Closed operator ideals on the Banach space of continuous functions on the first uncountable ordinal

Niels Jakob Laustsen

Lancaster University

BIRS, $6^{\text {th }}$ March 2012
Joint work with Tomasz Kania

C(K)-spaces

For a compact Hausdorff space K, consider the Banach space

$$
C(K)=\{f: K \rightarrow \mathbb{C}: f \text { is continuous }\} .
$$

For a compact Hausdorff space K, consider the Banach space

$$
C(K)=\{f: K \rightarrow \mathbb{C}: f \text { is continuous }\} .
$$

Fact. $C(K)$ separable $\Longleftrightarrow K$ metrizable.

For a compact Hausdorff space K, consider the Banach space

$$
C(K)=\{f: K \rightarrow \mathbb{C}: f \text { is continuous }\} .
$$

Fact. $C(K)$ separable $\Longleftrightarrow K$ metrizable.
Classification. Let K be a compact metric space. Then:
(i) K has $n \in \mathbb{N}$ elements $\Longleftrightarrow C(K) \cong \ell_{\infty}^{n}$;

C(K)-spaces

For a compact Hausdorff space K, consider the Banach space

$$
C(K)=\{f: K \rightarrow \mathbb{C}: f \text { is continuous }\} .
$$

Fact. $C(K)$ separable $\Longleftrightarrow K$ metrizable.
Classification. Let K be a compact metric space. Then:
(i) K has $n \in \mathbb{N}$ elements $\Longleftrightarrow C(K) \cong \ell_{\infty}^{n}$;
(ii) (Milutin) K is uncountable $\Longleftrightarrow C(K) \cong C[0,1]$;

C(K)-spaces

For a compact Hausdorff space K, consider the Banach space

$$
C(K)=\{f: K \rightarrow \mathbb{C}: f \text { is continuous }\} .
$$

Fact. $C(K)$ separable $\Longleftrightarrow K$ metrizable.
Classification. Let K be a compact metric space. Then:
(i) K has $n \in \mathbb{N}$ elements $\Longleftrightarrow C(K) \cong \ell_{\infty}^{n}$;
(ii) (Milutin) K is uncountable $\Longleftrightarrow C(K) \cong C[0,1]$;
(iii) (Bessaga and Pełczyński) K is countably infinite

$$
C(K) \cong C\left[0, \omega^{\omega^{\alpha}}\right] \text { for a unique countable ordinal } \alpha .
$$

For a compact Hausdorff space K, consider the Banach space

$$
C(K)=\{f: K \rightarrow \mathbb{C}: f \text { is continuous }\} .
$$

Fact. $C(K)$ separable $\Longleftrightarrow K$ metrizable.
Classification. Let K be a compact metric space. Then:
(i) K has $n \in \mathbb{N}$ elements $\Longleftrightarrow C(K) \cong \ell_{\infty}^{n}$;
(ii) (Milutin) K is uncountable $\Longleftrightarrow C(K) \cong C[0,1]$;
(iii) (Bessaga and Pełczyński) K is countably infinite \Longleftrightarrow

$$
C(K) \cong C\left[0, \omega^{\omega^{\alpha}}\right] \text { for a unique countable ordinal } \alpha
$$

Here, for an ordinal σ,

$$
[0, \sigma]=\{\alpha \text { ordinal : } \alpha \leqslant \sigma\}
$$

is equipped with the order topology, which is determined by the basis

$$
[0, \beta), \quad(\alpha, \beta), \quad(\alpha, \sigma] \quad(0 \leqslant \alpha<\beta \leqslant \sigma)
$$

Introducing our main character: the Loy-Willis ideal

Let ω_{1} be the first uncountable ordinal, so that $C\left[0, \omega_{1}\right]$ is the "next" $C(K)$-space after the separable ones $C\left[0, \omega^{\omega^{\alpha}}\right]$ for countable α.

Introducing our main character: the Loy-Willis ideal

Let ω_{1} be the first uncountable ordinal, so that $C\left[0, \omega_{1}\right]$ is the "next" $C(K)$-space after the separable ones $C\left[0, \omega^{\omega^{\alpha}}\right]$ for countable α.

Theorem (Semadeni 1960). The Banach space $C\left[0, \omega_{1}\right]$ is not isomorphic to its square $C\left[0, \omega_{1}\right] \oplus C\left[0, \omega_{1}\right]$.

Introducing our main character: the Loy-Willis ideal

Let ω_{1} be the first uncountable ordinal, so that $C\left[0, \omega_{1}\right]$ is the "next" $C(K)$-space after the separable ones $C\left[0, \omega^{\omega^{\alpha}}\right]$ for countable α.

Theorem (Semadeni 1960). The Banach space $C\left[0, \omega_{1}\right]$ is not isomorphic to its square $C\left[0, \omega_{1}\right] \oplus C\left[0, \omega_{1}\right]$.

Theorem (Loy and Willis 1989). The Banach algebra $\mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$ of (bounded) operators on $C\left[0, \omega_{1}\right]$ contains a maximal ideal \mathscr{M} of codimension one.

Introducing our main character: the Loy-Willis ideal

Let ω_{1} be the first uncountable ordinal, so that $C\left[0, \omega_{1}\right]$ is the "next" $C(K)$-space after the separable ones $C\left[0, \omega^{\omega^{\alpha}}\right]$ for countable α.

Theorem (Semadeni 1960). The Banach space $C\left[0, \omega_{1}\right]$ is not isomorphic to its square $C\left[0, \omega_{1}\right] \oplus C\left[0, \omega_{1}\right]$.

Theorem (Loy and Willis 1989). The Banach algebra $\mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$ of (bounded) operators on $C\left[0, \omega_{1}\right]$ contains a maximal ideal \mathscr{M} of codimension one.

We call \mathscr{M} the Loy-Willis ideal.

Introducing our main character: the Loy-Willis ideal

Let ω_{1} be the first uncountable ordinal, so that $C\left[0, \omega_{1}\right]$ is the "next" $C(K)$-space after the separable ones $C\left[0, \omega^{\omega^{\alpha}}\right]$ for countable α.

Theorem (Semadeni 1960). The Banach space $C\left[0, \omega_{1}\right]$ is not isomorphic to its square $C\left[0, \omega_{1}\right] \oplus C\left[0, \omega_{1}\right]$.

Theorem (Loy and Willis 1989). The Banach algebra $\mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$ of (bounded) operators on $C\left[0, \omega_{1}\right]$ contains a maximal ideal \mathscr{M} of codimension one.

We call \mathscr{M} the Loy-Willis ideal.
It is defined using a representation of operators on $C\left[0, \omega_{1}\right]$ as scalar-valued $\left[0, \omega_{1}\right] \times\left[0, \omega_{1}\right]$-matrices; an operator belongs to \mathscr{M} if and only if its final column is continuous. The precise definition will follow later.

Introducing our main character: the Loy-Willis ideal

Let ω_{1} be the first uncountable ordinal, so that $C\left[0, \omega_{1}\right]$ is the "next" $C(K)$-space after the separable ones $C\left[0, \omega^{\omega^{\alpha}}\right]$ for countable α.

Theorem (Semadeni 1960). The Banach space $C\left[0, \omega_{1}\right]$ is not isomorphic to its square $C\left[0, \omega_{1}\right] \oplus C\left[0, \omega_{1}\right]$.

Theorem (Loy and Willis 1989). The Banach algebra $\mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$ of (bounded) operators on $C\left[0, \omega_{1}\right]$ contains a maximal ideal \mathscr{M} of codimension one.

We call \mathscr{M} the Loy-Willis ideal.
It is defined using a representation of operators on $C\left[0, \omega_{1}\right]$ as scalar-valued $\left[0, \omega_{1}\right] \times\left[0, \omega_{1}\right]$-matrices; an operator belongs to \mathscr{M} if and only if its final column is continuous. The precise definition will follow later.

Motivation. Loy and Willis' aim was to show that each derivation from $\mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$ into a Banach $\mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$-bimodule is automatically continuous.

Introducing our main character: the Loy-Willis ideal

Let ω_{1} be the first uncountable ordinal, so that $C\left[0, \omega_{1}\right]$ is the "next" $C(K)$-space after the separable ones $C\left[0, \omega^{\omega^{\alpha}}\right]$ for countable α.

Theorem (Semadeni 1960). The Banach space $C\left[0, \omega_{1}\right]$ is not isomorphic to its square $C\left[0, \omega_{1}\right] \oplus C\left[0, \omega_{1}\right]$.

Theorem (Loy and Willis 1989). The Banach algebra $\mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$ of (bounded) operators on $C\left[0, \omega_{1}\right]$ contains a maximal ideal \mathscr{M} of codimension one.

We call \mathscr{M} the Loy-Willis ideal.
It is defined using a representation of operators on $C\left[0, \omega_{1}\right]$ as scalar-valued $\left[0, \omega_{1}\right] \times\left[0, \omega_{1}\right]$-matrices; an operator belongs to \mathscr{M} if and only if its final column is continuous. The precise definition will follow later.

Motivation. Loy and Willis' aim was to show that each derivation from $\mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$ into a Banach $\mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$-bimodule is automatically continuous.

Key step: \mathscr{M} has a bounded right approximate identity.

Main result: a coordinate-free characterization of \mathscr{M}

Theorem (Kania+NJL 2011). An operator on $C\left[0, \omega_{1}\right]$ belongs to the Loy-Willis ideal if and only if the identity operator on $C\left[0, \omega_{1}\right]$ does not factor through it;

$$
\mathscr{M}=\left\{T \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right): \forall R, S \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right): I \neq S T R\right\} .
$$

Main result: a coordinate-free characterization of \mathscr{M}

Theorem (Kania+NJL 2011). An operator on $C\left[0, \omega_{1}\right]$ belongs to the Loy-Willis ideal if and only if the identity operator on $C\left[0, \omega_{1}\right]$ does not factor through it;

$$
\mathscr{M}=\left\{T \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right): \forall R, S \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right): I \neq S T R\right\} .
$$

Corollary. The Loy-Willis ideal is the unique maximal ideal of $\mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$.

Main result: a coordinate-free characterization of \mathscr{M}

Theorem (Kania+NJL 2011). An operator on $C\left[0, \omega_{1}\right]$ belongs to the Loy-Willis ideal if and only if the identity operator on $C\left[0, \omega_{1}\right]$ does not factor through it;

$$
\mathscr{M}=\left\{T \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right): \forall R, S \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right): I \neq S T R\right\} .
$$

Corollary. The Loy-Willis ideal is the unique maximal ideal of $\mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$.
Proof. The theorem implies that the identity operator belongs to the ideal generated by any operator not in \mathscr{M}.

Main result: a coordinate-free characterization of \mathscr{M}

Theorem (Kania+NJL 2011). An operator on $C\left[0, \omega_{1}\right]$ belongs to the Loy-Willis ideal if and only if the identity operator on $C\left[0, \omega_{1}\right]$ does not factor through it;

$$
\mathscr{M}=\left\{T \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right): \forall R, S \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right): I \neq S T R\right\} .
$$

Corollary. The Loy-Willis ideal is the unique maximal ideal of $\mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$.
Proof. The theorem implies that the identity operator belongs to the ideal generated by any operator not in \mathscr{M}.

Remark. Many Banach spaces X share with $C\left[0, \omega_{1}\right]$ the property that

$$
\mathscr{M}_{X}:=\{T \in \mathscr{B}(X): \forall R, S \in \mathscr{B}(X): I \neq S T R\}
$$

is the unique maximal ideal of $\mathscr{B}(X)$.

Main result: a coordinate-free characterization of \mathscr{M}

Theorem (Kania+NJL 2011). An operator on $C\left[0, \omega_{1}\right]$ belongs to the Loy-Willis ideal if and only if the identity operator on $C\left[0, \omega_{1}\right]$ does not factor through it;

$$
\mathscr{M}=\left\{T \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right): \forall R, S \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right): I \neq S T R\right\} .
$$

Corollary. The Loy-Willis ideal is the unique maximal ideal of $\mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$.
Proof. The theorem implies that the identity operator belongs to the ideal generated by any operator not in \mathscr{M}.

Remark. Many Banach spaces X share with $C\left[0, \omega_{1}\right]$ the property that

$$
\mathscr{M}_{X}:=\{T \in \mathscr{B}(X): \forall R, S \in \mathscr{B}(X): I \neq S T R\}
$$

is the unique maximal ideal of $\mathscr{B}(X)$.
Fact (Dosev and Johnson 2010). Suppose that \mathscr{M}_{X} is closed under addition. Then \mathscr{M}_{X} is the unique maximal ideal of $\mathscr{B}(X)$.

Banach spaces X such that \mathscr{M}_{X} is the unique maximal ideal

Recall: $\mathscr{M}_{X}=\{T \in \mathscr{B}(X): \forall R, S \in \mathscr{B}(X): I \neq S T R\}$,

Banach spaces X such that \mathscr{M}_{X} is the unique maximal ideal
(i) $X=\ell_{p}$ for $1 \leqslant p<\infty$ and $X=c_{0}$ (Gohberg, Markus and Feldman 1960);

Recall: $\mathscr{M}_{X}=\{T \in \mathscr{B}(X): \forall R, S \in \mathscr{B}(X): I \neq S T R\}$,

Banach spaces X such that \mathscr{M}_{X} is the unique maximal ideal
(i) $X=\ell_{p}$ for $1 \leqslant p<\infty$ and $X=c_{0}$ (Gohberg, Markus and Feldman 1960);
(ii) $X=L_{p}[0,1]$ for $1 \leqslant p<\infty$
(Dosev, Johnson and Schechtman 2011; known implicitly before);

Recall: $\mathscr{M}_{X}=\{T \in \mathscr{B}(X): \forall R, S \in \mathscr{B}(X): I \neq S T R\}$,

Banach spaces X such that \mathscr{M}_{X} is the unique maximal ideal

(i) $X=\ell_{p}$ for $1 \leqslant p<\infty$ and $X=c_{0}$ (Gohberg, Markus and Feldman 1960);
(ii) $X=L_{p}[0,1]$ for $1 \leqslant p<\infty$
(Dosev, Johnson and Schechtman 2011; known implicitly before);
(iii) $X=\ell_{\infty}$
(NJL and Loy 2005, using Pełczyński and Rosenthal);

Recall: $\quad \mathscr{M}_{X}=\{T \in \mathscr{B}(X): \forall R, S \in \mathscr{B}(X): I \neq S T R\}$,

Banach spaces X such that \mathscr{M}_{X} is the unique maximal ideal

(i) $X=\ell_{p}$ for $1 \leqslant p<\infty$ and $X=c_{0}$ (Gohberg, Markus and Feldman 1960);
(ii) $X=L_{p}[0,1]$ for $1 \leqslant p<\infty$
(Dosev, Johnson and Schechtman 2011; known implicitly before);
(iii) $X=\ell_{\infty} \cong L_{\infty}[0,1]$ (NJL and Loy 2005, using Pełczyński and Rosenthal);

Recall: $\quad \mathscr{M}_{X}=\{T \in \mathscr{B}(X): \forall R, S \in \mathscr{B}(X): I \neq S T R\}$

Banach spaces X such that \mathscr{M}_{X} is the unique maximal ideal

(i) $X=\ell_{p}$ for $1 \leqslant p<\infty$ and $X=c_{0}$ (Gohberg, Markus and Feldman 1960);
(ii) $X=L_{p}[0,1]$ for $1 \leqslant p<\infty$
(Dosev, Johnson and Schechtman 2011; known implicitly before);
(iii) $X=\ell_{\infty} \cong L_{\infty}[0,1]$ (NJL and Loy 2005, using Pełczyński and Rosenthal);
(iv) $X=\ell_{\infty} / c_{0}$ (follows from Drewnowski and Roberts 1991);

Recall: $\quad \mathscr{M}_{X}=\{T \in \mathscr{B}(X): \forall R, S \in \mathscr{B}(X): I \neq S T R\}$,

Banach spaces X such that \mathscr{M}_{x} is the unique maximal ideal

(i) $X=\ell_{p}$ for $1 \leqslant p<\infty$ and $X=c_{0}$ (Gohberg, Markus and Feldman 1960);
(ii) $X=L_{p}[0,1]$ for $1 \leqslant p<\infty$
(Dosev, Johnson and Schechtman 2011; known implicitly before);
(iii) $X=\ell_{\infty} \cong L_{\infty}[0,1]$ (NJL and Loy 2005, using Pełczyński and Rosenthal);
(iv) $X=\ell_{\infty} / c_{0}$ (follows from Drewnowski and Roberts 1991);
(v) $X=d_{w, p}$, the Lorentz sequence space determined by a decreasing, non-summable sequence $w=\left(w_{n}\right)$ in $(0,1]$ and $p \in[1, \infty)$ (Kamińska, Popov, Spinu, Tcaciuc and Troitsky 2011);

Recall: $\quad \mathscr{M}_{X}=\{T \in \mathscr{B}(X): \forall R, S \in \mathscr{B}(X): I \neq S T R\}$

Banach spaces X such that \mathscr{M}_{X} is the unique maximal ideal

(i) $X=\ell_{p}$ for $1 \leqslant p<\infty$ and $X=c_{0}$ (Gohberg, Markus and Feldman 1960);
(ii) $X=L_{p}[0,1]$ for $1 \leqslant p<\infty$
(Dosev, Johnson and Schechtman 2011; known implicitly before);
(iii) $X=\ell_{\infty} \cong L_{\infty}[0,1]$ (NJL and Loy 2005, using Pełczyński and Rosenthal);
(iv) $X=\ell_{\infty} / c_{0}$ (follows from Drewnowski and Roberts 1991);
(v) $X=d_{w, p}$, the Lorentz sequence space determined by a decreasing, non-summable sequence $w=\left(w_{n}\right)$ in $(0,1]$ and $p \in[1, \infty)$ (Kamińska, Popov, Spinu, Tcaciuc and Troitsky 2011);
(vi) $X=\left(\bigoplus \ell_{2}^{n}\right)_{c_{0}}$
(NJL, Loy and Read 2004;

Recall: $\quad \mathscr{M}_{X}=\{T \in \mathscr{B}(X): \forall R, S \in \mathscr{B}(X): I \neq S T R\}$,

Banach spaces X such that \mathscr{M}_{X} is the unique maximal ideal

(i) $X=\ell_{p}$ for $1 \leqslant p<\infty$ and $X=c_{0}$ (Gohberg, Markus and Feldman 1960);
(ii) $X=L_{p}[0,1]$ for $1 \leqslant p<\infty$
(Dosev, Johnson and Schechtman 2011; known implicitly before);
(iii) $X=\ell_{\infty} \cong L_{\infty}[0,1]$ (NJL and Loy 2005, using Pełczyński and Rosenthal);
(iv) $X=\ell_{\infty} / c_{0}$ (follows from Drewnowski and Roberts 1991);
(v) $X=d_{w, p}$, the Lorentz sequence space determined by a decreasing, non-summable sequence $w=\left(w_{n}\right)$ in $(0,1]$ and $p \in[1, \infty)$ (Kamińska, Popov, Spinu, Tcaciuc and Troitsky 2011);
(vi) $X=\left(\bigoplus \ell_{2}^{n}\right)_{c_{0}}$ and $X=\left(\bigoplus \ell_{2}^{n}\right)_{\ell_{1}}$
(NJL, Loy and Read 2004; NJL, Schlumprecht and Zsák 2006);

Recall: $\quad \mathscr{M}_{X}=\{T \in \mathscr{B}(X): \forall R, S \in \mathscr{B}(X): I \neq S T R\}$,

Banach spaces X such that \mathscr{M}_{X} is the unique maximal ideal

(i) $X=\ell_{p}$ for $1 \leqslant p<\infty$ and $X=c_{0}$ (Gohberg, Markus and Feldman 1960);
(ii) $X=L_{p}[0,1]$ for $1 \leqslant p<\infty$
(Dosev, Johnson and Schechtman 2011; known implicitly before);
(iii) $X=\ell_{\infty} \cong L_{\infty}[0,1]$ (NJL and Loy 2005, using Pełczyński and Rosenthal);
(iv) $X=\ell_{\infty} / c_{0}$ (follows from Drewnowski and Roberts 1991);
(v) $X=d_{w, p}$, the Lorentz sequence space determined by a decreasing, non-summable sequence $w=\left(w_{n}\right)$ in $(0,1]$ and $p \in[1, \infty)$ (Kamińska, Popov, Spinu, Tcaciuc and Troitsky 2011);
(vi) $X=\left(\bigoplus \ell_{2}^{n}\right)_{c_{0}}$ and $X=\left(\bigoplus \ell_{2}^{n}\right)_{\ell_{1}}$
(NJL, Loy and Read 2004; NJL, Schlumprecht and Zsák 2006);
(vii) $X=\left(\bigoplus_{\mathbb{N}} \ell_{q}\right)_{\ell_{p}}$ for $1 \leqslant q<p<\infty$ (Chen, Johnson and Zheng 2011);

Recall: $\quad \mathscr{M}_{X}=\{T \in \mathscr{B}(X): \forall R, S \in \mathscr{B}(X): I \neq S T R\}$,

Banach spaces X such that \mathscr{M}_{X} is the unique maximal ideal

(i) $X=\ell_{p}$ for $1 \leqslant p<\infty$ and $X=c_{0}$ (Gohberg, Markus and Feldman 1960);
(ii) $X=L_{p}[0,1]$ for $1 \leqslant p<\infty$
(Dosev, Johnson and Schechtman 2011; known implicitly before);
(iii) $X=\ell_{\infty} \cong L_{\infty}[0,1]$ (NJL and Loy 2005, using Pełczyński and Rosenthal);
(iv) $X=\ell_{\infty} / c_{0}$ (follows from Drewnowski and Roberts 1991);
(v) $X=d_{w, p}$, the Lorentz sequence space determined by a decreasing, non-summable sequence $w=\left(w_{n}\right)$ in $(0,1]$ and $p \in[1, \infty)$ (Kamińska, Popov, Spinu, Tcaciuc and Troitsky 2011);
(vi) $X=\left(\bigoplus \ell_{2}^{n}\right)_{c_{0}}$ and $X=\left(\bigoplus \ell_{2}^{n}\right)_{\ell_{1}}$
(NJL, Loy and Read 2004; NJL, Schlumprecht and Zsák 2006);
(vii) $X=\left(\bigoplus_{\mathbb{N}} \ell_{q}\right)_{\ell_{p}}$ for $1 \leqslant q<p<\infty$ (Chen, Johnson and Zheng 2011);
(viii) $X=C[0,1]$ (Brooker 2010, using Pełczyński and Rosenthal);

Recall: $\mathscr{M}_{X}=\{T \in \mathscr{B}(X): \forall R, S \in \mathscr{B}(X): I \neq S T R\}$,

Banach spaces X such that \mathscr{M}_{X} is the unique maximal ideal

(i) $X=\ell_{p}$ for $1 \leqslant p<\infty$ and $X=c_{0}$ (Gohberg, Markus and Feldman 1960);
(ii) $X=L_{p}[0,1]$ for $1 \leqslant p<\infty$
(Dosev, Johnson and Schechtman 2011; known implicitly before);
(iii) $X=\ell_{\infty} \cong L_{\infty}[0,1]$ (NJL and Loy 2005, using Pełczyński and Rosenthal);
(iv) $X=\ell_{\infty} / c_{0}$ (follows from Drewnowski and Roberts 1991);
(v) $X=d_{w, p}$, the Lorentz sequence space determined by a decreasing, non-summable sequence $w=\left(w_{n}\right)$ in $(0,1]$ and $p \in[1, \infty)$ (Kamińska, Popov, Spinu, Tcaciuc and Troitsky 2011);
(vi) $X=\left(\bigoplus \ell_{2}^{n}\right)_{c_{0}}$ and $X=\left(\bigoplus \ell_{2}^{n}\right)_{\ell_{1}}$
(NJL, Loy and Read 2004; NJL, Schlumprecht and Zsák 2006);
(vii) $X=\left(\bigoplus_{\mathbb{N}} \ell_{q}\right)_{\ell_{p}}$ for $1 \leqslant q<p<\infty$ (Chen, Johnson and Zheng 2011);
(viii) $X=C[0,1]$ (Brooker 2010, using Pełczyński and Rosenthal);
(ix) $X=C\left[0, \omega^{\omega}\right]$ and $X=C\left[0, \omega^{\alpha}\right]$, where α is a countable epsilon number, that is, a countable ordinal satisfying $\alpha=\omega^{\alpha}$
(Brooker (unpublished), using Bourgain and Pełczyński).

Recall: $\quad \mathscr{M}_{X}=\{T \in \mathscr{B}(X): \forall R, S \in \mathscr{B}(X): I \neq S T R\}$,

Banach spaces X such that \mathscr{M}_{X} is the unique maximal ideal

(i) $X=\ell_{p}$ for $1 \leqslant p<\infty$ and $X=c_{0}$ (Gohberg, Markus and Feldman 1960);
(ii) $X=L_{p}[0,1]$ for $1 \leqslant p<\infty$
(Dosev, Johnson and Schechtman 2011; known implicitly before);
(iii) $X=\ell_{\infty} \cong L_{\infty}[0,1]$ (NJL and Loy 2005, using Pełczyński and Rosenthal);
(iv) $X=\ell_{\infty} / c_{0}$ (follows from Drewnowski and Roberts 1991);
(v) $X=d_{w, p}$, the Lorentz sequence space determined by a decreasing, non-summable sequence $w=\left(w_{n}\right)$ in $(0,1]$ and $p \in[1, \infty)$ (Kamińska, Popov, Spinu, Tcaciuc and Troitsky 2011);
(vi) $X=\left(\bigoplus \ell_{2}^{n}\right)_{c_{0}}$ and $X=\left(\bigoplus \ell_{2}^{n}\right)_{\ell_{1}}$
(NJL, Loy and Read 2004; NJL, Schlumprecht and Zsák 2006);
(vii) $X=\left(\bigoplus_{\mathbb{N}} \ell_{q}\right)_{\ell_{\boldsymbol{p}}}$ for $1 \leqslant q<p<\infty$ (Chen, Johnson and Zheng 2011);
(viii) $X=C[0,1]$ (Brooker 2010, using Pełczyński and Rosenthal);
(ix) $X=C\left[0, \omega^{\omega}\right]$ and $X=C\left[0, \omega^{\alpha}\right]$, where α is a countable epsilon number, that is, a countable ordinal satisfying $\alpha=\omega^{\alpha}$
(Brooker (unpublished), using Bourgain and Pełczyński).
Note: $C\left[0, \omega_{1}\right]$ differs from all these Banach spaces because

$$
C\left[0, \omega_{1}\right] \nexists C\left[0, \omega_{1}\right] \oplus C\left[0, \omega_{1}\right]
$$

Recall: $\quad \mathscr{M}_{X}=\{T \in \mathscr{B}(X): \forall R, S \in \mathscr{B}(X): I \neq S T R\}$

Operators on $C\left[0, \omega_{1}\right]$ with separable range

Theorem (Kania+NJL 2011). The following are equivalent for $T \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right):$
(a) T has separable range,

Operators on $C\left[0, \omega_{1}\right]$ with separable range

Theorem (Kania+NJL 2011). The following are equivalent for $T \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right):$
(a) T has separable range,
(b) T does not fix a copy of the Banach space

$$
c_{0}\left(\omega_{1}\right)=\left\{f:\left[0, \omega_{1}\right) \rightarrow \mathbb{C}:\left\{\alpha \in\left[0, \omega_{1}\right):|f(\alpha)| \geqslant \varepsilon\right\} \text { is finite for each } \varepsilon>0\right\},
$$

Operators on $C\left[0, \omega_{1}\right]$ with separable range

Theorem (Kania+NJL 2011). The following are equivalent for $T \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right):$
(a) T has separable range,
(b) T does not fix a copy of the Banach space

$$
c_{0}\left(\omega_{1}\right)=\left\{f:\left[0, \omega_{1}\right) \rightarrow \mathbb{C}:\left\{\alpha \in\left[0, \omega_{1}\right):|f(\alpha)| \geqslant \varepsilon\right\} \text { is finite for each } \varepsilon>0\right\}
$$

(c) $T=P_{\sigma} T P_{\sigma}$ for some $\sigma \in\left[0, \omega_{1}\right)$, where

$$
\left(P_{\sigma} f\right)(\alpha)=\left\{\begin{array}{ll}
f(\alpha) & \text { for } \alpha \in[0, \sigma] \\
f\left(\omega_{1}\right) & \text { for } \alpha \in\left[\sigma+1, \omega_{1}\right]
\end{array} \quad\left(f \in C\left[0, \omega_{1}\right]\right)\right.
$$

Operators on $C\left[0, \omega_{1}\right]$ with separable range

Theorem (Kania+NJL 2011). The following are equivalent for $T \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right):$
(a) T has separable range,
(b) T does not fix a copy of the Banach space

$$
c_{0}\left(\omega_{1}\right)=\left\{f:\left[0, \omega_{1}\right) \rightarrow \mathbb{C}:\left\{\alpha \in\left[0, \omega_{1}\right):|f(\alpha)| \geqslant \varepsilon\right\} \text { is finite for each } \varepsilon>0\right\}
$$

(c) $T=P_{\sigma} T P_{\sigma}$ for some $\sigma \in\left[0, \omega_{1}\right)$, where

$$
\left(P_{\sigma} f\right)(\alpha)=\left\{\begin{array}{ll}
f(\alpha) & \text { for } \alpha \in[0, \sigma] \\
f\left(\omega_{1}\right) & \text { for } \alpha \in\left[\sigma+1, \omega_{1}\right]
\end{array} \quad\left(f \in C\left[0, \omega_{1}\right]\right)\right.
$$

(d) $T \in \mathscr{G}_{C[0, \sigma]}\left(C\left[0, \omega_{1}\right]\right)$ for some $\sigma \in\left[0, \omega_{1}\right)$,
where, for Banach spaces X and Y,

$$
\mathscr{G}_{Y}(X):=\operatorname{span}\{T S: S \in \mathscr{B}(X, Y), T \in \mathscr{B}(Y, X)\}
$$

This is always an ideal of $\mathscr{B}(X)$

Operators on $C\left[0, \omega_{1}\right]$ with separable range

Theorem (Kania+NJL 2011). The following are equivalent for $T \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right):$
(a) T has separable range,
(b) T does not fix a copy of the Banach space

$$
c_{0}\left(\omega_{1}\right)=\left\{f:\left[0, \omega_{1}\right) \rightarrow \mathbb{C}:\left\{\alpha \in\left[0, \omega_{1}\right):|f(\alpha)| \geqslant \varepsilon\right\} \text { is finite for each } \varepsilon>0\right\}
$$

(c) $T=P_{\sigma} T P_{\sigma}$ for some $\sigma \in\left[0, \omega_{1}\right)$, where

$$
\left(P_{\sigma} f\right)(\alpha)=\left\{\begin{array}{ll}
f(\alpha) & \text { for } \alpha \in[0, \sigma] \\
f\left(\omega_{1}\right) & \text { for } \alpha \in\left[\sigma+1, \omega_{1}\right]
\end{array} \quad\left(f \in C\left[0, \omega_{1}\right]\right)\right.
$$

(d) $T \in \mathscr{G}_{C[0, \sigma]}\left(C\left[0, \omega_{1}\right]\right)$ for some $\sigma \in\left[0, \omega_{1}\right)$,
where, for Banach spaces X and Y,

$$
\mathscr{G}_{Y}(X):=\operatorname{span}\{T S: S \in \mathscr{B}(X, Y), T \in \mathscr{B}(Y, X)\}
$$

This is always an ideal of $\mathscr{B}(X)$
Note: if Y contains a complemented copy of $Y \oplus Y$, then the 'span' is not needed; $\{T S: S \in \mathscr{B}(X, Y), T \in \mathscr{B}(Y, X)\}$ is already closed under addition.

Operators on $C\left[0, \omega_{1}\right]$ with separable range

Theorem (Kania+NJL 2011). The following are equivalent for $T \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right):$
(a) T has separable range,
(b) T does not fix a copy of the Banach space

$$
c_{0}\left(\omega_{1}\right)=\left\{f:\left[0, \omega_{1}\right) \rightarrow \mathbb{C}:\left\{\alpha \in\left[0, \omega_{1}\right):|f(\alpha)| \geqslant \varepsilon\right\} \text { is finite for each } \varepsilon>0\right\}
$$

(c) $T=P_{\sigma} T P_{\sigma}$ for some $\sigma \in\left[0, \omega_{1}\right)$, where

$$
\left(P_{\sigma} f\right)(\alpha)=\left\{\begin{array}{ll}
f(\alpha) & \text { for } \alpha \in[0, \sigma] \\
f\left(\omega_{1}\right) & \text { for } \alpha \in\left[\sigma+1, \omega_{1}\right]
\end{array} \quad\left(f \in C\left[0, \omega_{1}\right]\right)\right.
$$

(d) $T \in \mathscr{G}_{C[0, \sigma]}\left(C\left[0, \omega_{1}\right]\right)$ for some $\sigma \in\left[0, \omega_{1}\right)$,
(e) $T \in \overline{\mathscr{G}}_{C[0, \sigma]}\left(C\left[0, \omega_{1}\right]\right)$ for some $\sigma \in\left[0, \omega_{1}\right)$,
where, for Banach spaces X and Y,

$$
\mathscr{G}_{Y}(X):=\operatorname{span}\{T S: S \in \mathscr{B}(X, Y), T \in \mathscr{B}(Y, X)\}
$$

This is always an ideal of $\mathscr{B}(X)$, and $\overline{\mathscr{G}}_{Y}(X)$ is its closure.
Note: if Y contains a complemented copy of $Y \oplus Y$, then the 'span' is not needed; $\{T S: S \in \mathscr{B}(X, Y), T \in \mathscr{B}(Y, X)\}$ is already closed under addition.

Operators on $C\left[0, \omega_{1}\right]$ with separable range

Theorem (Kania+NJL 2011). The following are equivalent for $T \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right):$
(a) T has separable range,
(b) T does not fix a copy of the Banach space

$$
c_{0}\left(\omega_{1}\right)=\left\{f:\left[0, \omega_{1}\right) \rightarrow \mathbb{C}:\left\{\alpha \in\left[0, \omega_{1}\right):|f(\alpha)| \geqslant \varepsilon\right\} \text { is finite for each } \varepsilon>0\right\}
$$

(c) $T=P_{\sigma} T P_{\sigma}$ for some $\sigma \in\left[0, \omega_{1}\right)$, where

$$
\left(P_{\sigma} f\right)(\alpha)=\left\{\begin{array}{ll}
f(\alpha) & \text { for } \alpha \in[0, \sigma] \\
f\left(\omega_{1}\right) & \text { for } \alpha \in\left[\sigma+1, \omega_{1}\right]
\end{array} \quad\left(f \in C\left[0, \omega_{1}\right]\right)\right.
$$

(d) $T \in \mathscr{G}_{C[0, \sigma]}\left(C\left[0, \omega_{1}\right]\right)$ for some $\sigma \in\left[0, \omega_{1}\right)$,
(e) $T \in \overline{\mathscr{G}}_{C[0, \sigma]}\left(C\left[0, \omega_{1}\right]\right)$ for some $\sigma \in\left[0, \omega_{1}\right)$,
where, for Banach spaces X and Y,

$$
\mathscr{G}_{Y}(X):=\operatorname{span}\{T S: S \in \mathscr{B}(X, Y), T \in \mathscr{B}(Y, X)\}
$$

This is always an ideal of $\mathscr{B}(X)$, and $\bar{G}_{Y}(X)$ is its closure.
Note: if Y contains a complemented copy of $Y \oplus Y$, then the 'span' is not needed; $\{T S: S \in \mathscr{B}(X, Y), T \in \mathscr{B}(Y, X)\}$ is already closed under addition. Warning! This theorem does not imply that the ideal $\mathscr{G}_{[[0, \sigma]}\left(C\left[0, \omega_{1}\right]\right)$ is closed for each $\sigma \in\left[0, \omega_{1}\right)$, despite the equivalence of (d) and (e).

Operators on $C\left[0, \omega_{1}\right]$ with separable range

Theorem (Kania+NJL 2011). The following are equivalent for $T \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$:
(a) T has separable range,
(b) T does not fix a copy of the Banach space

$$
c_{0}\left(\omega_{1}\right)=\left\{f:\left[0, \omega_{1}\right) \rightarrow \mathbb{C}:\left\{\alpha \in\left[0, \omega_{1}\right):|f(\alpha)| \geqslant \varepsilon\right\} \text { is finite for each } \varepsilon>0\right\}
$$

(c) $T=P_{\sigma} T P_{\sigma}$ for some $\sigma \in\left[0, \omega_{1}\right)$, where

$$
\left(P_{\sigma} f\right)(\alpha)=\left\{\begin{array}{ll}
f(\alpha) & \text { for } \alpha \in[0, \sigma] \\
f\left(\omega_{1}\right) & \text { for } \alpha \in\left[\sigma+1, \omega_{1}\right]
\end{array} \quad\left(f \in C\left[0, \omega_{1}\right]\right)\right.
$$

(d) $T \in \mathscr{G}_{C[0, \sigma]}\left(C\left[0, \omega_{1}\right]\right)$ for some $\sigma \in\left[0, \omega_{1}\right)$,
(e) $T \in \overline{\mathscr{G}}_{C[0, \sigma]}\left(C\left[0, \omega_{1}\right]\right)$ for some $\sigma \in\left[0, \omega_{1}\right)$,
where, for Banach spaces X and Y,

$$
\mathscr{G}_{Y}(X):=\operatorname{span}\{T S: S \in \mathscr{B}(X, Y), T \in \mathscr{B}(Y, X)\}
$$

This is always an ideal of $\mathscr{B}(X)$, and $\overline{\mathscr{G}}_{Y}(X)$ is its closure.
Note: if Y contains a complemented copy of $Y \oplus Y$, then the 'span' is not needed; $\{T S: S \in \mathscr{B}(X, Y), T \in \mathscr{B}(Y, X)\}$ is already closed under addition. Warning! This theorem does not imply that the ideal $\mathscr{G}_{[[0, \sigma]}\left(C\left[0, \omega_{1}\right]\right)$ is closed for each $\sigma \in\left[0, \omega_{1}\right)$, despite the equivalence of (d) and (e).
Reason: for given $\tau \in\left[0, \omega_{1}\right)$ and $T \in \overline{\mathscr{G}}_{C[0, \tau]}\left(C\left[0, \omega_{1}\right]\right)$, the ordinal σ, such that (d) holds may be much larger tha 6τ and depend on T.

Partial structure of the lattice of closed ideals of $\mathscr{B}=\mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$

Partial structure of the lattice of closed ideals of $\mathscr{B}=\mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$

(i) We suppress $C\left[0, \omega_{1}\right]$ everywhere, thus writing \mathscr{K} instead of $\mathscr{K}\left(C\left[0, \omega_{1}\right]\right)$ for the ideal of compact operators on $C\left[0, \omega_{1}\right]$, etc.;
(ii) $\mathscr{I} \longleftrightarrow \mathscr{J}$ means that the ideal \mathscr{I} is properly contained in the ideal \mathscr{J};
(iii) a double-headed arrow indicates that there are no closed ideals between \mathscr{I} and \mathscr{J};
(iv) α denotes a countable ordinal; and
(v) $K_{\alpha}=\left[0, \omega^{\omega^{\alpha}}\right]$.

The definition of the Loy-Willis ideal
Fact. $\left[0, \omega_{1}\right]$ is scattered: each non-empty subset contains an isolated point.

The definition of the Loy-Willis ideal
Fact. $\left[0, \omega_{1}\right]$ is scattered: each non-empty subset contains an isolated point.
Theorem (Rudin 1957). $\quad C\left[0, \omega_{1}\right]^{*} \cong \ell_{1}\left[0, \omega_{1}\right]$.

The definition of the Loy-Willis ideal

Fact. $\left[0, \omega_{1}\right]$ is scattered: each non-empty subset contains an isolated point.
Theorem (Rudin 1957). $\quad C\left[0, \omega_{1}\right]^{*} \cong \ell_{1}\left[0, \omega_{1}\right]$.
More precisely, for each $\mu \in C\left[0, \omega_{1}\right]^{*}$, there are unique scalars $\left(c_{\alpha}\right)$ such that

$$
\|\mu\|=\sum_{\alpha \in\left[0, \omega_{\mathbf{1}}\right]}\left|c_{\alpha}\right|<\infty \quad \text { and } \quad \mu=\sum_{\alpha \in\left[0, \omega_{\mathbf{1}}\right]} c_{\alpha} \delta_{\alpha},
$$

where δ_{α} is the evaluation map at α, that is, $\delta_{\alpha}(f)=f(\alpha)$.

The definition of the Loy-Willis ideal

Fact. $\left[0, \omega_{1}\right]$ is scattered: each non-empty subset contains an isolated point.
Theorem (Rudin 1957). $\quad C\left[0, \omega_{1}\right]^{*} \cong \ell_{1}\left[0, \omega_{1}\right]$.
More precisely, for each $\mu \in C\left[0, \omega_{1}\right]^{*}$, there are unique scalars $\left(c_{\alpha}\right)$ such that

$$
\|\mu\|=\sum_{\alpha \in\left[0, \omega_{\mathbf{1}}\right]}\left|c_{\alpha}\right|<\infty \quad \text { and } \quad \mu=\sum_{\alpha \in\left[0, \omega_{\mathbf{1}}\right]} c_{\alpha} \delta_{\alpha},
$$

where δ_{α} is the evaluation map at α, that is, $\delta_{\alpha}(f)=f(\alpha)$.
Corollary. For each $T \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$, there is a unique scalar-valued matrix $\left(T_{\alpha, \beta}\right)_{\alpha, \beta \in\left[0, \omega_{\mathbf{1}}\right]}$ such that

$$
\sum_{\beta \in\left[0, \omega_{1}\right]}\left|T_{\alpha, \beta}\right|<\infty \quad \text { and } \quad T f(\alpha)=\sum_{\beta \in\left[0, \omega_{1}\right]} T_{\alpha, \beta} f(\beta)
$$

for each $f \in C\left[0, \omega_{1}\right]$ and $\alpha \in\left[0, \omega_{1}\right]$.

The definition of the Loy-Willis ideal

Fact. $\left[0, \omega_{1}\right]$ is scattered: each non-empty subset contains an isolated point.
Theorem (Rudin 1957). $\quad C\left[0, \omega_{1}\right]^{*} \cong \ell_{1}\left[0, \omega_{1}\right]$.
More precisely, for each $\mu \in C\left[0, \omega_{1}\right]^{*}$, there are unique scalars $\left(c_{\alpha}\right)$ such that

$$
\|\mu\|=\sum_{\alpha \in\left[0, \omega_{\mathbf{1}}\right]}\left|c_{\alpha}\right|<\infty \quad \text { and } \quad \mu=\sum_{\alpha \in\left[0, \omega_{\mathbf{1}}\right]} c_{\alpha} \delta_{\alpha},
$$

where δ_{α} is the evaluation map at α, that is, $\delta_{\alpha}(f)=f(\alpha)$.
Corollary. For each $T \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$, there is a unique scalar-valued matrix $\left(T_{\alpha, \beta}\right)_{\alpha, \beta \in\left[0, \omega_{\mathbf{1}}\right]}$ such that

$$
\sum_{\beta \in\left[0, \omega_{1}\right]}\left|T_{\alpha, \beta}\right|<\infty \quad \text { and } \quad T f(\alpha)=\sum_{\beta \in\left[0, \omega_{1}\right]} T_{\alpha, \beta} f(\beta)
$$

for each $f \in C\left[0, \omega_{1}\right]$ and $\alpha \in\left[0, \omega_{1}\right]$.
Notation. For $T \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$ and $\beta \in\left[0, \omega_{1}\right]$, let $k_{\beta}^{T}:\left[0, \omega_{1}\right] \rightarrow \mathbb{C}$ denote the $\beta^{\text {th }}$ column of the matrix of T, that is, $k_{\beta}^{T}(\alpha)=T_{\alpha, \beta}$.

The definition of the Loy-Willis ideal

Fact. $\left[0, \omega_{1}\right]$ is scattered: each non-empty subset contains an isolated point.
Theorem (Rudin 1957). $\quad C\left[0, \omega_{1}\right]^{*} \cong \ell_{1}\left[0, \omega_{1}\right]$.
More precisely, for each $\mu \in C\left[0, \omega_{1}\right]^{*}$, there are unique scalars $\left(c_{\alpha}\right)$ such that

$$
\|\mu\|=\sum_{\alpha \in\left[0, \omega_{\mathbf{1}}\right]}\left|c_{\alpha}\right|<\infty \quad \text { and } \quad \mu=\sum_{\alpha \in\left[0, \omega_{\mathbf{1}}\right]} c_{\alpha} \delta_{\alpha},
$$

where δ_{α} is the evaluation map at α, that is, $\delta_{\alpha}(f)=f(\alpha)$.
Corollary. For each $T \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$, there is a unique scalar-valued matrix $\left(T_{\alpha, \beta}\right)_{\alpha, \beta \in\left[0, \omega_{\mathbf{1}}\right]}$ such that

$$
\sum_{\beta \in\left[0, \omega_{1}\right]}\left|T_{\alpha, \beta}\right|<\infty \quad \text { and } \quad T f(\alpha)=\sum_{\beta \in\left[0, \omega_{1}\right]} T_{\alpha, \beta} f(\beta)
$$

for each $f \in C\left[0, \omega_{1}\right]$ and $\alpha \in\left[0, \omega_{1}\right]$.
Notation. For $T \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$ and $\beta \in\left[0, \omega_{1}\right]$, let $k_{\beta}^{T}:\left[0, \omega_{1}\right] \rightarrow \mathbb{C}$ denote the $\beta^{\text {th }}$ column of the matrix of T, that is, $k_{\beta}^{T}(\alpha)=T_{\alpha, \beta}$.
Theorem (Loy and Willis 1989). The set

$$
\mathscr{M}=\left\{T \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right): k_{\omega_{1}}^{T} \text { is continuous at } \omega_{1}\right\}
$$

is a maximal ideal of codimension one in $\mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$.

Sketch proof: \mathscr{M} is a maximal ideal of codimension one
Recall: $\quad \mathscr{M}=\left\{T \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right): k_{\omega_{1}}^{T}\right.$ is continuous at $\left.\omega_{1}\right\}$.

Sketch proof: \mathscr{M} is a maximal ideal of codimension one

Recall: $\quad \mathscr{M}=\left\{T \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right): k_{\omega_{1}}^{T}\right.$ is continuous at $\left.\omega_{1}\right\}$.
Loy and Willis' Key Lemma. For each $S \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$, the restriction of $k_{\omega_{1}}^{S}$ to $\left[0, \omega_{1}\right)$ is continuous

Sketch proof: \mathscr{M} is a maximal ideal of codimension one

Recall: $\quad \mathscr{M}=\left\{T \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right): k_{\omega_{1}}^{T}\right.$ is continuous at $\left.\omega_{1}\right\}$.
Loy and Willis' Key Lemma. For each $S \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$, the restriction of $k_{\omega_{1}}^{S}$ to $\left[0, \omega_{1}\right)$ is continuous, and $\lim _{\alpha \rightarrow \omega_{1}} k_{\omega_{1}}^{S}(\alpha)$ exists.

Sketch proof: \mathscr{M} is a maximal ideal of codimension one

Recall: $\quad \mathscr{M}=\left\{T \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right): k_{\omega_{1}}^{T}\right.$ is continuous at $\left.\omega_{1}\right\}$.
Loy and Willis' Key Lemma. For each $S \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$, the restriction of $k_{\omega_{1}}^{S}$ to $\left[0, \omega_{1}\right)$ is continuous, and $\lim _{\alpha \rightarrow \omega_{1}} k_{\omega_{1}}^{S}(\alpha)$ exists.

- \mathscr{M} is a left ideal because, for $S \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$ and $T \in \mathscr{M}$,

$$
k_{\omega_{1}}^{S T}=S\left(k_{\omega_{1}}^{T}\right)
$$

Sketch proof: \mathscr{M} is a maximal ideal of codimension one

Recall: $\quad \mathscr{M}=\left\{T \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right): k_{\omega_{1}}^{T}\right.$ is continuous at $\left.\omega_{1}\right\}$.
Loy and Willis' Key Lemma. For each $S \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$, the restriction of $k_{\omega_{1}}^{S}$ to $\left[0, \omega_{1}\right)$ is continuous, and $\lim _{\alpha \rightarrow \omega_{1}} k_{\omega_{1}}^{S}(\alpha)$ exists.

- \mathscr{M} is a left ideal because, for $S \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$ and $T \in \mathscr{M}$,

$$
k_{\omega_{1}}^{S T}=S\left(k_{\omega_{1}}^{T}\right) \in C\left[0, \omega_{1}\right] .
$$

Sketch proof: \mathscr{M} is a maximal ideal of codimension one

Recall: $\quad \mathscr{M}=\left\{T \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right): k_{\omega_{1}}^{T}\right.$ is continuous at $\left.\omega_{1}\right\}$.
Loy and Willis' Key Lemma. For each $S \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$, the restriction of $k_{\omega_{1}}^{S}$ to $\left[0, \omega_{1}\right)$ is continuous, and $\lim _{\alpha \rightarrow \omega_{1}} k_{\omega_{1}}^{S}(\alpha)$ exists.

- \mathscr{M} is a left ideal because, for $S \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$ and $T \in \mathscr{M}$,

$$
k_{\omega_{1}}^{S T}=S\left(k_{\omega_{1}}^{T}\right) \in C\left[0, \omega_{1}\right] .
$$

- \mathscr{M} is proper because $k_{\omega_{1}}^{\prime}=\mathbf{1}_{\left\{\omega_{1}\right\}}$ is discontinuous, so $/ \notin \mathscr{M}$.

Sketch proof: \mathscr{M} is a maximal ideal of codimension one

Recall: $\quad \mathscr{M}=\left\{T \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right): k_{\omega_{1}}^{T}\right.$ is continuous at $\left.\omega_{1}\right\}$.
Loy and Willis' Key Lemma. For each $S \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$, the restriction of $k_{\omega_{1}}^{S}$ to $\left[0, \omega_{1}\right)$ is continuous, and $\lim _{\alpha \rightarrow \omega_{1}} k_{\omega_{1}}^{S}(\alpha)$ exists.

- \mathscr{M} is a left ideal because, for $S \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$ and $T \in \mathscr{M}$,

$$
k_{\omega_{1}}^{S T}=S\left(k_{\omega_{1}}^{T}\right) \in C\left[0, \omega_{1}\right] .
$$

- \mathscr{M} is proper because $k_{\omega_{1}}^{\prime}=\mathbf{1}_{\left\{\omega_{1}\right\}}$ is discontinuous, so $I \notin \mathscr{M}$.
- \mathscr{M} has codimension one. Given $S \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$, define

$$
c=\lim _{\alpha \rightarrow \omega_{1}} S_{\alpha, \omega_{1}}-S_{\omega_{1}, \omega_{1}} \quad \text { and } \quad T=c \cdot I+S .
$$

Sketch proof: \mathscr{M} is a maximal ideal of codimension one

Recall: $\quad \mathscr{M}=\left\{T \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right): k_{\omega_{1}}^{T}\right.$ is continuous at $\left.\omega_{1}\right\}$.
Loy and Willis' Key Lemma. For each $S \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$, the restriction of $k_{\omega_{1}}^{S}$ to $\left[0, \omega_{1}\right)$ is continuous, and $\lim _{\alpha \rightarrow \omega_{1}} k_{\omega_{1}}^{S}(\alpha)$ exists.

- \mathscr{M} is a left ideal because, for $S \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$ and $T \in \mathscr{M}$,

$$
k_{\omega_{1}}^{S T}=S\left(k_{\omega_{1}}^{T}\right) \in C\left[0, \omega_{1}\right] .
$$

- \mathscr{M} is proper because $k_{\omega_{1}}^{\prime}=\mathbf{1}_{\left\{\omega_{1}\right\}}$ is discontinuous, so $I \notin \mathscr{M}$.
- \mathscr{M} has codimension one. Given $S \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$, define

$$
c=\lim _{\alpha \rightarrow \omega_{1}} S_{\alpha, \omega_{1}}-S_{\omega_{1}, \omega_{1}} \quad \text { and } \quad T=c \cdot I+S .
$$

Then $T \in \mathscr{M}$ because $k_{\omega_{1}}^{T}$ is continuous at ω_{1} :

$$
k_{\omega_{1}}^{T}(\alpha)=c k_{\omega_{1}}^{\prime}(\alpha)+k_{\omega_{1}}^{S}(\alpha)
$$

Sketch proof: \mathscr{M} is a maximal ideal of codimension one

Recall: $\quad \mathscr{M}=\left\{T \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right): k_{\omega_{1}}^{T}\right.$ is continuous at $\left.\omega_{1}\right\}$.
Loy and Willis' Key Lemma. For each $S \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$, the restriction of $k_{\omega_{1}}^{S}$ to $\left[0, \omega_{1}\right)$ is continuous, and $\lim _{\alpha \rightarrow \omega_{1}} k_{\omega_{1}}^{S}(\alpha)$ exists.

- \mathscr{M} is a left ideal because, for $S \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$ and $T \in \mathscr{M}$,

$$
k_{\omega_{1}}^{S T}=S\left(k_{\omega_{1}}^{T}\right) \in C\left[0, \omega_{1}\right] .
$$

- \mathscr{M} is proper because $k_{\omega_{1}}^{\prime}=\mathbf{1}_{\left\{\omega_{1}\right\}}$ is discontinuous, so $I \notin \mathscr{M}$.
- \mathscr{M} has codimension one. Given $S \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$, define

$$
c=\lim _{\alpha \rightarrow \omega_{1}} S_{\alpha, \omega_{1}}-S_{\omega_{1}, \omega_{1}} \quad \text { and } \quad T=c \cdot I+S .
$$

Then $T \in \mathscr{M}$ because $k_{\omega_{1}}^{T}$ is continuous at ω_{1} :

$$
k_{\omega_{1}}^{T}(\alpha)=c k_{\omega_{1}}^{\prime}(\alpha)+k_{\omega_{1}}^{S}(\alpha)= \begin{cases}S_{\alpha, \omega_{1}} & \text { for } \alpha<\omega_{1} \\ c+S_{\omega_{1}, \omega_{1}} & \text { for } \alpha=\omega_{1}\end{cases}
$$

Sketch proof: \mathscr{M} is a maximal ideal of codimension one

Recall: $\quad \mathscr{M}=\left\{T \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right): k_{\omega_{1}}^{T}\right.$ is continuous at $\left.\omega_{1}\right\}$.
Loy and Willis' Key Lemma. For each $S \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$, the restriction of $k_{\omega_{1}}^{S}$ to $\left[0, \omega_{1}\right)$ is continuous, and $\lim _{\alpha \rightarrow \omega_{1}} k_{\omega_{1}}^{S}(\alpha)$ exists.

- \mathscr{M} is a left ideal because, for $S \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$ and $T \in \mathscr{M}$,

$$
k_{\omega_{1}}^{S T}=S\left(k_{\omega_{1}}^{T}\right) \in C\left[0, \omega_{1}\right] .
$$

- \mathscr{M} is proper because $k_{\omega_{1}}^{\prime}=\mathbf{1}_{\left\{\omega_{1}\right\}}$ is discontinuous, so $I \notin \mathscr{M}$.
- \mathscr{M} has codimension one. Given $S \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$, define

$$
c=\lim _{\alpha \rightarrow \omega_{1}} S_{\alpha, \omega_{1}}-S_{\omega_{1}, \omega_{1}} \quad \text { and } \quad T=c \cdot I+S .
$$

Then $T \in \mathscr{M}$ because $k_{\omega_{1}}^{T}$ is continuous at ω_{1} :

$$
k_{\omega_{1}}^{T}(\alpha)=c k_{\omega_{1}}^{\prime}(\alpha)+k_{\omega_{1}}^{S}(\alpha)= \begin{cases}S_{\alpha, \omega_{1}} & \text { for } \alpha<\omega_{1} \\ c+S_{\omega_{1}, \omega_{1}}=\lim _{\beta \rightarrow \omega_{1}} S_{\beta, \omega_{1}} & \text { for } \alpha=\omega_{1}\end{cases}
$$

Sketch proof: \mathscr{M} is a maximal ideal of codimension one

Recall: $\quad \mathscr{M}=\left\{T \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right): k_{\omega_{1}}^{T}\right.$ is continuous at $\left.\omega_{1}\right\}$.
Loy and Willis' Key Lemma. For each $S \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$, the restriction of $k_{\omega_{1}}^{S}$ to $\left[0, \omega_{1}\right)$ is continuous, and $\lim _{\alpha \rightarrow \omega_{1}} k_{\omega_{1}}^{S}(\alpha)$ exists.

- \mathscr{M} is a left ideal because, for $S \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$ and $T \in \mathscr{M}$,

$$
k_{\omega_{1}}^{S T}=S\left(k_{\omega_{1}}^{T}\right) \in C\left[0, \omega_{1}\right] .
$$

- \mathscr{M} is proper because $k_{\omega_{1}}^{\prime}=\mathbf{1}_{\left\{\omega_{1}\right\}}$ is discontinuous, so $I \notin \mathscr{M}$.
- \mathscr{M} has codimension one. Given $S \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$, define

$$
c=\lim _{\alpha \rightarrow \omega_{1}} S_{\alpha, \omega_{1}}-S_{\omega_{1}, \omega_{1}} \quad \text { and } \quad T=c \cdot I+S .
$$

Then $T \in \mathscr{M}$ because $k_{\omega_{1}}^{T}$ is continuous at ω_{1} :

$$
k_{\omega_{1}}^{T}(\alpha)=c k_{\omega_{1}}^{\prime}(\alpha)+k_{\omega_{1}}^{S}(\alpha)= \begin{cases}S_{\alpha, \omega_{1}} & \text { for } \alpha<\omega_{1} \\ c+S_{\omega_{1}, \omega_{1}}=\lim _{\beta \rightarrow \omega_{1}} S_{\beta, \omega_{1}} & \text { for } \alpha=\omega_{1}\end{cases}
$$

Hence $S=T-c \cdot I \in \mathscr{M}+\mathbb{C} \cdot I$.

Sketch proof: \mathscr{M} is a maximal ideal of codimension one

Recall: $\quad \mathscr{M}=\left\{T \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right): k_{\omega_{1}}^{T}\right.$ is continuous at $\left.\omega_{1}\right\}$.
Loy and Willis' Key Lemma. For each $S \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$, the restriction of $k_{\omega_{1}}^{S}$ to $\left[0, \omega_{1}\right)$ is continuous, and $\lim _{\alpha \rightarrow \omega_{1}} k_{\omega_{1}}^{S}(\alpha)$ exists.

- \mathscr{M} is a left ideal because, for $S \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$ and $T \in \mathscr{M}$,

$$
k_{\omega_{1}}^{S T}=S\left(k_{\omega_{1}}^{T}\right) \in C\left[0, \omega_{1}\right] .
$$

- \mathscr{M} is proper because $k_{\omega_{1}}^{\prime}=\mathbf{1}_{\left\{\omega_{1}\right\}}$ is discontinuous, so $I \notin \mathscr{M}$.
- \mathscr{M} has codimension one. Given $S \in \mathscr{B}\left(C\left[0, \omega_{1}\right]\right)$, define

$$
c=\lim _{\alpha \rightarrow \omega_{1}} S_{\alpha, \omega_{1}}-S_{\omega_{1}, \omega_{1}} \quad \text { and } \quad T=c \cdot I+S .
$$

Then $T \in \mathscr{M}$ because $k_{\omega_{1}}^{T}$ is continuous at ω_{1} :

$$
k_{\omega_{1}}^{T}(\alpha)=c k_{\omega_{1}}^{\prime}(\alpha)+k_{\omega_{1}}^{S}(\alpha)= \begin{cases}S_{\alpha, \omega_{1}} & \text { for } \alpha<\omega_{1} \\ c+S_{\omega_{1}, \omega_{1}}=\lim _{\beta \rightarrow \omega_{1}} S_{\beta, \omega_{1}} & \text { for } \alpha=\omega_{1}\end{cases}
$$

Hence $S=T-c \cdot I \in \mathscr{M}+\mathbb{C} \cdot I$.

- \mathscr{M} is a right ideal and maximal: automatic!

Further work (in progress with Kania and Piotr Koszmider)

Let L_{0} be the one-point compactification of the disjoint union of the intervals $[0, \sigma]$, where $\sigma \in\left[0, \omega_{1}\right)$.

Further work (in progress with Kania and Piotr Koszmider)

Let L_{0} be the one-point compactification of the disjoint union of the intervals $[0, \sigma]$, where $\sigma \in\left[0, \omega_{1}\right)$.

Theorem (Kania, Koszmider and NJL). $\quad \mathscr{M}=\mathscr{G}_{C\left(L_{0}\right)}\left(C\left[0, \omega_{1}\right]\right)$;

Further work (in progress with Kania and Piotr Koszmider)

Let L_{0} be the one-point compactification of the disjoint union of the intervals $[0, \sigma]$, where $\sigma \in\left[0, \omega_{1}\right)$.

Theorem (Kania, Koszmider and NJL). $\quad \mathscr{M}=\mathscr{G}_{C\left(L_{0}\right)}\left(C\left[0, \omega_{1}\right]\right)$; that is, $T \in \mathscr{M} \Longleftrightarrow \exists V \in \mathscr{B}\left(C\left[0, \omega_{1}\right], C\left(L_{0}\right)\right), U \in \mathscr{B}\left(C\left(L_{0}\right), C\left[0, \omega_{1}\right]\right): T=U V$.

Further work (in progress with Kania and Piotr Koszmider)

Let L_{0} be the one-point compactification of the disjoint union of the intervals $[0, \sigma]$, where $\sigma \in\left[0, \omega_{1}\right)$.

Theorem (Kania, Koszmider and NJL). $\quad \mathscr{M}=\mathscr{G}_{C\left(L_{0}\right)}\left(C\left[0, \omega_{1}\right]\right)$; that is,

$$
T \in \mathscr{M} \Longleftrightarrow \exists V \in \mathscr{B}\left(C\left[0, \omega_{1}\right], C\left(L_{0}\right)\right), U \in \mathscr{B}\left(C\left(L_{0}\right), C\left[0, \omega_{1}\right]\right): T=U V .
$$

A topological space is Eberlein compact if it is homeomorphic to a weakly compact subset of $c_{0}(\Gamma)$ for some index set Γ.

Further work (in progress with Kania and Piotr Koszmider)

Let L_{0} be the one-point compactification of the disjoint union of the intervals $[0, \sigma]$, where $\sigma \in\left[0, \omega_{1}\right)$.

Theorem (Kania, Koszmider and NJL). $\quad \mathscr{M}=\mathscr{G}_{C\left(L_{0}\right)}\left(C\left[0, \omega_{1}\right]\right)$; that is,

$$
T \in \mathscr{M} \Longleftrightarrow \exists V \in \mathscr{B}\left(C\left[0, \omega_{1}\right], C\left(L_{0}\right)\right), U \in \mathscr{B}\left(C\left(L_{0}\right), C\left[0, \omega_{1}\right]\right): T=U V .
$$

A topological space is Eberlein compact if it is homeomorphic to a weakly compact subset of $c_{0}(\Gamma)$ for some index set Γ.

Fact. L_{0} is Eberlein compact (Lindenstrauss)

Further work (in progress with Kania and Piotr Koszmider)

Let L_{0} be the one-point compactification of the disjoint union of the intervals $[0, \sigma]$, where $\sigma \in\left[0, \omega_{1}\right)$.

Theorem (Kania, Koszmider and NJL). $\quad \mathscr{M}=\mathscr{G}_{C\left(L_{0}\right)}\left(C\left[0, \omega_{1}\right]\right)$; that is,

$$
T \in \mathscr{M} \Longleftrightarrow \exists V \in \mathscr{B}\left(C\left[0, \omega_{1}\right], C\left(L_{0}\right)\right), U \in \mathscr{B}\left(C\left(L_{0}\right), C\left[0, \omega_{1}\right]\right): T=U V .
$$

A topological space is Eberlein compact if it is homeomorphic to a weakly compact subset of $c_{0}(\Gamma)$ for some index set Γ.

Fact. L_{0} is Eberlein compact (Lindenstrauss), whereas $\left[0, \omega_{1}\right]$ is not.

Further work (in progress with Kania and Piotr Koszmider)

Let L_{0} be the one-point compactification of the disjoint union of the intervals $[0, \sigma]$, where $\sigma \in\left[0, \omega_{1}\right)$.

Theorem (Kania, Koszmider and NJL). $\quad \mathscr{M}=\mathscr{G}_{C\left(L_{0}\right)}\left(C\left[0, \omega_{1}\right]\right)$; that is,

$$
T \in \mathscr{M} \Longleftrightarrow \exists V \in \mathscr{B}\left(C\left[0, \omega_{1}\right], C\left(L_{0}\right)\right), U \in \mathscr{B}\left(C\left(L_{0}\right), C\left[0, \omega_{1}\right]\right): T=U V .
$$

A topological space is Eberlein compact if it is homeomorphic to a weakly compact subset of $c_{0}(\Gamma)$ for some index set Γ.

Fact. L_{0} is Eberlein compact (Lindenstrauss), whereas $\left[0, \omega_{1}\right]$ is not.
Theorem (Amir and Lindenstrauss 1968). A compact Hausdorff space K is Eberlein compact if and only if $C(K)$ is weakly compactly generated (that is, $C(K)=\overline{\operatorname{span}} W$ for some weakly compact subset W).

