succ}(\gamma_k)} \sum_{n \in B_j} u_n(x) e_{i_n} \|_U \leq \frac{C}{c} \sum_{k=0}^{\infty} \theta_{m_k} \|x\|_U \\ &\leq (\frac{C}{c} \sum_{k=0}^{\infty} \frac{1}{2^k}) \|x\|_D \end{split}$$

프 () () () (

T is strictly singular

To show that T is strictly singular, we have

$$\|T(x)\|_D \leq \sum_{j=1}^{j_0} |\sum_{n \in B_j} f_n(x)f(e_{i_n})| + \sum_{j>j_0} |\sum_{n \in B_j} f_n(x)f(e_{i_n})|$$

From the proof that T is bounded we get,

$$\sum_{j>j_0} |\sum_{n\in B_j} f_n(x)f(e_{i_n})| \leq \frac{K}{2^{j_0}} ||x||_D.$$

For the first term we use that the space which is the completion of $c_{00}(\mathbb{N})$ under the norm

$$\|x\|_{j_0} = \sup\{\sum_{n \in F} \varepsilon_n f_n(x) : \varepsilon_n \in \{-1, 1\}, F \in \mathcal{S}_{k_{j_0+1}}\}$$

is c_0 -saturated and $||x||_{j_0} \le \theta_{k_{j_0+1}}^{-1} ||x||_D$. $(X_D^* \text{ is closed in } (S_n, \theta_n)$ -operations.

 X_D is reflexive \Rightarrow every $\varepsilon > 0$ and every subspace Y of X_D there exists $x \in S_{X_D}$ with $||x||_{j_0} < \varepsilon$. It follows,

$$\begin{split} \|Tx\|_{D} &\leq \sum_{j=1}^{j_{0}} |\sum_{n \in B_{j}} f_{n}(x)f(e_{i_{n}})| + \sum_{j_{0}+1}^{\infty} |\sum_{n \in B_{j}} f_{r_{n}}(x)f(e_{i_{n}})| \\ &\leq j_{0} \|x\|_{j_{0}} + \frac{K}{2^{j_{0}}} \\ &\leq j_{0}\varepsilon + \frac{K}{2^{j_{0}}} \end{split}$$

Since this holds for every $\varepsilon > 0$ we get that T is strictly singular.

Thank you

A. Manoussakis Strictly singular non-compact operators

回 と く ヨ と く ヨ と