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In 1972 Benyamini and Lindenstrauss constructed

an isometric `1 predual E which is not isomor-

phic to a complemented subspace of a C(K)

space, answering a question of Pelczynski.

In 1988 Alspach and Benyamini showed, with

a different proof, that a variation of E had the

same property. Alspach’s quotient of C(ωω)

which does not embed into any C(α), α < ω1,

is an isometric `1 predual which contains a

complemented copy of E and so it is also not

isomorphic to a complemented subspace of a

C(K) space.

We remark that E is isometric to a subspace

of C(ωω) and that all aforementioned examples

contain a copy of C(ωω).
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The preceding examples are related to the prob-

lem of the isomorphic classification of the com-

plemented subspaces of C(K) spaces. By a

result of Rosenthal, any such subspace with

non-separable dual is isomorphic to C(K). It

is still open if a complemented subspace of

C(K) with separable dual must be isomorphic

to some C(L) space. By combining results of

Alspach, Benyamini, Johnson and Zippin the

following holds:

Theorem Let Y be a complemented subspace

of C(K). Then either Y is isomorphic to c0,

or C(ωω) embeds into Y .

Indeed, if the Szlenk index η(Y ) of Y exceeds

ω, then a result of Alspach implies that C(ωω)

embeds into Y . When η(Y ) = ω, a result of

Benyamini yields that Y is isomorphic to a quo-

tient of c0 and thus Y is isomorphic to c0 by

Johnson-Zippin’s result.
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It follows from the preceding theorem that any

isomorphic `1 predual not isomorphic to c0 and

not containing C(ωω) isomorphically, is not iso-

morphic to a complemented subspace of a C(K)

space.

Question: Does there exist a subspace X of

C(ωω) with X∗ isomorphic to `1 and such that

neither X is isomorphic to c0, nor C(ωω) em-

beds into X ?
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Theorem. There exists an isomorphic `1 pre-

dual X with a normalized, shrinking basis (en)

satisfying the following properties:

1. X is isomorphic to a subspace of C(ωω).

2. Every normalized weakly null sequence in X

admits a subsequence which is either equiva-

lent to the c0 basis, or equivalent to a subse-

quence of the natural basis of Schreier’s space.

In particular, (en) satisfies the second alterrna-

tive.
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Recall that Schreier’s space is the completion

of c00 under the norm

‖x‖ = sup{
∑
i∈F

|x(i)| : |F | ≤ minF}

It is known that every normalized weakly null

sequence in C(ωω) which admits `1 as a spread-

ing model, has a subsequence equivalent to a

subsequence of the natural basis of Schreier’s

space.

The proof of this result uses a dual version of

the Bourgain-Delbaen method of constructing

L∞ spaces.
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Notation. Let X be a Banach space with a

normalized Schauder basis (en) and let D ⊂
BX∗ be a norming set for X so that D ⊂< e∗n :

n ∈ N > \{0}. Assume that e∗n ∈ D for all n ∈ N
and that |d∗(en)| ≤ 1 for all d∗ ∈ D and all

n ∈ N.

We also consider a sequence ∆1 < ∆2 < · · · <

∆n < · · · of successive finite intervals of N
whose union is N. Assume that |suppd∗∩∆n| ≤
1 for all d∗ ∈ D and all n ∈ N.

We set Dn = {d∗ ∈ D : max suppd∗ ∈ ∆n} for

all n ∈ N. Thus, D = ∪nDn.

We finally let Pn denote the basis projection

onto [ei : i ∈ ∪n
k=1∆k].
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Proposition. Let X, (en), D and (∆n) be as

above. Let 0 < b < 1/4. Assume that the

following properties hold for all n ≥ 3

1. For each i ∈ ∆n there exists a unique γ∗i ∈
Dn with |suppγ∗i | > 1 and max suppγ∗i = i.

2. Each d∗ ∈ Dn admits a representation of

the form

d∗ = ρ1d∗1 + ρ2(d
∗
2| ∪

l
j=k+1 ∆j) + e∗i

where, d∗1 ∈ Dk and d∗2 ∈ Dl for some 1 ≤ k <

l ≤ n− 1, i ∈ ∆n and |ρ1| ≤ 1, |ρ2| ≤ b.

Then, X is an L∞ space.

Moreover, letting b∗i = e∗i for i ∈ ∆1∪∆2, while

if n ≥ 3, b∗i = (1/2)γ∗i Pn−1+e∗i for i ∈ ∆n, then

(b∗i ) is equivalent to the `1 basis and [(b∗i )] =

[(e∗i )]. Hence, if (en) is shrinking then X∗ is

isomorphic to `1.
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Proof. For each n ≥ 2 we define linear maps
Tn: `∞(∪n

k=1∆k) → [ei : i ∈ ∪n
k=1∆k] as fol-

lows:

T2x =
m∑

i=1

x(i)ei

where m = max∆2 and inductively,

Tn+1x = Tnπnx+
∑

i∈∆n+1

[x(i)−(1/2)γ∗i Tnπnx]ei

where πn: `∞ → `∞ is the restriction operator
to the first ∪n

k=1∆k coordinates and γ∗i is the
unique element of D whose support contains
at least two points and i is the maximum of
this support. It is clear that

PmTnx = Tmπmx

whenever m ≤ n and x ∈ `∞(∪n
k=1∆k).

It will suffice showing that there exist absolute
constants 0 < A < B so that

A‖x‖∞ ≤ ‖Tnx‖ ≤ B‖x‖∞
for all x ∈ `∞(∪n

k=1∆k) and n ≥ 2.
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Let ρ = (1/2)[1+3b/(1−b)]. Then 1/2 < ρ < 1

as 0 < b < 1/4.

We choose λ > 0 such that ‖T2‖ ≤ 1 + λ/2,

‖(I − P1)T2‖ ≤ 1 + 3λ/2 and

λ > (1− ρ)−1(1− b)−1

We show by induction on n ≥ 2 that for all

x ∈ `∞(∪n
k=1∆k), ‖x‖∞ = 1, there exist d∗ ∈

∪n
k=1Dk and an initial interval I of N so that

|(d∗|I)(Tnx)| ≥ 1/2

This clearly implies the lower estimate.
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We then show by induction on n ≥ 2 that the

following properties hold:

1. ‖d∗Tn‖ ≤ 1 + λ/2, for all d∗ ∈ ∪n
k=1Dk.

2. ‖d∗(I − Pm)Tn‖ ≤ 1 + 3λ/2, for all d∗ ∈
∪n

k=1Dk and m ≤ n.

3. For every d∗ ∈ D and all m ≤ n there exists

l > 0 so that

‖d∗(I − Pm)Tn‖ ≤ (1 + 3λ/2)
l∑

k=0

bk

4. ‖Tn‖ ≤ λ.

The last property implies the upper estimate.

For the inductive step we assume that all four

properties hold for n and then prove they are

also valid for n + 1.
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To accomplish this we make use of the split-

ting property of the elements of D which yield

estimates of the following kind

‖d∗Tn‖ ≤ 1 + λ/2 + b(1 + 3λ/2)
l∑

k=0

bk

< 1 + λ/2 + (1 + 3λ/2)b(1− b)−1

= (1− b)−1 + ρλ < λ
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Definition of X. Let F = {F ⊂ N : |F | ≤
minF + 2} ∪ {∅}. This is a pointwise compact
family of finite subsets of N.

We inductively construct a sequence ∆1 < ∆2 <

. . . of successive intervals of N whose union is
N and a sequence (Dn) of subsets of c00 so
that for all n

1. e∗i ∈ Dn for all i ∈ ∆n.

2. suppd∗ ⊂ ∪n
k=1∆k and max suppd∗ ∈ ∆n for

all d∗ ∈ Dn.

3. |suppd∗ ∩∆k| ≤ 1 for all d∗ ∈ Dn and k ≤ n.

4. |d∗(i)| ≤ 1 for every i ∈ N and all d∗ ∈ Dn.

5. suppd∗ ∈ F for all d∗ ∈ Dn.

Indeed, define ∆k = {k} and Dk = {e∗k} for
k ≤ 2. Assume that ∆k and Dk have been
defined for all k ≤ n.
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If ξ∗ and η∗ are elements of ∪n
k=1Dk, then we

say that (ξ∗, η∗) is a linked pair provided that
there exist integers 1 ≤ k < l ≤ n with ξ∗ ∈ Dk,
η∗ ∈ Dl and suppξ∗ ∪ supp[η∗|(∪l

i=k+1∆i)] ∈ F
without being a maximal element. Denote by
Σn the set of all possible linked pairs formed
by elements of ∪n

k=1Dk.

Let ∆n+1 be the interval adjacent to ∆n hav-
ing |Σn| elements. Let σn:Σn → ∆n+1 be an
injection. Define

Dn+1 = {ξ∗ + bη∗|(∪l
i=k+1∆i) + e∗σn(ξ∗,η∗) :

(ξ∗, η∗) ∈ Σn} ∪ {e∗i : i ∈ ∆n+1}

Let D = ∪nDn and define a norm on c00 by

‖x‖ = sup{|
∑
i

d∗(i)x(i)| : d∗ ∈ D}

X is the completion of c00 under this norm.

(en) is a normalized basis for X since |d∗(i)| ≤ 1
for all i ∈ N and d∗ ∈ D and ‖d∗|I‖ ≤ 2 for all
d∗ ∈ D and initial intervals I (use induction and
the fact that b < 1/4).
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Evidently the construction of X implies that

the assumptions of the Proposition are fulfilled

and thus X is an L∞ space. Moreover, since

the supports of the elements of D lie within

the compact family F, we deduce that (en) is

shrinking and so X∗ is isomorphic to `1. We

also have that X embeds into C(F) which is

isomorphic to C(ωω).

Finally, consider a normalized block basis (un)

of (en). If limn ‖un‖c0 = 0, then standard ar-

guments yield that some subsequence of (un)

is equivalent to the c0 basis.

In case there is some δ > 0 so that ‖un‖c0 > δ

for all n ∈ N, then for all k ∈ N there exist J ⊂ N
with |J | = k and d∗ ∈ D so that |d∗(ui)| ≥ δb, for

all i ∈ J. It follows now that some subsequence

of (un) admits `1 as a spreading model. It

follows that C(ωω) does not embed into X.
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