Closed operator ideals on the Banach space of continuous functions on the first uncountable ordinal

Niels Jakob Laustsen

Lancaster University

BIRS, 6th March 2012

Joint work with Tomasz Kania

 $C(K) = \{f : K \to \mathbb{C} : f \text{ is continuous}\}.$

 $C(K) = \{f : K \to \mathbb{C} : f \text{ is continuous}\}.$

Fact. C(K) separable $\iff K$ metrizable.

C(K)-spaces

For a compact Hausdorff space K, consider the Banach space

 $C(K) = \{f : K \to \mathbb{C} : f \text{ is continuous}\}.$

Fact. C(K) separable $\iff K$ metrizable.

Classification. Let *K* be a compact metric space. Then:

(i) K has $n \in \mathbb{N}$ elements $\iff C(K) \cong \ell_{\infty}^{n}$;

 $C(K) = \{f : K \to \mathbb{C} : f \text{ is continuous}\}.$

Fact. C(K) separable $\iff K$ metrizable.

Classification. Let *K* be a compact metric space. Then:

- (i) K has $n \in \mathbb{N}$ elements $\iff C(K) \cong \ell_{\infty}^{n}$;
- (ii) (Milutin) K is uncountable $\iff C(K) \cong C[0,1];$

 $C(K) = \{f : K \to \mathbb{C} : f \text{ is continuous}\}.$

Fact. C(K) separable $\iff K$ metrizable.

Classification. Let *K* be a compact metric space. Then:

(i) K has $n \in \mathbb{N}$ elements $\iff C(K) \cong \ell_{\infty}^{n}$;

(ii) (Milutin) K is uncountable $\iff C(K) \cong C[0,1];$

(iii) (Bessaga and Pełczyński) K is countably infinite $\iff C(K) \cong C[0, \omega^{\omega^{\alpha}}]$ for a unique countable ordinal α .

 $C(K) = \{f : K \to \mathbb{C} : f \text{ is continuous}\}.$

Fact. C(K) separable $\iff K$ metrizable.

Classification. Let *K* be a compact metric space. Then:

(i) K has n ∈ N elements ⇔ C(K) ≅ ℓⁿ_∞;
(ii) (Milutin) K is uncountable ⇔ C(K) ≅ C[0,1];
(iii) (Bessaga and Pełczyński) K is countably infinite ⇔ C(K) ≅ C[0,ω^{ω^α}] for a unique countable ordinal α.

Here, for an ordinal σ ,

$$[0,\sigma] = \{\alpha \text{ ordinal} : \alpha \leqslant \sigma\}$$

is equipped with the *order topology*, which is determined by the basis

$$[0,\beta),$$
 $(\alpha,\beta),$ $(\alpha,\sigma]$ $(0 \leq \alpha < \beta \leq \sigma).$

Introducing our main character: the Loy–Willis ideal

Let ω_1 be the first uncountable ordinal, so that $C[0, \omega_1]$ is the "next" C(K)-space after the separable ones $C[0, \omega^{\omega^{\alpha}}]$ for countable α .

Introducing our main character: the Loy–Willis ideal

Let ω_1 be the first uncountable ordinal, so that $C[0, \omega_1]$ is the "next" C(K)-space after the separable ones $C[0, \omega^{\omega^{\alpha}}]$ for countable α .

Theorem (Semadeni 1960). The Banach space $C[0, \omega_1]$ is not isomorphic to its square $C[0, \omega_1] \oplus C[0, \omega_1]$.

Theorem (Semadeni 1960). The Banach space $C[0, \omega_1]$ is not isomorphic to its square $C[0, \omega_1] \oplus C[0, \omega_1]$.

Theorem (Loy and Willis 1989). The Banach algebra $\mathscr{B}(C[0, \omega_1])$ of (bounded) operators on $C[0, \omega_1]$ contains a maximal ideal \mathscr{M} of codimension one.

Theorem (Semadeni 1960). The Banach space $C[0, \omega_1]$ is not isomorphic to its square $C[0, \omega_1] \oplus C[0, \omega_1]$.

Theorem (Loy and Willis 1989). The Banach algebra $\mathscr{B}(C[0, \omega_1])$ of (bounded) operators on $C[0, \omega_1]$ contains a maximal ideal \mathscr{M} of codimension one.

We call *M* the Loy–Willis ideal.

Theorem (Semadeni 1960). The Banach space $C[0, \omega_1]$ is not isomorphic to its square $C[0, \omega_1] \oplus C[0, \omega_1]$.

Theorem (Loy and Willis 1989). The Banach algebra $\mathscr{B}(C[0, \omega_1])$ of (bounded) operators on $C[0, \omega_1]$ contains a maximal ideal \mathscr{M} of codimension one.

We call *M* the *Loy–Willis ideal*.

It is defined using a representation of operators on $C[0, \omega_1]$ as scalar-valued $[0, \omega_1] \times [0, \omega_1]$ -matrices; an operator belongs to \mathcal{M} if and only if its final column is continuous. The precise definition will follow later.

Theorem (Semadeni 1960). The Banach space $C[0, \omega_1]$ is not isomorphic to its square $C[0, \omega_1] \oplus C[0, \omega_1]$.

Theorem (Loy and Willis 1989). The Banach algebra $\mathscr{B}(C[0, \omega_1])$ of (bounded) operators on $C[0, \omega_1]$ contains a maximal ideal \mathscr{M} of codimension one.

We call *M* the *Loy–Willis ideal*.

It is defined using a representation of operators on $C[0, \omega_1]$ as scalar-valued $[0, \omega_1] \times [0, \omega_1]$ -matrices; an operator belongs to \mathcal{M} if and only if its final column is continuous. The precise definition will follow later.

Motivation. Loy and Willis' aim was to show that each derivation from $\mathscr{B}(C[0, \omega_1])$ into a Banach $\mathscr{B}(C[0, \omega_1])$ -bimodule is automatically continuous.

Theorem (Semadeni 1960). The Banach space $C[0, \omega_1]$ is not isomorphic to its square $C[0, \omega_1] \oplus C[0, \omega_1]$.

Theorem (Loy and Willis 1989). The Banach algebra $\mathscr{B}(C[0, \omega_1])$ of (bounded) operators on $C[0, \omega_1]$ contains a maximal ideal \mathscr{M} of codimension one.

We call *M* the *Loy–Willis ideal*.

It is defined using a representation of operators on $C[0, \omega_1]$ as scalar-valued $[0, \omega_1] \times [0, \omega_1]$ -matrices; an operator belongs to \mathcal{M} if and only if its final column is continuous. The precise definition will follow later.

Motivation. Loy and Willis' aim was to show that each derivation from $\mathscr{B}(C[0, \omega_1])$ into a Banach $\mathscr{B}(C[0, \omega_1])$ -bimodule is automatically continuous.

Key step: *M* has a bounded right approximate identity.

 $\mathscr{M} = \{ T \in \mathscr{B}(C[0, \omega_1]) : \forall R, S \in \mathscr{B}(C[0, \omega_1]) : I \neq STR \}.$

▲□▶▲□▶▲≡▶▲≡▶ ● ● ●

$$\mathscr{M} = \{ T \in \mathscr{B}(C[0, \omega_1]) : \forall R, S \in \mathscr{B}(C[0, \omega_1]) : I \neq STR \}.$$

Corollary. The Loy–Willis ideal is the unique maximal ideal of $\mathscr{B}(C[0, \omega_1])$.

$$\mathscr{M} = \{ T \in \mathscr{B}(C[0, \omega_1]) : \forall R, S \in \mathscr{B}(C[0, \omega_1]) : I \neq STR \}.$$

Corollary. The Loy–Willis ideal is the unique maximal ideal of $\mathscr{B}(C[0, \omega_1])$.

Proof. The theorem implies that the identity operator belongs to the ideal generated by any operator not in \mathcal{M} .

$$\mathscr{M} = \{ T \in \mathscr{B}(C[0, \omega_1]) : \forall R, S \in \mathscr{B}(C[0, \omega_1]) : I \neq STR \}.$$

Corollary. The Loy–Willis ideal is the unique maximal ideal of $\mathscr{B}(C[0, \omega_1])$.

Proof. The theorem implies that the identity operator belongs to the ideal generated by any operator not in \mathcal{M} .

Remark. Many Banach spaces X share with $C[0, \omega_1]$ the property that

 $\mathscr{M}_{X} := \{T \in \mathscr{B}(X) : \forall R, S \in \mathscr{B}(X) : I \neq STR\}$

is the unique maximal ideal of $\mathscr{B}(X)$.

$$\mathscr{M} = \{ T \in \mathscr{B}(C[0, \omega_1]) : \forall R, S \in \mathscr{B}(C[0, \omega_1]) : I \neq STR \}.$$

Corollary. The Loy–Willis ideal is the unique maximal ideal of $\mathscr{B}(C[0, \omega_1])$.

Proof. The theorem implies that the identity operator belongs to the ideal generated by any operator not in \mathcal{M} .

Remark. Many Banach spaces X share with $C[0, \omega_1]$ the property that

 $\mathscr{M}_{\boldsymbol{X}} := \{T \in \mathscr{B}(\boldsymbol{X}) : \forall R, S \in \mathscr{B}(\boldsymbol{X}) : I \neq STR\}$

is the unique maximal ideal of $\mathscr{B}(X)$.

Fact (Dosev and Johnson 2010). Suppose that \mathcal{M}_X is closed under addition. Then \mathcal{M}_X is the unique maximal ideal of $\mathcal{B}(X)$.

Recall:
$$\mathcal{M}_X = \{T \in \mathcal{B}(X) : \forall R, S \in \mathcal{B}(X) : I \neq STR\}$$

(i) $X = \ell_p$ for $1 \leq p < \infty$ and $X = c_0$ (Gohberg, Markus and Feldman 1960);

Recall:
$$\mathcal{M}_X = \{T \in \mathcal{B}(X) : \forall R, S \in \mathcal{B}(X) : I \neq STR\}$$

- (i) $X = \ell_p$ for $1 \leq p < \infty$ and $X = c_0$ (Gohberg, Markus and Feldman 1960);
- (ii) $X = L_p[0,1]$ for $1 \leq p < \infty$

(Dosev, Johnson and Schechtman 2011; known implicitly before);

Recall:
$$\mathcal{M}_X = \{T \in \mathcal{B}(X) : \forall R, S \in \mathcal{B}(X) : I \neq STR\}$$

(i) $X = \ell_p$ for $1 \leq p < \infty$ and $X = c_0$ (Gohberg, Markus and Feldman 1960);

Recall:
$$\mathcal{M}_X = \{T \in \mathcal{B}(X) : \forall R, S \in \mathcal{B}(X) : I \neq STR\}$$

(i) $X = \ell_p$ for $1 \leq p < \infty$ and $X = c_0$ (Gohberg, Markus and Feldman 1960);

(ii)
$$X = L_p[0, 1]$$
 for $1 \le p < \infty$
(Dosev, Johnson and Schechtman 2011; known implicitly before);

(iii) $X = \ell_{\infty} \cong L_{\infty}[0, 1]$ (NJL and Loy 2005, using Pełczyński and Rosenthal);

Recall:
$$\mathcal{M}_X = \{T \in \mathcal{B}(X) : \forall R, S \in \mathcal{B}(X) : I \neq STR\}$$

(i) $X = \ell_p$ for $1 \leq p < \infty$ and $X = c_0$ (Gohberg, Markus and Feldman 1960);

(ii)
$$X = L_p[0, 1]$$
 for $1 \le p < \infty$
(Dosev, Johnson and Schechtman 2011; known implicitly before);

(iii)
$$X = \ell_{\infty} \cong L_{\infty}[0, 1]$$
 (NJL and Loy 2005, using Pełczyński and Rosenthal);

(iv) $X = \ell_{\infty}/c_0$ (follows from Drewnowski and Roberts 1991);

Recall:
$$\mathcal{M}_X = \{T \in \mathcal{B}(X) : \forall R, S \in \mathcal{B}(X) : I \neq STR\}$$

- (i) $X = \ell_p$ for $1 \leq p < \infty$ and $X = c_0$ (Gohberg, Markus and Feldman 1960);
- (ii) $X = L_p[0, 1]$ for $1 \le p < \infty$ (Dosev, Johnson and Schechtman 2011; known implicitly before);
- (iii) $X = \ell_{\infty} \cong L_{\infty}[0, 1]$ (NJL and Loy 2005, using Pełczyński and Rosenthal);
- (iv) $X = \ell_{\infty}/c_0$ (follows from Drewnowski and Roberts 1991);
- (v) $X = d_{w,p}$, the Lorentz sequence space determined by a decreasing, non-summable sequence $w = (w_n)$ in (0, 1] and $p \in [1, \infty)$ (Kamińska, Popov, Spinu, Tcaciuc and Troitsky 2011);

Recall:
$$\mathcal{M}_X = \{T \in \mathcal{B}(X) : \forall R, S \in \mathcal{B}(X) : I \neq STR \}$$

- (i) $X = \ell_p$ for $1 \leq p < \infty$ and $X = c_0$ (Gohberg, Markus and Feldman 1960);
- (ii) $X = L_p[0, 1]$ for $1 \le p < \infty$ (Dosev, Johnson and Schechtman 2011; known implicitly before);
- (iii) $X = \ell_{\infty} \cong L_{\infty}[0, 1]$ (NJL and Loy 2005, using Pełczyński and Rosenthal);
- (iv) $X = \ell_{\infty}/c_0$ (follows from Drewnowski and Roberts 1991);
- (v) $X = d_{w,p}$, the Lorentz sequence space determined by a decreasing, non-summable sequence $w = (w_n)$ in (0, 1] and $p \in [1, \infty)$ (Kamińska, Popov, Spinu, Tcaciuc and Troitsky 2011);
- (vi) $X = \left(\bigoplus \ell_2^n\right)_{c_0}$ (NJL, Loy and Read 2004;

Recall:
$$\mathcal{M}_X = \{T \in \mathcal{B}(X) : \forall R, S \in \mathcal{B}(X) : I \neq STR\}$$

- (i) $X = \ell_p$ for $1 \leq p < \infty$ and $X = c_0$ (Gohberg, Markus and Feldman 1960);
- (ii) $X = L_p[0, 1]$ for $1 \le p < \infty$ (Dosev, Johnson and Schechtman 2011; known implicitly before);
- (iii) $X = \ell_{\infty} \cong L_{\infty}[0, 1]$ (NJL and Loy 2005, using Pełczyński and Rosenthal);
- (iv) $X = \ell_{\infty}/c_0$ (follows from Drewnowski and Roberts 1991);
- (v) $X = d_{w,p}$, the Lorentz sequence space determined by a decreasing, non-summable sequence $w = (w_n)$ in (0, 1] and $p \in [1, \infty)$ (Kamińska, Popov, Spinu, Tcaciuc and Troitsky 2011);
- (vi) $X = \left(\bigoplus \ell_2^n\right)_{c_0}$ and $X = \left(\bigoplus \ell_2^n\right)_{\ell_1}$ (NJL, Loy and Read 2004; NJL, Schlumprecht and Zsák 2006);

Recall:
$$\mathcal{M}_X = \{T \in \mathcal{B}(X) : \forall R, S \in \mathcal{B}(X) : I \neq STR\}$$

- (i) $X = \ell_p$ for $1 \leq p < \infty$ and $X = c_0$ (Gohberg, Markus and Feldman 1960);
- (ii) $X = L_p[0, 1]$ for $1 \le p < \infty$ (Dosev, Johnson and Schechtman 2011; known implicitly before);
- (iii) $X = \ell_{\infty} \cong L_{\infty}[0, 1]$ (NJL and Loy 2005, using Pełczyński and Rosenthal);
- (iv) $X = \ell_{\infty}/c_0$ (follows from Drewnowski and Roberts 1991);
- (v) $X = d_{w,p}$, the Lorentz sequence space determined by a decreasing, non-summable sequence $w = (w_n)$ in (0, 1] and $p \in [1, \infty)$ (Kamińska, Popov, Spinu, Tcaciuc and Troitsky 2011);

(vi)
$$X = \left(\bigoplus \ell_2^n\right)_{c_0}$$
 and $X = \left(\bigoplus \ell_2^n\right)_{\ell_1}$
(NJL, Loy and Read 2004; NJL, Schlumprecht and Zsák 2006);
(vii) $X = \left(\bigoplus_{\mathbb{N}} \ell_q\right)_{\ell_p}$ for $1 \leq q (Chen, Johnson and Zheng 2011);$

Recall:
$$\mathcal{M}_X = \{T \in \mathcal{B}(X) : \forall R, S \in \mathcal{B}(X) : I \neq STR\}$$

(i)
$$X = \ell_p$$
 for $1 \leq p < \infty$ and $X = c_0$ (Gohberg, Markus and Feldman 1960);

(ii)
$$X = L_p[0, 1]$$
 for $1 \le p < \infty$
(Dosev, Johnson and Schechtman 2011; known implicitly before);

(iii)
$$X = \ell_{\infty} \cong L_{\infty}[0, 1]$$
 (NJL and Loy 2005, using Pełczyński and Rosenthal);

(iv)
$$X = \ell_{\infty}/c_0$$
 (follows from Drewnowski and Roberts 1991);

(v)
$$X = d_{w,p}$$
, the Lorentz sequence space determined by a decreasing,
non-summable sequence $w = (w_n)$ in $(0, 1]$ and $p \in [1, \infty)$
(Kamińska, Popov, Spinu, Tcaciuc and Troitsky 2011);

(vi)
$$X = \left(\bigoplus \ell_2^n\right)_{c_0}$$
 and $X = \left(\bigoplus \ell_2^n\right)_{\ell_1}$
(NJL, Loy and Read 2004; NJL, Schlumprecht and Zsák 2006);
(vii) $X = \left(\bigoplus_{\mathbb{N}} \ell_q\right)_{\ell_p}$ for $1 \leq q (Chen, Johnson and Zheng 2011);(viii) $X = C[0, 1]$ (Brooker 2010, using Pełczyński and Rosenthal);$

Recall:
$$\mathcal{M}_X = \{T \in \mathcal{B}(X) : \forall R, S \in \mathcal{B}(X) : I \neq STR\}$$

(i)
$$X = \ell_p$$
 for $1 \leq p < \infty$ and $X = c_0$ (Gohberg, Markus and Feldman 1960);

(ii)
$$X = L_p[0, 1]$$
 for $1 \le p < \infty$
(Dosev, Johnson and Schechtman 2011; known implicitly before);

(iii)
$$X = \ell_{\infty} \cong L_{\infty}[0, 1]$$
 (NJL and Loy 2005, using Pełczyński and Rosenthal);

(iv)
$$X = \ell_{\infty}/c_0$$
 (follows from Drewnowski and Roberts 1991);

(v) X = d_{w,p}, the Lorentz sequence space determined by a decreasing, non-summable sequence w = (w_n) in (0,1] and p ∈ [1,∞) (Kamińska, Popov, Spinu, Tcaciuc and Troitsky 2011);

Recall:
$$\mathcal{M}_X = \{T \in \mathcal{B}(X) : \forall R, S \in \mathcal{B}(X) : I \neq STR\}$$

(i)
$$X = \ell_p$$
 for $1 \leq p < \infty$ and $X = c_0$ (Gohberg, Markus and Feldman 1960);

(ii)
$$X = L_p[0, 1]$$
 for $1 \le p < \infty$
(Dosev, Johnson and Schechtman 2011; known implicitly before);

(iii)
$$X = \ell_{\infty} \cong L_{\infty}[0, 1]$$
 (NJL and Loy 2005, using Pełczyński and Rosenthal);

(iv)
$$X = \ell_{\infty}/c_0$$
 (follows from Drewnowski and Roberts 1991);

(v) X = d_{w,p}, the Lorentz sequence space determined by a decreasing, non-summable sequence w = (w_n) in (0, 1] and p ∈ [1,∞) (Kamińska, Popov, Spinu, Tcaciuc and Troitsky 2011);

(vi)
$$X = \left(\bigoplus \ell_2^n\right)_{c_0}$$
 and $X = \left(\bigoplus \ell_2^n\right)_{\ell_1}$
(NJL, Loy and Read 2004; NJL, Schlumprecht and Zsák 2006);
(vii) $X = \left(\bigoplus_{\mathbb{N}} \ell_q\right)_{\ell_p}$ for $1 \leq q (Chen, Johnson and Zheng 2011)$

(viii)
$$X = C[0, 1]$$
 (Brooker 2010, using Pełczyński and Rosenthal);

(ix) $X = C[0, \omega^{\omega}]$ and $X = C[0, \omega^{\alpha}]$, where α is a countable epsilon number, that is, a countable ordinal satisfying $\alpha = \omega^{\alpha}$

(Brooker (unpublished), using Bourgain and Pełczyński).

Note:
$$C[0, \omega_1]$$
 differs from all these Banach spaces because $C[0, \omega_1] \ncong C[0, \omega_1] \oplus C[0, \omega_1]$.

Recall: $\mathcal{M}_X = \{T \in \mathcal{B}(X) : \forall R, S \in \mathcal{B}(X) : I \neq STR\}$

);

Theorem (Kania+NJL 2011). The following are equivalent for $T \in \mathscr{B}(C[0, \omega_1])$: (a) T has separable range,

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めんの

Theorem (Kania+NJL 2011). The following are equivalent for $T \in \mathscr{B}(C[0, \omega_1])$:

- (a) T has separable range,
- (b) T does not fix a copy of the Banach space

 $c_0(\omega_1) = \big\{ f \colon [0,\omega_1) \to \mathbb{C} : \{ \alpha \in [0,\omega_1) : |f(\alpha)| \ge \varepsilon \} \text{ is finite for each } \varepsilon > 0 \big\},\$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めんの

Theorem (Kania+NJL 2011). The following are equivalent for $T \in \mathscr{B}(C[0, \omega_1])$:

- (a) T has separable range,
- (b) T does not fix a copy of the Banach space

 $c_{0}(\omega_{1}) = \left\{ f : [0, \omega_{1}) \to \mathbb{C} : \left\{ \alpha \in [0, \omega_{1}) : |f(\alpha)| \ge \varepsilon \right\} \text{ is finite for each } \varepsilon > 0 \right\},$ (c) $T = P_{\sigma} TP_{\sigma}$ for some $\sigma \in [0, \omega_{1})$, where $(P_{\sigma} f)(\alpha) = \begin{cases} f(\alpha) & \text{for } \alpha \in [0, \sigma] \\ f(\omega_{1}) & \text{for } \alpha \in [\sigma + 1, \omega_{1}] \end{cases} \quad (f \in C[0, \omega_{1}]),$

6

Theorem (Kania+NJL 2011). The following are equivalent for $T \in \mathscr{B}(C[0, \omega_1])$:

- (a) T has separable range,
- (b) T does not fix a copy of the Banach space

 $c_{0}(\omega_{1}) = \{f : [0, \omega_{1}) \to \mathbb{C} : \{\alpha \in [0, \omega_{1}) : |f(\alpha)| \ge \varepsilon\} \text{ is finite for each } \varepsilon > 0\},\$ (c) $T = P_{\sigma} TP_{\sigma}$ for some $\sigma \in [0, \omega_{1})$, where $(P_{\sigma}f)(\alpha) = \begin{cases} f(\alpha) & \text{for } \alpha \in [0, \sigma] \\ f(\omega_{1}) & \text{for } \alpha \in [\sigma + 1, \omega_{1}] \end{cases} \quad (f \in C[0, \omega_{1}]),\$ (d) $T \in \mathscr{G}_{C[0,\sigma]}(C[0, \omega_{1}]) \text{ for some } \sigma \in [0, \omega_{1}),\$

where, for Banach spaces X and Y,

$$\mathscr{G}_{\mathbf{Y}}(X) := \operatorname{span}\{TS : S \in \mathscr{B}(X, Y), T \in \mathscr{B}(Y, X)\}$$

6

This is always an ideal of $\mathscr{B}(X)$

Theorem (Kania+NJL 2011). The following are equivalent for $T \in \mathscr{B}(C[0, \omega_1])$:

- (a) T has separable range,
- (b) T does not fix a copy of the Banach space

 $c_{0}(\omega_{1}) = \{f : [0, \omega_{1}) \to \mathbb{C} : \{\alpha \in [0, \omega_{1}) : |f(\alpha)| \ge \varepsilon\} \text{ is finite for each } \varepsilon > 0\},\$ (c) $T = P_{\sigma} TP_{\sigma}$ for some $\sigma \in [0, \omega_{1})$, where $(P_{\sigma}f)(\alpha) = \begin{cases} f(\alpha) & \text{for } \alpha \in [0, \sigma] \\ f(\omega_{1}) & \text{for } \alpha \in [\sigma + 1, \omega_{1}] \end{cases} \quad (f \in C[0, \omega_{1}]),\$ (d) $T \in \mathscr{G}$ as $\mu(C[0, \omega_{1}])$ for some $\sigma \in [0, \omega_{1})$

(d) $T \in \mathscr{G}_{C[0,\sigma]}(C[0,\omega_1])$ for some $\sigma \in [0,\omega_1)$,

where, for Banach spaces X and Y,

 $\mathscr{G}_{\mathbf{Y}}(X) := \operatorname{span}\{TS : S \in \mathscr{B}(X, Y), \ T \in \mathscr{B}(Y, X)\}$

This is always an ideal of $\mathscr{B}(X)$

Note: if Y contains a complemented copy of $Y \oplus Y$, then the 'span' is not needed; $\{TS : S \in \mathscr{B}(X, Y), T \in \mathscr{B}(Y, X)\}$ is already closed under addition.

Theorem (Kania+NJL 2011). The following are equivalent for $T \in \mathscr{B}(C[0, \omega_1])$:

- (a) T has separable range,
- (b) T does not fix a copy of the Banach space

 $c_0(\omega_1) = \{f : [0, \omega_1) \to \mathbb{C} : \{\alpha \in [0, \omega_1) : |f(\alpha)| \ge \varepsilon\} \text{ is finite for each } \varepsilon > 0\},\$ (c) $T = P_{\sigma} T P_{\sigma}$ for some $\sigma \in [0, \omega_1)$, where

$$(P_{\sigma}f)(\alpha) = \begin{cases} f(\alpha) & \text{for } \alpha \in [0,\sigma] \\ f(\omega_1) & \text{for } \alpha \in [\sigma+1,\omega_1] \end{cases} \quad (f \in C[0,\omega_1]),$$

(d) $T \in \mathscr{G}_{C[0,\sigma]}(C[0,\omega_1])$ for some $\sigma \in [0,\omega_1)$, (e) $T \in \overline{\mathscr{G}}_{C[0,\sigma]}(C[0,\omega_1])$ for some $\sigma \in [0,\omega_1)$, where, for Banach spaces X and Y,

 $\mathscr{G}_{\mathbf{Y}}(X) := \operatorname{span}\{TS : S \in \mathscr{B}(X, Y), \ T \in \mathscr{B}(Y, X)\}$

This is always an ideal of $\mathscr{B}(X)$, and $\overline{\mathscr{G}}_{Y}(X)$ is its closure. Note: if Y contains a complemented copy of $Y \oplus Y$, then the 'span' is not needed; $\{TS : S \in \mathscr{B}(X, Y), T \in \mathscr{B}(Y, X)\}$ is already closed under addition.

Theorem (Kania+NJL 2011). The following are equivalent for $T \in \mathscr{B}(C[0, \omega_1])$:

- (a) T has separable range,
- (b) T does not fix a copy of the Banach space

 $c_0(\omega_1) = \{ f : [0, \omega_1) \to \mathbb{C} : \{ \alpha \in [0, \omega_1) : |f(\alpha)| \ge \varepsilon \} \text{ is finite for each } \varepsilon > 0 \},$ (c) $T = P_\sigma T P_\sigma$ for some $\sigma \in [0, \omega_1)$, where

$$(P_{\sigma}f)(lpha) = egin{cases} f(lpha) & ext{for } lpha \in [0,\sigma] \ f(\omega_1) & ext{for } lpha \in [\sigma+1,\omega_1] \end{cases} \quad (f \in C[0,\omega_1]),$$

(d) $T \in \mathscr{G}_{C[0,\sigma]}(C[0,\omega_1])$ for some $\sigma \in [0,\omega_1)$, (e) $T \in \overline{\mathscr{G}}_{C[0,\sigma]}(C[0,\omega_1])$ for some $\sigma \in [0,\omega_1)$, where, for Banach spaces X and Y,

 $\mathscr{G}_{\mathbf{Y}}(X) := \operatorname{span} \{ TS : S \in \mathscr{B}(X, Y), \ T \in \mathscr{B}(Y, X) \}$

This is always an ideal of $\mathscr{B}(X)$, and $\overline{\mathscr{G}}_{Y}(X)$ is its closure. Note: if Y contains a complemented copy of $Y \oplus Y$, then the 'span' is not needed; $\{TS : S \in \mathscr{B}(X, Y), T \in \mathscr{B}(Y, X)\}$ is already closed under addition. *Warning!* This theorem does *not* imply that the ideal $\mathscr{G}_{C[0,\sigma]}(C[0,\omega_1])$ is closed for each $\sigma \in [0, \omega_1)$, despite the equivalence of (d) and (e).

Theorem (Kania+NJL 2011). The following are equivalent for $T \in \mathscr{B}(C[0, \omega_1])$:

- (a) T has separable range,
- (b) T does not fix a copy of the Banach space

 $c_0(\omega_1) = \{ f : [0, \omega_1) \to \mathbb{C} : \{ \alpha \in [0, \omega_1) : |f(\alpha)| \ge \varepsilon \} \text{ is finite for each } \varepsilon > 0 \},$

(c) $T = P_{\sigma}TP_{\sigma}$ for some $\sigma \in [0, \omega_1)$, where

$$(P_{\sigma}f)(\alpha) = \begin{cases} f(\alpha) & \text{for } \alpha \in [0,\sigma] \\ f(\omega_1) & \text{for } \alpha \in [\sigma+1,\omega_1] \end{cases} \quad (f \in C[0,\omega_1]),$$

(d)
$$T \in \mathscr{G}_{C[0,\sigma]}(C[0,\omega_1])$$
 for some $\sigma \in [0,\omega_1)$,
(e) $T \in \overline{\mathscr{G}}_{C[0,\sigma]}(C[0,\omega_1])$ for some $\sigma \in [0,\omega_1)$,
where, for Banach spaces X and Y,

 $\mathscr{G}_{\mathbf{Y}}(X) := \operatorname{span} \{ TS : S \in \mathscr{B}(X, Y), \ T \in \mathscr{B}(Y, X) \}$

This is always an ideal of $\mathscr{B}(X)$, and $\overline{\mathscr{G}}_{Y}(X)$ is its closure. Note: if Y contains a complemented copy of $Y \oplus Y$, then the 'span' is not needed; $\{TS : S \in \mathscr{B}(X, Y), T \in \mathscr{B}(Y, X)\}$ is already closed under addition. *Warning!* This theorem does *not* imply that the ideal $\mathscr{G}_{C[0,\sigma]}(C[0,\omega_1])$ is closed for each $\sigma \in [0,\omega_1)$, despite the equivalence of (d) and (e). Reason: for given $\tau \in [0,\omega_1)$ and $T \in \overline{\mathscr{G}}_{C[0,\tau]}(C[0,\omega_1])$, the ordinal σ such $\Xi = \mathcal{O} \otimes \mathcal{O}$ that (d) holds may be much larger that \mathfrak{G}_{τ} and depend on T.

Partial structure of the lattice of closed ideals of $\mathscr{B} = \mathscr{B}(C[0, \omega_1])$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 三目 - のへで

Partial structure of the lattice of closed ideals of $\mathscr{B} = \mathscr{B}(C[0, \omega_1])$

- (i) We suppress $C[0, \omega_1]$ everywhere, thus writing \mathscr{K} instead of $\mathscr{K}(C[0, \omega_1])$ for the ideal of compact operators on $C[0, \omega_1]$, *etc.*;
- (ii) $\mathscr{I} \longrightarrow \mathscr{J}$ means that the ideal \mathscr{I} is properly contained in the ideal \mathscr{J} ;
- (iii) a double-headed arrow indicates that there are no closed ideals between \mathscr{I} and \mathscr{J} ;
- (iv) α denotes a countable ordinal; and
- (v) $K_{\alpha} = [0, \omega^{\omega^{\alpha}}].$

Fact. $[0, \omega_1]$ is *scattered*: each non-empty subset contains an isolated point.

<ロ> < 団> < 団> < 三> < 三> < 三> < 三</p>

Fact. $[0, \omega_1]$ is *scattered:* each non-empty subset contains an isolated point. Theorem (Rudin 1957). $C[0, \omega_1]^* \cong \ell_1[0, \omega_1].$

Fact. $[0, \omega_1]$ is scattered: each non-empty subset contains an isolated point. Theorem (Rudin 1957). $C[0, \omega_1]^* \cong \ell_1[0, \omega_1]$. More precisely, for each $\mu \in C[0, \omega_1]^*$, there are unique scalars (c_{α}) such that

 $\|\mu\| = \sum_{\alpha \in [\mathbf{0}, \omega_{\mathbf{1}}]} |c_{\alpha}| < \infty \quad \text{ and } \quad \mu = \sum_{\alpha \in [\mathbf{0}, \omega_{\mathbf{1}}]} c_{\alpha} \delta_{\alpha},$

where δ_{α} is the evaluation map at α , that is, $\delta_{\alpha}(f) = f(\alpha)$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うへぐ

Fact. $[0, \omega_1]$ is *scattered:* each non-empty subset contains an isolated point. Theorem (Rudin 1957). $C[0, \omega_1]^* \cong \ell_1[0, \omega_1].$

More precisely, for each $\mu \in C[0, \omega_1]^*$, there are unique scalars (c_{α}) such that

$$\|\mu\| = \sum_{\alpha \in [\mathbf{0}, \omega_{\mathbf{1}}]} |c_{\alpha}| < \infty$$
 and $\mu = \sum_{\alpha \in [\mathbf{0}, \omega_{\mathbf{1}}]} c_{\alpha} \delta_{\alpha}$,

where δ_{α} is the evaluation map at α , that is, $\delta_{\alpha}(f) = f(\alpha)$.

Corollary. For each $T \in \mathscr{B}(C[0, \omega_1])$, there is a unique scalar-valued matrix $(T_{\alpha,\beta})_{\alpha,\beta\in[0,\omega_1]}$ such that

$$\sum_{\beta \in [\mathbf{0}, \omega_{\mathbf{1}}]} |T_{\alpha, \beta}| < \infty \quad \text{and} \quad Tf(\alpha) = \sum_{\beta \in [\mathbf{0}, \omega_{\mathbf{1}}]} T_{\alpha, \beta}f(\beta)$$

for each $f \in C[0, \omega_1]$ and $\alpha \in [0, \omega_1]$.

Fact. $[0, \omega_1]$ is *scattered:* each non-empty subset contains an isolated point. Theorem (Rudin 1957). $C[0, \omega_1]^* \cong \ell_1[0, \omega_1].$

More precisely, for each $\mu \in C[0, \omega_1]^*$, there are unique scalars (c_{α}) such that

$$\|\mu\| = \sum_{\alpha \in [\mathbf{0}, \omega_{\mathbf{1}}]} |c_{\alpha}| < \infty$$
 and $\mu = \sum_{\alpha \in [\mathbf{0}, \omega_{\mathbf{1}}]} c_{\alpha} \delta_{\alpha}$,

where δ_{α} is the evaluation map at α , that is, $\delta_{\alpha}(f) = f(\alpha)$.

Corollary. For each $T \in \mathscr{B}(C[0, \omega_1])$, there is a unique scalar-valued matrix $(T_{\alpha,\beta})_{\alpha,\beta\in[0,\omega_1]}$ such that

$$\sum_{\beta \in [\mathbf{0}, \omega_{\mathbf{1}}]} |T_{\alpha, \beta}| < \infty \quad \text{and} \quad Tf(\alpha) = \sum_{\beta \in [\mathbf{0}, \omega_{\mathbf{1}}]} T_{\alpha, \beta}f(\beta)$$

for each $f \in C[0, \omega_1]$ and $\alpha \in [0, \omega_1]$.

Notation. For $T \in \mathscr{B}(C[0, \omega_1])$ and $\beta \in [0, \omega_1]$, let $k_{\beta}^T : [0, \omega_1] \to \mathbb{C}$ denote the β^{th} column of the matrix of T, that is, $k_{\beta}^T(\alpha) = T_{\alpha,\beta}$.

Fact. $[0, \omega_1]$ is *scattered:* each non-empty subset contains an isolated point. Theorem (Rudin 1957). $C[0, \omega_1]^* \cong \ell_1[0, \omega_1].$

More precisely, for each $\mu \in C[0, \omega_1]^*$, there are unique scalars (c_{lpha}) such that

$$\|\mu\| = \sum_{\alpha \in [\mathbf{0}, \omega_{\mathbf{1}}]} |c_{\alpha}| < \infty$$
 and $\mu = \sum_{\alpha \in [\mathbf{0}, \omega_{\mathbf{1}}]} c_{\alpha} \delta_{\alpha}$,

where δ_{α} is the evaluation map at α , that is, $\delta_{\alpha}(f) = f(\alpha)$.

Corollary. For each $T \in \mathscr{B}(C[0, \omega_1])$, there is a unique scalar-valued matrix $(T_{\alpha,\beta})_{\alpha,\beta\in[0,\omega_1]}$ such that

$$\sum_{\beta \in [\mathbf{0}, \omega_{\mathbf{1}}]} |T_{\alpha, \beta}| < \infty \quad \text{and} \quad Tf(\alpha) = \sum_{\beta \in [\mathbf{0}, \omega_{\mathbf{1}}]} T_{\alpha, \beta}f(\beta)$$

for each $f \in C[0, \omega_1]$ and $\alpha \in [0, \omega_1]$.

Notation. For $T \in \mathscr{B}(C[0, \omega_1])$ and $\beta \in [0, \omega_1]$, let $k_{\beta}^T : [0, \omega_1] \to \mathbb{C}$ denote the β^{th} column of the matrix of T, that is, $k_{\beta}^T(\alpha) = T_{\alpha,\beta}$.

Theorem (Loy and Willis 1989). The set

$$\mathscr{M} = \{ T \in \mathscr{B}(C[0, \omega_1]) : k_{\omega_1}^T \text{ is continuous at } \omega_1 \}$$

is a maximal ideal of codimension one in $\mathscr{B}(C[0,\omega_1])$.

Recall: $\mathcal{M} = \{ T \in \mathscr{B}(C[0, \omega_1]) : k_{\omega_1}^T \text{ is continuous at } \omega_1 \}.$

Recall: $\mathcal{M} = \{ T \in \mathcal{B}(C[0, \omega_1]) : k_{\omega_1}^T \text{ is continuous at } \omega_1 \}.$

Loy and Willis' Key Lemma. For each $S \in \mathscr{B}(C[0, \omega_1])$, the restriction of $k_{\omega_1}^S$ to $[0, \omega_1)$ is continuous

▲□▶ ▲□▶ ▲三▶ ▲三▶ Ⅰ りへぐ

Recall: $\mathcal{M} = \{ T \in \mathcal{B}(C[0, \omega_1]) : k_{\omega_1}^T \text{ is continuous at } \omega_1 \}.$

Loy and Willis' Key Lemma. For each $S \in \mathscr{B}(C[0, \omega_1])$, the restriction of $k_{\omega_1}^S$ to $[0, \omega_1)$ is continuous, and $\lim_{\alpha \to \omega_1} k_{\omega_1}^S(\alpha)$ exists.

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶

Recall: $\mathcal{M} = \{ T \in \mathscr{B}(C[0, \omega_1]) : k_{\omega_1}^T \text{ is continuous at } \omega_1 \}.$

Loy and Willis' Key Lemma. For each $S \in \mathscr{B}(C[0, \omega_1])$, the restriction of $k_{\omega_1}^S$ to $[0, \omega_1)$ is continuous, and $\lim_{\alpha \to \omega_1} k_{\omega_1}^S(\alpha)$ exists.

• \mathscr{M} is a *left ideal* because, for $S \in \mathscr{B}(C[0, \omega_1])$ and $T \in \mathscr{M}$,

$$k^{ST}_{\omega_1} = S(k^T_{\omega_1})$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへぐ

Recall: $\mathcal{M} = \{ T \in \mathscr{B}(C[0, \omega_1]) : k_{\omega_1}^T \text{ is continuous at } \omega_1 \}.$

Loy and Willis' Key Lemma. For each $S \in \mathscr{B}(C[0, \omega_1])$, the restriction of $k_{\omega_1}^S$ to $[0, \omega_1)$ is continuous, and $\lim_{\alpha \to \omega_1} k_{\omega_1}^S(\alpha)$ exists.

• \mathscr{M} is a *left ideal* because, for $S \in \mathscr{B}(C[0, \omega_1])$ and $T \in \mathscr{M}$,

$$k_{\omega_1}^{ST} = S(k_{\omega_1}^T) \in C[0, \omega_1].$$

▲□▶▲□▶▲≡▶▲≡▶ ▲□▶

Recall:
$$\mathcal{M} = \{ T \in \mathscr{B}(C[0, \omega_1]) : k_{\omega_1}^T \text{ is continuous at } \omega_1 \}.$$

Loy and Willis' Key Lemma. For each $S \in \mathscr{B}(C[0, \omega_1])$, the restriction of $k_{\omega_1}^S$ to $[0, \omega_1)$ is continuous, and $\lim_{\alpha \to \omega_1} k_{\omega_1}^S(\alpha)$ exists.

• \mathscr{M} is a *left ideal* because, for $S \in \mathscr{B}(C[0, \omega_1])$ and $T \in \mathscr{M}$,

$$k_{\omega_1}^{ST} = S(k_{\omega_1}^T) \in C[0, \omega_1].$$

• \mathcal{M} is proper because $k'_{\omega_1} = \mathbf{1}_{\{\omega_1\}}$ is discontinuous, so $I \notin \mathcal{M}$.

Recall:
$$\mathcal{M} = \{ T \in \mathscr{B}(C[0, \omega_1]) : k_{\omega_1}^T \text{ is continuous at } \omega_1 \}.$$

Loy and Willis' Key Lemma. For each $S \in \mathscr{B}(C[0, \omega_1])$, the restriction of $k_{\omega_1}^S$ to $[0, \omega_1)$ is continuous, and $\lim_{\alpha \to \omega_1} k_{\omega_1}^S(\alpha)$ exists.

• \mathscr{M} is a *left ideal* because, for $S \in \mathscr{B}(C[0, \omega_1])$ and $T \in \mathscr{M}$,

$$k_{\omega_1}^{ST} = S(k_{\omega_1}^T) \in C[0, \omega_1].$$

- \mathcal{M} is proper because $k'_{\omega_1} = \mathbf{1}_{\{\omega_1\}}$ is discontinuous, so $I \notin \mathcal{M}$.
- \mathcal{M} has codimension one. Given $S \in \mathscr{B}(C[0, \omega_1])$, define

$$c = \lim_{\alpha \to \omega_1} S_{\alpha,\omega_1} - S_{\omega_1,\omega_1}$$
 and $T = c \cdot I + S$.

Recall:
$$\mathcal{M} = \{ T \in \mathscr{B}(C[0, \omega_1]) : k_{\omega_1}^T \text{ is continuous at } \omega_1 \}.$$

Loy and Willis' Key Lemma. For each $S \in \mathscr{B}(C[0, \omega_1])$, the restriction of $k_{\omega_1}^S$ to $[0, \omega_1)$ is continuous, and $\lim_{\alpha \to \omega_1} k_{\omega_1}^S(\alpha)$ exists.

• \mathscr{M} is a *left ideal* because, for $S \in \mathscr{B}(C[0, \omega_1])$ and $T \in \mathscr{M}$,

$$k_{\omega_1}^{ST} = S(k_{\omega_1}^T) \in C[0, \omega_1].$$

- \mathcal{M} is proper because $k'_{\omega_1} = \mathbf{1}_{\{\omega_1\}}$ is discontinuous, so $I \notin \mathcal{M}$.
- \mathcal{M} has codimension one. Given $S \in \mathscr{B}(C[0, \omega_1])$, define

$$c = \lim_{\alpha \to \omega_1} S_{\alpha, \omega_1} - S_{\omega_1, \omega_1}$$
 and $T = c \cdot I + S$.

Then $T \in \mathcal{M}$ because $k_{\omega_1}^T$ is continuous at ω_1 :

 $k_{\omega_{1}}^{T}(\alpha) = ck_{\omega_{1}}^{I}(\alpha) + k_{\omega_{1}}^{S}(\alpha)$

Recall:
$$\mathcal{M} = \{ T \in \mathscr{B}(C[0, \omega_1]) : k_{\omega_1}^T \text{ is continuous at } \omega_1 \}.$$

Loy and Willis' Key Lemma. For each $S \in \mathscr{B}(C[0, \omega_1])$, the restriction of $k_{\omega_1}^S$ to $[0, \omega_1)$ is continuous, and $\lim_{\alpha \to \omega_1} k_{\omega_1}^S(\alpha)$ exists.

• \mathscr{M} is a *left ideal* because, for $S \in \mathscr{B}(C[0, \omega_1])$ and $T \in \mathscr{M}$,

$$k_{\omega_1}^{ST} = S(k_{\omega_1}^T) \in C[0, \omega_1].$$

- \mathcal{M} is proper because $k'_{\omega_1} = \mathbf{1}_{\{\omega_1\}}$ is discontinuous, so $I \notin \mathcal{M}$.
- \mathcal{M} has codimension one. Given $S \in \mathscr{B}(C[0, \omega_1])$, define

$$c = \lim_{\alpha \to \omega_1} S_{\alpha, \omega_1} - S_{\omega_1, \omega_1}$$
 and $T = c \cdot I + S$.

Then $T \in \mathscr{M}$ because $k_{\omega_1}^T$ is continuous at ω_1 :

$$k_{\omega_{\mathbf{1}}}^{\mathcal{T}}(\alpha) = ck_{\omega_{\mathbf{1}}}^{\prime}(\alpha) + k_{\omega_{\mathbf{1}}}^{\mathcal{S}}(\alpha) = \begin{cases} S_{\alpha,\omega_{\mathbf{1}}} & \text{for } \alpha < \omega_{\mathbf{1}} \\ c + S_{\omega_{\mathbf{1}},\omega_{\mathbf{1}}} & \text{for } \alpha = \omega_{\mathbf{1}} \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Recall:
$$\mathcal{M} = \{ T \in \mathscr{B}(C[0, \omega_1]) : k_{\omega_1}^T \text{ is continuous at } \omega_1 \}.$$

Loy and Willis' Key Lemma. For each $S \in \mathscr{B}(C[0, \omega_1])$, the restriction of $k_{\omega_1}^S$ to $[0, \omega_1)$ is continuous, and $\lim_{\alpha \to \omega_1} k_{\omega_1}^S(\alpha)$ exists.

• \mathscr{M} is a *left ideal* because, for $S \in \mathscr{B}(C[0, \omega_1])$ and $T \in \mathscr{M}$,

$$k_{\omega_1}^{ST} = S(k_{\omega_1}^T) \in C[0, \omega_1].$$

- \mathcal{M} is proper because $k'_{\omega_1} = \mathbf{1}_{\{\omega_1\}}$ is discontinuous, so $I \notin \mathcal{M}$.
- \mathcal{M} has codimension one. Given $S \in \mathscr{B}(C[0, \omega_1])$, define

$$c = \lim_{\alpha \to \omega_1} S_{\alpha, \omega_1} - S_{\omega_1, \omega_1}$$
 and $T = c \cdot I + S$.

Then $T \in \mathscr{M}$ because $k_{\omega_1}^T$ is continuous at ω_1 :

$$k_{\omega_{\mathbf{1}}}^{T}(\alpha) = ck_{\omega_{\mathbf{1}}}^{I}(\alpha) + k_{\omega_{\mathbf{1}}}^{S}(\alpha) = \begin{cases} S_{\alpha,\omega_{\mathbf{1}}} & \text{for } \alpha < \omega_{\mathbf{1}} \\ c + S_{\omega_{\mathbf{1}},\omega_{\mathbf{1}}} = \lim_{\beta \to \omega_{\mathbf{1}}} S_{\beta,\omega_{\mathbf{1}}} & \text{for } \alpha = \omega_{\mathbf{1}} \end{cases}$$

Recall:
$$\mathcal{M} = \{ T \in \mathscr{B}(C[0, \omega_1]) : k_{\omega_1}^T \text{ is continuous at } \omega_1 \}.$$

Loy and Willis' Key Lemma. For each $S \in \mathscr{B}(C[0, \omega_1])$, the restriction of $k_{\omega_1}^S$ to $[0, \omega_1)$ is continuous, and $\lim_{\alpha \to \omega_1} k_{\omega_1}^S(\alpha)$ exists.

• \mathscr{M} is a *left ideal* because, for $S \in \mathscr{B}(C[0, \omega_1])$ and $T \in \mathscr{M}$,

$$k_{\omega_1}^{ST} = S(k_{\omega_1}^T) \in C[0, \omega_1].$$

- \mathcal{M} is proper because $k'_{\omega_1} = \mathbf{1}_{\{\omega_1\}}$ is discontinuous, so $I \notin \mathcal{M}$.
- *M* has *codimension one*. Given $S \in \mathscr{B}(C[0, \omega_1])$, define

$$c = \lim_{\alpha \to \omega_1} S_{\alpha, \omega_1} - S_{\omega_1, \omega_1}$$
 and $T = c \cdot I + S$.

Then $T \in \mathscr{M}$ because $k_{\omega_1}^T$ is continuous at ω_1 :

$$k_{\omega_{\mathbf{1}}}^{\mathcal{T}}(\alpha) = ck_{\omega_{\mathbf{1}}}^{I}(\alpha) + k_{\omega_{\mathbf{1}}}^{\mathcal{S}}(\alpha) = \begin{cases} S_{\alpha,\omega_{\mathbf{1}}} & \text{for } \alpha < \omega_{\mathbf{1}} \\ c + S_{\omega_{\mathbf{1}},\omega_{\mathbf{1}}} = \lim_{\beta \to \omega_{\mathbf{1}}} S_{\beta,\omega_{\mathbf{1}}} & \text{for } \alpha = \omega_{\mathbf{1}} \end{cases}$$

Hence $S = T - c \cdot I \in \mathcal{M} + \mathbb{C} \cdot I$.

Recall:
$$\mathcal{M} = \{ T \in \mathscr{B}(C[0, \omega_1]) : k_{\omega_1}^T \text{ is continuous at } \omega_1 \}.$$

Loy and Willis' Key Lemma. For each $S \in \mathscr{B}(C[0, \omega_1])$, the restriction of $k_{\omega_1}^S$ to $[0, \omega_1)$ is continuous, and $\lim_{\alpha \to \omega_1} k_{\omega_1}^S(\alpha)$ exists.

• \mathscr{M} is a *left ideal* because, for $S \in \mathscr{B}(C[0, \omega_1])$ and $T \in \mathscr{M}$,

$$k_{\omega_1}^{ST} = S(k_{\omega_1}^T) \in C[0, \omega_1].$$

- \mathcal{M} is proper because $k'_{\omega_1} = \mathbf{1}_{\{\omega_1\}}$ is discontinuous, so $I \notin \mathcal{M}$.
- \mathcal{M} has codimension one. Given $S \in \mathscr{B}(C[0, \omega_1])$, define

$$c = \lim_{\alpha \to \omega_1} S_{\alpha,\omega_1} - S_{\omega_1,\omega_1}$$
 and $T = c \cdot I + S$.

Then $T \in \mathscr{M}$ because $k_{\omega_1}^T$ is continuous at ω_1 :

$$k_{\omega_{\mathbf{1}}}^{\mathcal{T}}(\alpha) = ck_{\omega_{\mathbf{1}}}^{I}(\alpha) + k_{\omega_{\mathbf{1}}}^{\mathcal{S}}(\alpha) = \begin{cases} S_{\alpha,\omega_{\mathbf{1}}} & \text{for } \alpha < \omega_{\mathbf{1}} \\ c + S_{\omega_{\mathbf{1}},\omega_{\mathbf{1}}} = \lim_{\beta \to \omega_{\mathbf{1}}} S_{\beta,\omega_{\mathbf{1}}} & \text{for } \alpha = \omega_{\mathbf{1}} \end{cases}$$

Hence $S = T - c \cdot I \in \mathcal{M} + \mathbb{C} \cdot I$.

M is a *right ideal* and *maximal:* automatic!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Let L_0 be the one-point compactification of the disjoint union of the intervals $[0, \sigma]$, where $\sigma \in [0, \omega_1)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

Let L_0 be the one-point compactification of the disjoint union of the intervals $[0, \sigma]$, where $\sigma \in [0, \omega_1)$.

Theorem (Kania, Koszmider and NJL). $\mathcal{M} = \mathcal{G}_{C(L_0)}(C[0, \omega_1]);$

Let L_0 be the one-point compactification of the disjoint union of the intervals $[0, \sigma]$, where $\sigma \in [0, \omega_1)$.

Theorem (Kania, Koszmider and NJL). $\mathcal{M} = \mathscr{G}_{C(L_0)}(C[0, \omega_1]);$ that is, $T \in \mathcal{M} \iff \exists V \in \mathscr{B}(C[0, \omega_1], C(L_0)), U \in \mathscr{B}(C(L_0), C[0, \omega_1]): T = UV.$

Let L_0 be the one-point compactification of the disjoint union of the intervals $[0, \sigma]$, where $\sigma \in [0, \omega_1)$.

Theorem (Kania, Koszmider and NJL). $\mathcal{M} = \mathscr{G}_{C(L_0)}(C[0, \omega_1]);$ that is, $T \in \mathcal{M} \iff \exists V \in \mathscr{B}(C[0, \omega_1], C(L_0)), U \in \mathscr{B}(C(L_0), C[0, \omega_1]): T = UV.$

A topological space is *Eberlein compact* if it is homeomorphic to a weakly compact subset of $c_0(\Gamma)$ for some index set Γ .

Let L_0 be the one-point compactification of the disjoint union of the intervals $[0, \sigma]$, where $\sigma \in [0, \omega_1)$.

Theorem (Kania, Koszmider and NJL). $\mathcal{M} = \mathscr{G}_{C(L_0)}(C[0, \omega_1]);$ that is, $T \in \mathcal{M} \iff \exists V \in \mathscr{B}(C[0, \omega_1], C(L_0)), U \in \mathscr{B}(C(L_0), C[0, \omega_1]): T = UV.$

A topological space is *Eberlein compact* if it is homeomorphic to a weakly compact subset of $c_0(\Gamma)$ for some index set Γ .

Fact. *L*⁰ is Eberlein compact (Lindenstrauss)

Let L_0 be the one-point compactification of the disjoint union of the intervals $[0, \sigma]$, where $\sigma \in [0, \omega_1)$.

Theorem (Kania, Koszmider and NJL). $\mathcal{M} = \mathscr{G}_{C(L_0)}(C[0, \omega_1]);$ that is, $T \in \mathcal{M} \iff \exists V \in \mathscr{B}(C[0, \omega_1], C(L_0)), U \in \mathscr{B}(C(L_0), C[0, \omega_1]): T = UV.$

A topological space is *Eberlein compact* if it is homeomorphic to a weakly compact subset of $c_0(\Gamma)$ for some index set Γ .

Fact. L_0 is Eberlein compact (Lindenstrauss), whereas $[0, \omega_1]$ is not.

Let L_0 be the one-point compactification of the disjoint union of the intervals $[0, \sigma]$, where $\sigma \in [0, \omega_1)$.

Theorem (Kania, Koszmider and NJL). $\mathcal{M} = \mathscr{G}_{C(L_0)}(C[0, \omega_1]);$ that is, $T \in \mathcal{M} \iff \exists V \in \mathscr{B}(C[0, \omega_1], C(L_0)), U \in \mathscr{B}(C(L_0), C[0, \omega_1]): T = UV.$

A topological space is *Eberlein compact* if it is homeomorphic to a weakly compact subset of $c_0(\Gamma)$ for some index set Γ .

Fact. L_0 is Eberlein compact (Lindenstrauss), whereas $[0, \omega_1]$ is not.

Theorem (Amir and Lindenstrauss 1968). A compact Hausdorff space K is Eberlein compact if and only if C(K) is weakly compactly generated (that is, $C(K) = \overline{\text{span}} W$ for some weakly compact subset W).