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In 1972 Benyamini and Lindenstrauss constructed
an isometric £1 predual E which is not isomor-
phic to a complemented subspace of a C(K)
space, answering a question of Pelczynski.

In 1988 Alspach and Benyamini showed, with
a different proof, that a variation of E had the
same property. Alspach’s quotient of C(w%)
which does not embed into any C(«), a < wq,
is an isometric ¢1 predual which contains a
complemented copy of E and so it is also not
isomorphic to a complemented subspace of a
C(K) space.

We remark that E is isometric to a subspace
of C(w%¥) and that all aforementioned examples
contain a copy of C(w¥).



The preceding examples are related to the prob-
lem of the isomorphic classification of the com-
plemented subspaces of C(K) spaces. By a
result of Rosenthal, any such subspace with
non-separable dual is isomorphic to C(K). It
is still open if a complemented subspace of
C(K) with separable dual must be isomorphic
to some C(L) space. By combining results of
Alspach, Benyamini, Johnson and Zippin the
following holds:

Theorem Let Y be a complemented subspace
of C(K). Then either Y is isomorphic to cg,
or C(w¥) embeds into Y.

Indeed, if the Szlenk index n(Y) of Y exceeds
w, then a result of Alspach implies that C'(w®)
embeds into Y. When n(Y) = w, a result of
Benyamini yields that Y is isomorphic to a quo-
tient of ¢cg and thus Y is isomorphic to cg by
Johnson-Zippin’'s result.



It follows from the preceding theorem that any
isomorphic ¢7 predual not isomorphic to ¢g and
not containing C(w¥) isomorphically, is not iso-

morphic to a complemented subspace of a C'(K)
space.

Question: Does there exist a subspace X of
C(w¥) with X™* isomorphic to ¢1 and such that

neither X is isomorphic to ¢g, nor C(w*) em-
beds into X 7



Theorem. There exists an isomorphic ¢1 pre-
dual X with a normalized, shrinking basis (en)
satisfying the following properties:

1. X is isomorphic to a subspace of C(w%).

2. Every normalized weakly null sequence in X
admits a subsequence which is either equiva-
lent to the cg basis, or equivalent to a subse-
quence of the natural basis of Schreier’'s space.
In particular, (ey) satisfies the second alterrna-
tive.



Recall that Schreier’'s space is the completion
of cgp under the norm

z]| = sup{) _ |z(¢)]: |F| < minF}
icF
It is known that every normalized weakly null
sequence in C'(w*) which admits ¢1 as a spread-
ing model, has a subsequence equivalent to a
subsequence of the natural basis of Schreier’s

Space.

The proof of this result uses a dual version of
the Bourgain-Delbaen method of constructing
Lo Spaces.



Notation. Let X be a Banach space with a
normalized Schauder basis (en) and let D C
Bxx be a norming set for X so that D C< e} :
n € N > \{0}. Assume that e} € D for alln € N
and that |d*(en)| < 1 for all d* € D and all
n € N,

We also consider a sequence A1 < Ay < --- K
A, < --- of successive finite intervals of N
whose union is N. Assume that |suppd*NAy| <
1 for all d* € D and all n € N.

We set Dy = {d* € D : maxsuppd* € A,} for
all n € N. Thus, D = UpDn,.

We finally let P, denote the basis projection
onto [e; : i € UP_ 1Akl



Proposition. Let X, (en), D and (Ay) be as
above. Let 0 < b < 1/4. Assume that the
following properties hold for all n > 3

1. For each i € Ay, there exists a unique v €
Dy with [suppy| > 1 and maxsuppy; = i.

2. Each d* € D, admits a representation of
the form

d* = p1di + po(d5] Ué:k+1 Aj)+e;

where, d € Dy and d5 € D; for some 1 <k <
[<n-1,1€ A, and |p1‘§1, |p2|§b.

Then, X is an L~ Space.

Moreover, letting b7 = e} for ¢ € A1 UA5, while
ifn >3, b7 = (1/2)yFP,—1+e; foric Ay, then
(b7) is equivalent to the ¢; basis and [(b)] =
[(e)]. Hence, if (en) is shrinking then X* is
isomorphic to /7.



Proof. For each n > 2 we define linear maps
Tn:EOO(UZ:]_Ak> — le; 1 1 € UZ:lAk] as fol-
lOWS:

m

Tox = ) z(i)e;

i=1
where m = max Ao, and inductively,
Tht1z = Thmz+ Y [2() — (1/2)v] Thmnale;
iEAn+1

where m,: loc — foo IS the restriction operator
to the first Up_, A coordinates and ~; is the
unique element of D whose support contains
at least two points and ¢ is the maximum of
this support. It is clear that

whenever m < n and z € foo(U}_1A%).
It will suffice showing that there exist absolute
constants 0 < A < B so that

Allz]loo < ||Tnz|| < Blz[loo
for all z € oo (U} _1Ag) and n > 2.



Let p=(1/2)[14+3b/(1-b)]. Thenl/2<p<1
as 0 <b< 1/4.

We choose A > 0 such that ||T3]| < 1 + \/2,
I(I = P1)T2| <1+ 3A/2 and

A>(1-p)ta -0t

We show by induction on n > 2 that for all
T € Loo(UP_1A%), ||z|lc = 1, there exist d* €
Up—1 Dk and an initial interval I of N so that

(@) (The)| > 1/2

This clearly implies the lower estimate.



We then show by induction on n > 2 that the
following properties hold:

L. [[d*Th|| < 1+ X/2, for all d* € U}_,Dy.

2. |[d*(I — Pn)Tn|| < 1 4 3X/2, for all d* €
Uy_1 Dy and m < n.

3. For every d* € D and all m < n there exists
[ > 0 so that

[
|d*(I — Pp)Tnll < (1 43X/2) Y ¥
k=0

4. [|Th| < .

The last property implies the upper estimate.
For the inductive step we assume that all four
properties hold for n and then prove they are
also valid for n 4 1.
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To accomplish this we make use of the split-
ting property of the elements of D which yield
estimates of the following kind

[
|d*Tnll <14+ 2/24+b(1+3X/2) Y oF
k=0

<14+X24+ (1430221 —-b)"1

=(1-b"1T4+pr< )
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Definition of X. Let F = {F C N : |F| <
min F' 4+ 2} U {(@}. This is a pointwise compact
family of finite subsets of N.

We inductively construct a sequence A1 < Ar <
. of successive intervals of N whose union is

N and a sequence (D) of subsets of cgg SO
that for all n

1. ef € Dy for all ¢ € Ay

2. suppd* C Up_; A and maxsuppd® € Ay, for
all d* € Dy,

3. |suppd*N Al <1 for all d* € Dy and k < n.
4. |d*(i)| < 1 for every i € N and all d* € Dy,.
5. suppd* € F for all d* € Dy,.

Indeed, define A, = {k} and D, = {e;} for

kE < 2. Assume that A; and D; have been
defined for all k < n.
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If £ and n* are elements of Uy_1Dyg, then we
say that (£*,n*) is a linked pair provided that
there exist integers 1 < k <l <n with £* € D;,
n* € Dy and supp&* Usuppln*|(Ul_, 1 4)] € F
without being a maximal element. Denote by
>, the set of all possible linked pairs formed
by elements of Up_; Dy.

Let A, 41 be the interval adjacent to A, hav-
ing |Xn| elements. Let on: Xy — Ay be an
injection. Define

Dpy1 =1+ b77*|(U§:k_|_1Az') + 6;(5*,77*) :
(€ n") e ZntU{e; 1 i€ Dyqq}
Let D = UpDyp and define a norm on cgg by
|zl = sup{|}_ d*(i)x(3)| : d* € D}
0

X is the completion of cgg under this norm.

(en) is @a normalized basis for X since |d*(i)| < 1
for all i € N and d* € D and ||d*|I|| < 2 for all
d* € D and initial intervals I (use induction and
the fact that b < 1/4).
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Evidently the construction of X implies that
the assumptions of the Proposition are fulfilled
and thus X is an L~ Space. Moreover, since
the supports of the elements of D lie within
the compact family F, we deduce that (ep) is
shrinking and so X* is isomorphic to ¢1. We
also have that X embeds into C(F) which is
isomorphic to C'(w®).

Finally, consider a normalized block basis (un)
of (en). If limy ||lunllcg = O, then standard ar-
guments yield that some subsequence of (un)
IS equivalent to the cp basis.

In case there is some § > 0 so that |jupn|/cg > 9
for all n € N, then for all kK € N there exist J C N
with |J| = k and d* € D so that |d*(u;)| > b, for
all = € J. It follows now that some subsequence
of (upn) admits ¢1 as a spreading model. It
follows that C(w¥) does not embed into X.
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