A new isomorphic ℓ_1 predual which is not isomorphic to a complemented subspace of a C(K) space

Ioannis Gasparis Aristotle University of Thessaloniki Greece In 1972 Benyamini and Lindenstrauss constructed an isometric ℓ_1 predual E which is not isomorphic to a complemented subspace of a C(K)space, answering a question of Pelczynski.

In 1988 Alspach and Benyamini showed, with a different proof, that a variation of E had the same property. Alspach's quotient of $C(\omega^{\omega})$ which does not embed into any $C(\alpha)$, $\alpha < \omega_1$, is an isometric ℓ_1 predual which contains a complemented copy of E and so it is also not isomorphic to a complemented subspace of a C(K) space.

We remark that E is isometric to a subspace of $C(\omega^{\omega})$ and that all aforementioned examples contain a copy of $C(\omega^{\omega})$.

The preceding examples are related to the prob-

In the preceding examples are related to the problem of the isomorphic classification of the complemented subspaces of C(K) spaces. By a result of Rosenthal, any such subspace with non-separable dual is isomorphic to C(K). It is still open if a complemented subspace of C(K) with separable dual must be isomorphic to some C(L) space. By combining results of Alspach, Benyamini, Johnson and Zippin the following holds:

Theorem Let Y be a complemented subspace of C(K). Then either Y is isomorphic to c_0 , or $C(\omega^{\omega})$ embeds into Y.

Indeed, if the Szlenk index $\eta(Y)$ of Y exceeds ω , then a result of Alspach implies that $C(\omega^{\omega})$ embeds into Y. When $\eta(Y) = \omega$, a result of Benyamini yields that Y is isomorphic to a quotient of c_0 and thus Y is isomorphic to c_0 by Johnson-Zippin's result.

It follows from the preceding theorem that any isomorphic ℓ_1 predual not isomorphic to c_0 and not containing $C(\omega^{\omega})$ isomorphically, is not isomorphic to a complemented subspace of a C(K) space.

Question: Does there exist a subspace X of $C(\omega^{\omega})$ with X^* isomorphic to ℓ_1 and such that neither X is isomorphic to c_0 , nor $C(\omega^{\omega})$ embeds into X?

Theorem. There exists an isomorphic ℓ_1 predual X with a normalized, shrinking basis (e_n) satisfying the following properties:

1. X is isomorphic to a subspace of $C(\omega^{\omega})$.

2. Every normalized weakly null sequence in X admits a subsequence which is either equivalent to the c_0 basis, or equivalent to a subsequence of the natural basis of Schreier's space. In particular, (e_n) satisfies the second alternative.

Recall that Schreier's space is the completion of c_{00} under the norm

$$||x|| = \sup\{\sum_{i \in F} |x(i)| : |F| \le \min F\}$$

It is known that every normalized weakly null sequence in $C(\omega^{\omega})$ which admits ℓ_1 as a spreading model, has a subsequence equivalent to a subsequence of the natural basis of Schreier's space.

The proof of this result uses a dual version of the Bourgain-Delbaen method of constructing \mathcal{L}_{∞} spaces.

Notation. Let *X* be a Banach space with a normalized Schauder basis (e_n) and let $D \subset B_{X^*}$ be a norming set for *X* so that $D \subset e_n^*$: $n \in \mathbb{N} > \setminus \{0\}$. Assume that $e_n^* \in D$ for all $n \in \mathbb{N}$ and that $|d^*(e_n)| \leq 1$ for all $d^* \in D$ and all $n \in \mathbb{N}$.

We also consider a sequence $\Delta_1 < \Delta_2 < \cdots < \Delta_n < \cdots$ of successive finite intervals of \mathbb{N} whose union is \mathbb{N} . Assume that $|\operatorname{supp} d^* \cap \Delta_n| \leq 1$ for all $d^* \in D$ and all $n \in \mathbb{N}$.

We set $D_n = \{d^* \in D : \max \operatorname{supp} d^* \in \Delta_n\}$ for all $n \in \mathbb{N}$. Thus, $D = \bigcup_n D_n$.

We finally let P_n denote the basis projection onto $[e_i : i \in \bigcup_{k=1}^n \Delta_k]$.

Proposition. Let *X*, (e_n) , *D* and (Δ_n) be as above. Let 0 < b < 1/4. Assume that the following properties hold for all $n \ge 3$

1. For each $i \in \Delta_n$ there exists a unique $\gamma_i^* \in D_n$ with $|\operatorname{supp}\gamma_i^*| > 1$ and $\max \operatorname{supp}\gamma_i^* = i$.

2. Each $d^* \in D_n$ admits a representation of the form

 $d^* = \rho_1 d_1^* + \rho_2 (d_2^* | \cup_{j=k+1}^l \Delta_j) + e_i^*$ where, $d_1^* \in D_k$ and $d_2^* \in D_l$ for some $1 \le k < l \le n-1$, $i \in \Delta_n$ and $|\rho_1| \le 1$, $|\rho_2| \le b$.

Then, X is an \mathcal{L}_{∞} space.

Moreover, letting $b_i^* = e_i^*$ for $i \in \Delta_1 \cup \Delta_2$, while if $n \ge 3$, $b_i^* = (1/2)\gamma_i^*P_{n-1} + e_i^*$ for $i \in \Delta_n$, then (b_i^*) is equivalent to the ℓ_1 basis and $[(b_i^*)] =$ $[(e_i^*)]$. Hence, if (e_n) is shrinking then X^* is isomorphic to ℓ_1 . **Proof**. For each $n \ge 2$ we define linear maps $T_n: \ell_{\infty}(\cup_{k=1}^n \Delta_k) \to [e_i: i \in \cup_{k=1}^n \Delta_k]$ as follows:

$$T_2 x = \sum_{i=1}^m x(i)e_i$$

where $m = \max \Delta_2$ and inductively,

$$T_{n+1}x = T_n\pi_n x + \sum_{i \in \Delta_{n+1}} [x(i) - (1/2)\gamma_i^* T_n\pi_n x]e_i$$

where $\pi_n: \ell_{\infty} \to \ell_{\infty}$ is the restriction operator to the first $\cup_{k=1}^n \Delta_k$ coordinates and γ_i^* is the unique element of D whose support contains at least two points and i is the maximum of this support. It is clear that

$$P_m T_n x = T_m \pi_m x$$

whenever $m \leq n$ and $x \in \ell_{\infty}(\cup_{k=1}^{n} \Delta_{k})$.

It will suffice showing that there exist absolute constants 0 < A < B so that

$$A\|x\|_{\infty} \leq \|T_n x\| \leq B\|x\|_{\infty}$$

for all $x \in \ell_{\infty}(\cup_{k=1}^{n} \Delta_k)$ and $n \geq 2$.

8

Let $\rho = (1/2)[1+3b/(1-b)]$. Then $1/2 < \rho < 1$ as 0 < b < 1/4.

We choose $\lambda > 0$ such that $||T_2|| \le 1 + \lambda/2$, $||(I - P_1)T_2|| \le 1 + 3\lambda/2$ and

$$\lambda > (1 - \rho)^{-1} (1 - b)^{-1}$$

We show by induction on $n \ge 2$ that for all $x \in \ell_{\infty}(\cup_{k=1}^{n} \Delta_{k})$, $||x||_{\infty} = 1$, there exist $d^{*} \in \bigcup_{k=1}^{n} D_{k}$ and an initial interval I of \mathbb{N} so that

$$|(d^*|I)(T_nx)| \ge 1/2$$

This clearly implies the lower estimate.

We then show by induction on $n \ge 2$ that the following properties hold:

1. $||d^*T_n|| \le 1 + \lambda/2$, for all $d^* \in \bigcup_{k=1}^n D_k$.

2. $||d^*(I - P_m)T_n|| \leq 1 + 3\lambda/2$, for all $d^* \in \bigcup_{k=1}^n D_k$ and $m \leq n$.

3. For every $d^* \in D$ and all $m \leq n$ there exists l > 0 so that

$$\|d^*(I - P_m)T_n\| \le (1 + 3\lambda/2) \sum_{k=0}^l b^k$$

4. $||T_n|| \leq \lambda$.

The last property implies the upper estimate. For the inductive step we assume that all four properties hold for n and then prove they are also valid for n + 1. To accomplish this we make use of the splitting property of the elements of D which yield estimates of the following kind

$$\|d^*T_n\| \le 1 + \lambda/2 + b(1 + 3\lambda/2) \sum_{k=0}^{l} b^k$$

< 1 + \lambda/2 + (1 + 3\lambda/2)b(1 - b)^{-1}
= (1 - b)^{-1} + \rho\lambda < \lambda

Definition of X. Let $\mathcal{F} = \{F \subset \mathbb{N} : |F| \leq \min F + 2\} \cup \{\emptyset\}$. This is a pointwise compact family of finite subsets of \mathbb{N} .

We inductively construct a sequence $\Delta_1 < \Delta_2 < \ldots$ of successive intervals of \mathbb{N} whose union is \mathbb{N} and a sequence (D_n) of subsets of c_{00} so that for all n

1.
$$e_i^* \in D_n$$
 for all $i \in \Delta_n$.

2. $\operatorname{supp} d^* \subset \bigcup_{k=1}^n \Delta_k$ and $\operatorname{max} \operatorname{supp} d^* \in \Delta_n$ for all $d^* \in D_n$.

3. $|\operatorname{supp} d^* \cap \Delta_k| \leq 1$ for all $d^* \in D_n$ and $k \leq n$.

4. $|d^*(i)| \leq 1$ for every $i \in \mathbb{N}$ and all $d^* \in D_n$.

5. $\operatorname{supp} d^* \in \mathcal{F}$ for all $d^* \in D_n$.

Indeed, define $\Delta_k = \{k\}$ and $D_k = \{e_k^*\}$ for $k \leq 2$. Assume that Δ_k and D_k have been defined for all $k \leq n$.

12

If ξ^* and η^* are elements of $\cup_{k=1}^n D_k$, then we say that (ξ^*, η^*) is a linked pair provided that there exist integers $1 \le k < l \le n$ with $\xi^* \in D_k$, $\eta^* \in D_l$ and $\operatorname{supp}\xi^* \cup \operatorname{supp}[\eta^*|(\cup_{i=k+1}^l \Delta_i)] \in \mathcal{F}$ without being a maximal element. Denote by Σ_n the set of all possible linked pairs formed by elements of $\cup_{k=1}^{n} D_k$.

Let Δ_{n+1} be the interval adjacent to Δ_n having $|\Sigma_n|$ elements. Let $\sigma_n: \Sigma_n \to \Delta_{n+1}$ be an injection. Define

$$D_{n+1} = \{\xi^* + b\eta^* | (\cup_{i=k+1}^{l} \Delta_i) + e_{\sigma_n(\xi^*, \eta^*)}^* :$$
$$(\xi^*, \eta^*) \in \Sigma_n\} \cup \{e_i^* : i \in \Delta_{n+1}\}$$

Let $D = \bigcup_n D_n$ and define a norm on c_{00} by

$$||x|| = \sup\{|\sum_{i} d^{*}(i)x(i)| : d^{*} \in D\}$$

X is the completion of c_{00} under this norm.

 (e_n) is a normalized basis for X since $|d^*(i)| \leq 1$ for all $i \in \mathbb{N}$ and $d^* \in D$ and $||d^*|I|| \leq 2$ for all $d^* \in D$ and initial intervals I (use induction and the fact that b < 1/4).

Evidently the construction of X implies that the assumptions of the Proposition are fulfilled and thus X is an \mathcal{L}_{∞} space. Moreover, since the supports of the elements of D lie within the compact family \mathcal{F} , we deduce that (e_n) is shrinking and so X^* is isomorphic to ℓ_1 . We

also have that X embeds into $C(\mathcal{F})$ which is isomorphic to $C(\omega^{\omega})$.

Finally, consider a normalized block basis (u_n) of (e_n) . If $\lim_n ||u_n||_{c_0} = 0$, then standard arguments yield that some subsequence of (u_n) is equivalent to the c_0 basis.

In case there is some $\delta > 0$ so that $||u_n||_{c_0} > \delta$ for all $n \in \mathbb{N}$, then for all $k \in \mathbb{N}$ there exist $J \subset \mathbb{N}$ with |J| = k and $d^* \in D$ so that $|d^*(u_i)| \ge \delta b$, for all $i \in J$. It follows now that some subsequence of (u_n) admits ℓ_1 as a spreading model. It follows that $C(\omega^{\omega})$ does not embed into X.