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Definition

Definition (Lindenstrauss, Pelczynski 1968)

Let λ > 1. A Banach space X is called a L(∞,λ)-space if for every finite

dimensional subspace F of X , there is a finite dimensional subspace E of X

such that F ⊂ E and d(E , `
dim(E)
∞ ) < λ.

X is called a L∞-space if it is a L(∞,λ)-space for some λ > 1.

Examples:

1 c0 is a L(∞,1+ε)-space for all ε > 0.

2 C(K) is a L(∞,1+ε)-space for all ε > 0.

Theorem (Lewis, Stegall 1973)

If a L∞ space X has a separable dual X ∗, then X ∗ is isomorphic to `1.
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Embedding into isomorphic preduals of `1

Theorem (F, Odell, Schlumprecht 2011)

Let X be a Banach space with separable dual.

1 X embeds into an isomorphic predual of `1

2 If X does not contain c0, then X embeds into an isomorphic predual of `1

which does not contain c0.

3 If X is reflexive then X embeds into an isomorphic predual of `1 which is

somewhat reflexive.
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Embedding into spaces with very few operators

Theorem (Argyros, F, Haydon, Odell, Raikoftsalis, Schlumprecht, Zisimopoulou

2012)

Let X be a separable uniformly convex Banach space. X embeds into a

Banach space Z such that Z is an isomorphic predual of `1, and Z has very

few operators. That is, every operator on Z is equal to a scalar times the

identity plus a compact operator.

Theorem (Argyros, F, Haydon, Odell, Raikoftsalis, Schlumprecht, Zisimopoulou

(in preparation))

Let X be a separable Banach space such that `1 is not isomorphic to a

complemented subspace of X ∗. X embeds into a Banach space Z such that Z

is an isomorphic predual of `1, and Z has very few operators.
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General Bourgain Delbaen construction

Let {∆i}∞i=1 be a sequence of finite disjoint sets.

We will construct a separable L∞ subspace of `∞(∪∞i=1∆i ).

For each n ∈ N, let Un : `∞(∪n
i=1∆i )→ `∞(∆n+1) be some linear map.

Thus if x ∈ `∞(∪n
i=1∆i ) then

(x ,Un(x)) ∈ `∞(∪n
i=1∆i ∪∆n+1)

(x ,Un(x),Un+1(x ,Un(x))) ∈ `∞(∪n
i=1∆i ∪∆n+1 ∪∆n+2)

Want to have:

(x ,Un(x),Un+1(x ,Un(x)),Un+2(...), ...) ∈ `∞(∪∞i=1∆i )
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General Bourgain Delbaen construction continued

Assume there exists some constant C ≥ 1 such that∥∥(x ,Un(x),Un+1(x ,Un(x)),Un+2(...), ...)
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How to ensure ‖Jn‖∞ ≤ 2.

Un : `∞(∪n
i=1∆i )→ `∞(∆n+1)

Jn(x) = (x ,Un(x),Un+1(x ,Un(x)),Un+2(...), ...) ∀x ∈ `∞(∪n
i=1∆i )

Some notation: If γ ∈ ∆n+1 then u∗γ(x) = Un(x)(γ) and e∗γ(x) = x(γ)

Proposition (B-D condition)

The following condition guarantees that ‖Jn‖∞ ≤ 2 for all n ∈ N.

For all γ ∈ ∆n+1 there exists constants aγ , bγ ∈ R, an integer 1 ≤ k < n, an

element η ∈ ∆k and a functional b∗ ∈ B
`1(∪n−1

i=1 )
such that:

1 u∗γ(x) = aγe∗η (x) + bγb∗(x) ∀x ∈ `∞(∪n
i=1∆i )

2 |aγ | ≤ 1 and |bγ | ≤ 1/4 or aγ = 0 and |bγ | ≤ 1

3 b∗(Jn(x)) = 0 for all x ∈ `∞(∪k
i=1∆i )
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Let X ∗ be a separable dual space with a boundedly complete FDD (E∗i ).

Definition (c-decomposition)

Let 0 < c < 1 be a constant. We call a finite block sequence (x∗1 , ..., x
∗
m) a

c-decomposition of x∗ ∈ X ∗ with respect to (E∗i ) if:

1
∑m

i=1 x∗i = x∗

2 ∀1 ≤ i ≤ m either ‖x∗i ‖ < c or x∗i ∈ E∗j for some j ∈ N

We use the c-decomp. of a countable subset of BX∗ to create a B-D space

containing X . We need to define {∆i}∞i=1 and {u∗γ}γ∈∪∆i . Each ∆i will be a

collection of c-decomp. γ = (x∗1 , ..., x
∗
m). If m > 2 then

u∗(x∗1 ,...,x∗m) = e∗(x∗1 ,...,x∗m−1) + ‖x∗m‖e∗cd(x∗m/‖x∗m‖)

If m = 2 then

u∗(x∗1 ,x∗2 ) = ‖x∗1 ‖e∗cd(x∗1 /‖x
∗
1 ‖) + ‖x∗2 ‖e∗cd(x∗2 /‖x

∗
2 ‖)

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D. ZisimopoulouEmbedding into BD spaces and spaces with very few operators.



Let X ∗ be a separable dual space with a boundedly complete FDD (E∗i ).

Definition (c-decomposition)

Let 0 < c < 1 be a constant. We call a finite block sequence (x∗1 , ..., x
∗
m) a

c-decomposition of x∗ ∈ X ∗ with respect to (E∗i ) if:

1
∑m

i=1 x∗i = x∗

2 ∀1 ≤ i ≤ m either ‖x∗i ‖ < c or x∗i ∈ E∗j for some j ∈ N

We use the c-decomp. of a countable subset of BX∗ to create a B-D space

containing X . We need to define {∆i}∞i=1 and {u∗γ}γ∈∪∆i . Each ∆i will be a

collection of c-decomp. γ = (x∗1 , ..., x
∗
m). If m > 2 then

u∗(x∗1 ,...,x∗m) = e∗(x∗1 ,...,x∗m−1) + ‖x∗m‖e∗cd(x∗m/‖x∗m‖)

If m = 2 then

u∗(x∗1 ,x∗2 ) = ‖x∗1 ‖e∗cd(x∗1 /‖x
∗
1 ‖) + ‖x∗2 ‖e∗cd(x∗2 /‖x

∗
2 ‖)

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D. ZisimopoulouEmbedding into BD spaces and spaces with very few operators.



Let X ∗ be a separable dual space with a boundedly complete FDD (E∗i ).

Definition (c-decomposition)

Let 0 < c < 1 be a constant.

We call a finite block sequence (x∗1 , ..., x
∗
m) a

c-decomposition of x∗ ∈ X ∗ with respect to (E∗i ) if:

1
∑m

i=1 x∗i = x∗

2 ∀1 ≤ i ≤ m either ‖x∗i ‖ < c or x∗i ∈ E∗j for some j ∈ N

We use the c-decomp. of a countable subset of BX∗ to create a B-D space

containing X . We need to define {∆i}∞i=1 and {u∗γ}γ∈∪∆i . Each ∆i will be a

collection of c-decomp. γ = (x∗1 , ..., x
∗
m). If m > 2 then

u∗(x∗1 ,...,x∗m) = e∗(x∗1 ,...,x∗m−1) + ‖x∗m‖e∗cd(x∗m/‖x∗m‖)

If m = 2 then

u∗(x∗1 ,x∗2 ) = ‖x∗1 ‖e∗cd(x∗1 /‖x
∗
1 ‖) + ‖x∗2 ‖e∗cd(x∗2 /‖x

∗
2 ‖)

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D. ZisimopoulouEmbedding into BD spaces and spaces with very few operators.



Let X ∗ be a separable dual space with a boundedly complete FDD (E∗i ).

Definition (c-decomposition)

Let 0 < c < 1 be a constant. We call a finite block sequence (x∗1 , ..., x
∗
m) a

c-decomposition of x∗ ∈ X ∗ with respect to (E∗i ) if:

1
∑m

i=1 x∗i = x∗

2 ∀1 ≤ i ≤ m either ‖x∗i ‖ < c or x∗i ∈ E∗j for some j ∈ N

We use the c-decomp. of a countable subset of BX∗ to create a B-D space

containing X . We need to define {∆i}∞i=1 and {u∗γ}γ∈∪∆i . Each ∆i will be a

collection of c-decomp. γ = (x∗1 , ..., x
∗
m). If m > 2 then

u∗(x∗1 ,...,x∗m) = e∗(x∗1 ,...,x∗m−1) + ‖x∗m‖e∗cd(x∗m/‖x∗m‖)

If m = 2 then

u∗(x∗1 ,x∗2 ) = ‖x∗1 ‖e∗cd(x∗1 /‖x
∗
1 ‖) + ‖x∗2 ‖e∗cd(x∗2 /‖x

∗
2 ‖)

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D. ZisimopoulouEmbedding into BD spaces and spaces with very few operators.



Let X ∗ be a separable dual space with a boundedly complete FDD (E∗i ).

Definition (c-decomposition)

Let 0 < c < 1 be a constant. We call a finite block sequence (x∗1 , ..., x
∗
m) a

c-decomposition of x∗ ∈ X ∗ with respect to (E∗i ) if:

1
∑m

i=1 x∗i = x∗

2 ∀1 ≤ i ≤ m either ‖x∗i ‖ < c or x∗i ∈ E∗j for some j ∈ N

We use the c-decomp. of a countable subset of BX∗ to create a B-D space

containing X . We need to define {∆i}∞i=1 and {u∗γ}γ∈∪∆i . Each ∆i will be a

collection of c-decomp. γ = (x∗1 , ..., x
∗
m). If m > 2 then

u∗(x∗1 ,...,x∗m) = e∗(x∗1 ,...,x∗m−1) + ‖x∗m‖e∗cd(x∗m/‖x∗m‖)

If m = 2 then

u∗(x∗1 ,x∗2 ) = ‖x∗1 ‖e∗cd(x∗1 /‖x
∗
1 ‖) + ‖x∗2 ‖e∗cd(x∗2 /‖x

∗
2 ‖)

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D. ZisimopoulouEmbedding into BD spaces and spaces with very few operators.



Let X ∗ be a separable dual space with a boundedly complete FDD (E∗i ).

Definition (c-decomposition)

Let 0 < c < 1 be a constant. We call a finite block sequence (x∗1 , ..., x
∗
m) a

c-decomposition of x∗ ∈ X ∗ with respect to (E∗i ) if:

1
∑m

i=1 x∗i = x∗

2 ∀1 ≤ i ≤ m either ‖x∗i ‖ < c or x∗i ∈ E∗j for some j ∈ N

We use the c-decomp. of a countable subset of BX∗ to create a B-D space

containing X . We need to define {∆i}∞i=1 and {u∗γ}γ∈∪∆i . Each ∆i will be a

collection of c-decomp. γ = (x∗1 , ..., x
∗
m). If m > 2 then

u∗(x∗1 ,...,x∗m) = e∗(x∗1 ,...,x∗m−1) + ‖x∗m‖e∗cd(x∗m/‖x∗m‖)

If m = 2 then

u∗(x∗1 ,x∗2 ) = ‖x∗1 ‖e∗cd(x∗1 /‖x
∗
1 ‖) + ‖x∗2 ‖e∗cd(x∗2 /‖x

∗
2 ‖)

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D. ZisimopoulouEmbedding into BD spaces and spaces with very few operators.



Let X ∗ be a separable dual space with a boundedly complete FDD (E∗i ).

Definition (c-decomposition)

Let 0 < c < 1 be a constant. We call a finite block sequence (x∗1 , ..., x
∗
m) a

c-decomposition of x∗ ∈ X ∗ with respect to (E∗i ) if:

1
∑m

i=1 x∗i = x∗

2 ∀1 ≤ i ≤ m either ‖x∗i ‖ < c or x∗i ∈ E∗j for some j ∈ N

We use the c-decomp. of a countable subset of BX∗ to create a B-D space

containing X .

We need to define {∆i}∞i=1 and {u∗γ}γ∈∪∆i . Each ∆i will be a

collection of c-decomp. γ = (x∗1 , ..., x
∗
m). If m > 2 then

u∗(x∗1 ,...,x∗m) = e∗(x∗1 ,...,x∗m−1) + ‖x∗m‖e∗cd(x∗m/‖x∗m‖)

If m = 2 then

u∗(x∗1 ,x∗2 ) = ‖x∗1 ‖e∗cd(x∗1 /‖x
∗
1 ‖) + ‖x∗2 ‖e∗cd(x∗2 /‖x

∗
2 ‖)

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D. ZisimopoulouEmbedding into BD spaces and spaces with very few operators.



Let X ∗ be a separable dual space with a boundedly complete FDD (E∗i ).

Definition (c-decomposition)

Let 0 < c < 1 be a constant. We call a finite block sequence (x∗1 , ..., x
∗
m) a

c-decomposition of x∗ ∈ X ∗ with respect to (E∗i ) if:

1
∑m

i=1 x∗i = x∗

2 ∀1 ≤ i ≤ m either ‖x∗i ‖ < c or x∗i ∈ E∗j for some j ∈ N

We use the c-decomp. of a countable subset of BX∗ to create a B-D space

containing X . We need to define {∆i}∞i=1 and {u∗γ}γ∈∪∆i .

Each ∆i will be a

collection of c-decomp. γ = (x∗1 , ..., x
∗
m). If m > 2 then

u∗(x∗1 ,...,x∗m) = e∗(x∗1 ,...,x∗m−1) + ‖x∗m‖e∗cd(x∗m/‖x∗m‖)

If m = 2 then

u∗(x∗1 ,x∗2 ) = ‖x∗1 ‖e∗cd(x∗1 /‖x
∗
1 ‖) + ‖x∗2 ‖e∗cd(x∗2 /‖x

∗
2 ‖)

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D. ZisimopoulouEmbedding into BD spaces and spaces with very few operators.



Let X ∗ be a separable dual space with a boundedly complete FDD (E∗i ).

Definition (c-decomposition)

Let 0 < c < 1 be a constant. We call a finite block sequence (x∗1 , ..., x
∗
m) a

c-decomposition of x∗ ∈ X ∗ with respect to (E∗i ) if:

1
∑m

i=1 x∗i = x∗

2 ∀1 ≤ i ≤ m either ‖x∗i ‖ < c or x∗i ∈ E∗j for some j ∈ N

We use the c-decomp. of a countable subset of BX∗ to create a B-D space

containing X . We need to define {∆i}∞i=1 and {u∗γ}γ∈∪∆i . Each ∆i will be a

collection of c-decomp. γ = (x∗1 , ..., x
∗
m).

If m > 2 then

u∗(x∗1 ,...,x∗m) = e∗(x∗1 ,...,x∗m−1) + ‖x∗m‖e∗cd(x∗m/‖x∗m‖)

If m = 2 then

u∗(x∗1 ,x∗2 ) = ‖x∗1 ‖e∗cd(x∗1 /‖x
∗
1 ‖) + ‖x∗2 ‖e∗cd(x∗2 /‖x

∗
2 ‖)

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D. ZisimopoulouEmbedding into BD spaces and spaces with very few operators.



Let X ∗ be a separable dual space with a boundedly complete FDD (E∗i ).

Definition (c-decomposition)

Let 0 < c < 1 be a constant. We call a finite block sequence (x∗1 , ..., x
∗
m) a

c-decomposition of x∗ ∈ X ∗ with respect to (E∗i ) if:

1
∑m

i=1 x∗i = x∗

2 ∀1 ≤ i ≤ m either ‖x∗i ‖ < c or x∗i ∈ E∗j for some j ∈ N

We use the c-decomp. of a countable subset of BX∗ to create a B-D space

containing X . We need to define {∆i}∞i=1 and {u∗γ}γ∈∪∆i . Each ∆i will be a

collection of c-decomp. γ = (x∗1 , ..., x
∗
m). If m > 2 then

u∗(x∗1 ,...,x∗m) = e∗(x∗1 ,...,x∗m−1) + ‖x∗m‖e∗cd(x∗m/‖x∗m‖)

If m = 2 then

u∗(x∗1 ,x∗2 ) = ‖x∗1 ‖e∗cd(x∗1 /‖x
∗
1 ‖) + ‖x∗2 ‖e∗cd(x∗2 /‖x

∗
2 ‖)

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D. ZisimopoulouEmbedding into BD spaces and spaces with very few operators.



Let X ∗ be a separable dual space with a boundedly complete FDD (E∗i ).

Definition (c-decomposition)

Let 0 < c < 1 be a constant. We call a finite block sequence (x∗1 , ..., x
∗
m) a

c-decomposition of x∗ ∈ X ∗ with respect to (E∗i ) if:

1
∑m

i=1 x∗i = x∗

2 ∀1 ≤ i ≤ m either ‖x∗i ‖ < c or x∗i ∈ E∗j for some j ∈ N

We use the c-decomp. of a countable subset of BX∗ to create a B-D space

containing X . We need to define {∆i}∞i=1 and {u∗γ}γ∈∪∆i . Each ∆i will be a

collection of c-decomp. γ = (x∗1 , ..., x
∗
m). If m > 2 then

u∗(x∗1 ,...,x∗m) = e∗(x∗1 ,...,x∗m−1) + ‖x∗m‖e∗cd(x∗m/‖x∗m‖)

If m = 2 then

u∗(x∗1 ,x∗2 ) = ‖x∗1 ‖e∗cd(x∗1 /‖x
∗
1 ‖) + ‖x∗2 ‖e∗cd(x∗2 /‖x

∗
2 ‖)

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D. ZisimopoulouEmbedding into BD spaces and spaces with very few operators.



Let X ∗ be a separable dual space with a boundedly complete FDD (E∗i ).

Definition (c-decomposition)

Let 0 < c < 1 be a constant. We call a finite block sequence (x∗1 , ..., x
∗
m) a

c-decomposition of x∗ ∈ X ∗ with respect to (E∗i ) if:

1
∑m

i=1 x∗i = x∗

2 ∀1 ≤ i ≤ m either ‖x∗i ‖ < c or x∗i ∈ E∗j for some j ∈ N

We use the c-decomp. of a countable subset of BX∗ to create a B-D space

containing X . We need to define {∆i}∞i=1 and {u∗γ}γ∈∪∆i . Each ∆i will be a

collection of c-decomp. γ = (x∗1 , ..., x
∗
m). If m > 2 then

u∗(x∗1 ,...,x∗m) = e∗(x∗1 ,...,x∗m−1) + ‖x∗m‖e∗cd(x∗m/‖x∗m‖)

If m = 2 then

u∗(x∗1 ,x∗2 ) = ‖x∗1 ‖e∗cd(x∗1 /‖x
∗
1 ‖) + ‖x∗2 ‖e∗cd(x∗2 /‖x

∗
2 ‖)

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D. ZisimopoulouEmbedding into BD spaces and spaces with very few operators.



Let X ∗ be a separable dual space with a boundedly complete FDD (E∗i ).

Definition (c-decomposition)

Let 0 < c < 1 be a constant. We call a finite block sequence (x∗1 , ..., x
∗
m) a

c-decomposition of x∗ ∈ X ∗ with respect to (E∗i ) if:

1
∑m

i=1 x∗i = x∗

2 ∀1 ≤ i ≤ m either ‖x∗i ‖ < c or x∗i ∈ E∗j for some j ∈ N

We use the c-decomp. of a countable subset of BX∗ to create a B-D space

containing X . We need to define {∆i}∞i=1 and {u∗γ}γ∈∪∆i . Each ∆i will be a

collection of c-decomp. γ = (x∗1 , ..., x
∗
m). If m > 2 then

u∗(x∗1 ,...,x∗m) = e∗(x∗1 ,...,x∗m−1) + ‖x∗m‖e∗cd(x∗m/‖x∗m‖)

If m = 2 then

u∗(x∗1 ,x∗2 ) = ‖x∗1 ‖e∗cd(x∗1 /‖x
∗
1 ‖) + ‖x∗2 ‖e∗cd(x∗2 /‖x

∗
2 ‖)

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D. ZisimopoulouEmbedding into BD spaces and spaces with very few operators.



Embedding of X

If X is a Banach space then ψ : X → C(BX∗) defined by ψ(x)(x∗) = x∗(x) is

an isometry.

X embeds into Y in a very similar way.

We define the embedding φ : X → Y ⊂ `∞(∪∞i=1∆i ) by:

φ(x)(γ) =
m∑

i=1

x∗i (x) where γ = (x∗1 , ..., x
∗
m)
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Augmentations

We have a Banach space X , finite sets (∆i )
∞
i=1, and a BD space Y with

X ⊆ Y ⊆ `∞(∪∞i=1∆i ).

We create new finite sets (Θi )
∞
i=1 and a new BD space Z with

X ⊕ 0 ⊆ Z ⊂ `∞(∪∞i=1∆i )⊕ `∞(⊕ ∪∞i=1 Θi ).

Depending on X , we want Z to have the additional property of not containing

c0, being somewhat reflexive, or having very few operators.

For γ ∈ Θn+1, we need to define u∗γ . We require that there exists constants

aγ , bγ ∈ R, an integer 1 ≤ k < n, an element η ∈ Θk and a functional

b∗ ∈ B
`1(∪n−1

i=1 )
such that:

1 u∗γ(x) = aγe∗η (x) + bγb∗(x) ∀x ∈ `∞(∪n
i=1∆i ∪Θi )

2 |aγ | ≤ 1 and |bγ | ≤ 1/4 or aγ = 0 and |bγ | ≤ 1

3 b∗(Jn(x)) = 0 for all x ∈ `∞(∪k
i=1∆i ∪Θi )

4 b∗|X = 0
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How to augment FOS with AH for X uniformly convex

For each γ ∈ AH, there exists mj ∈ N, called the weight of gamma, such that:

u∗γ = m−1
j b∗ or

u∗γ = e∗ξ + m−1
j b∗ and weight of ξ is mj

Define: e∗γ = u∗γ + d∗γ . Note that u∗ξ has the same form as u∗γ !

After repeatedly substituting, we obtain the evaluation analysis of γ:

e∗γ =
a∑

i=1

d∗ξ + m−1
j

a∑
i=1

b∗i and a ≤ nj

In FOS, each γ is a c-decomposition (x∗1 , x
∗
2 , ..., x

∗
a ).

u∗(x∗1 ,x∗2 ,...,x∗a ) = e∗(x∗1 ,x∗2 ,...,x∗a−1) + ‖x∗a ‖e∗(x∗a /‖x∗a ‖)

The evaluation analysis of (x∗1 , x
∗
2 , ..., x

∗
a ) is:

e∗(x∗1 ,x∗2 ,...,x∗a ) =
a∑

i=1

d∗(x∗1 ,x∗2 ,...,x∗i ) + ‖x∗i ‖
a∑

i=1

e∗(x∗i /‖x
∗
i ‖)

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D. ZisimopoulouEmbedding into BD spaces and spaces with very few operators.



How to augment FOS with AH for X uniformly convex

For each γ ∈ AH, there exists mj ∈ N, called the weight of gamma, such that:

u∗γ = m−1
j b∗ or

u∗γ = e∗ξ + m−1
j b∗ and weight of ξ is mj

Define: e∗γ = u∗γ + d∗γ . Note that u∗ξ has the same form as u∗γ !

After repeatedly substituting, we obtain the evaluation analysis of γ:

e∗γ =
a∑

i=1

d∗ξ + m−1
j

a∑
i=1

b∗i and a ≤ nj

In FOS, each γ is a c-decomposition (x∗1 , x
∗
2 , ..., x

∗
a ).

u∗(x∗1 ,x∗2 ,...,x∗a ) = e∗(x∗1 ,x∗2 ,...,x∗a−1) + ‖x∗a ‖e∗(x∗a /‖x∗a ‖)

The evaluation analysis of (x∗1 , x
∗
2 , ..., x

∗
a ) is:

e∗(x∗1 ,x∗2 ,...,x∗a ) =
a∑

i=1

d∗(x∗1 ,x∗2 ,...,x∗i ) + ‖x∗i ‖
a∑

i=1

e∗(x∗i /‖x
∗
i ‖)

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D. ZisimopoulouEmbedding into BD spaces and spaces with very few operators.



How to augment FOS with AH for X uniformly convex

For each γ ∈ AH, there exists mj ∈ N, called the weight of gamma, such that:

u∗γ = m−1
j b∗ or

u∗γ = e∗ξ + m−1
j b∗ and weight of ξ is mj

Define: e∗γ = u∗γ + d∗γ . Note that u∗ξ has the same form as u∗γ !

After repeatedly substituting, we obtain the evaluation analysis of γ:

e∗γ =
a∑

i=1

d∗ξ + m−1
j

a∑
i=1

b∗i and a ≤ nj

In FOS, each γ is a c-decomposition (x∗1 , x
∗
2 , ..., x

∗
a ).

u∗(x∗1 ,x∗2 ,...,x∗a ) = e∗(x∗1 ,x∗2 ,...,x∗a−1) + ‖x∗a ‖e∗(x∗a /‖x∗a ‖)

The evaluation analysis of (x∗1 , x
∗
2 , ..., x

∗
a ) is:

e∗(x∗1 ,x∗2 ,...,x∗a ) =
a∑

i=1

d∗(x∗1 ,x∗2 ,...,x∗i ) + ‖x∗i ‖
a∑

i=1

e∗(x∗i /‖x
∗
i ‖)

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D. ZisimopoulouEmbedding into BD spaces and spaces with very few operators.



How to augment FOS with AH for X uniformly convex

For each γ ∈ AH, there exists mj ∈ N, called the weight of gamma, such that:

u∗γ = m−1
j b∗ or

u∗γ = e∗ξ + m−1
j b∗ and weight of ξ is mj

Define: e∗γ = u∗γ + d∗γ . Note that u∗ξ has the same form as u∗γ !

After repeatedly substituting, we obtain the evaluation analysis of γ:

e∗γ =
a∑

i=1

d∗ξ + m−1
j

a∑
i=1

b∗i and a ≤ nj

In FOS, each γ is a c-decomposition (x∗1 , x
∗
2 , ..., x

∗
a ).

u∗(x∗1 ,x∗2 ,...,x∗a ) = e∗(x∗1 ,x∗2 ,...,x∗a−1) + ‖x∗a ‖e∗(x∗a /‖x∗a ‖)

The evaluation analysis of (x∗1 , x
∗
2 , ..., x

∗
a ) is:

e∗(x∗1 ,x∗2 ,...,x∗a ) =
a∑

i=1

d∗(x∗1 ,x∗2 ,...,x∗i ) + ‖x∗i ‖
a∑

i=1

e∗(x∗i /‖x
∗
i ‖)

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D. ZisimopoulouEmbedding into BD spaces and spaces with very few operators.



How to augment FOS with AH for X uniformly convex

For each γ ∈ AH, there exists mj ∈ N, called the weight of gamma, such that:

u∗γ = m−1
j b∗ or

u∗γ = e∗ξ + m−1
j b∗ and weight of ξ is mj

Define: e∗γ = u∗γ + d∗γ .

Note that u∗ξ has the same form as u∗γ !

After repeatedly substituting, we obtain the evaluation analysis of γ:

e∗γ =
a∑

i=1

d∗ξ + m−1
j

a∑
i=1

b∗i and a ≤ nj

In FOS, each γ is a c-decomposition (x∗1 , x
∗
2 , ..., x

∗
a ).

u∗(x∗1 ,x∗2 ,...,x∗a ) = e∗(x∗1 ,x∗2 ,...,x∗a−1) + ‖x∗a ‖e∗(x∗a /‖x∗a ‖)

The evaluation analysis of (x∗1 , x
∗
2 , ..., x

∗
a ) is:

e∗(x∗1 ,x∗2 ,...,x∗a ) =
a∑

i=1

d∗(x∗1 ,x∗2 ,...,x∗i ) + ‖x∗i ‖
a∑

i=1

e∗(x∗i /‖x
∗
i ‖)

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D. ZisimopoulouEmbedding into BD spaces and spaces with very few operators.



How to augment FOS with AH for X uniformly convex

For each γ ∈ AH, there exists mj ∈ N, called the weight of gamma, such that:

u∗γ = m−1
j b∗ or

u∗γ = e∗ξ + m−1
j b∗ and weight of ξ is mj

Define: e∗γ = u∗γ + d∗γ . Note that u∗ξ has the same form as u∗γ !

After repeatedly substituting, we obtain the evaluation analysis of γ:

e∗γ =
a∑

i=1

d∗ξ + m−1
j

a∑
i=1

b∗i and a ≤ nj

In FOS, each γ is a c-decomposition (x∗1 , x
∗
2 , ..., x

∗
a ).

u∗(x∗1 ,x∗2 ,...,x∗a ) = e∗(x∗1 ,x∗2 ,...,x∗a−1) + ‖x∗a ‖e∗(x∗a /‖x∗a ‖)

The evaluation analysis of (x∗1 , x
∗
2 , ..., x

∗
a ) is:

e∗(x∗1 ,x∗2 ,...,x∗a ) =
a∑

i=1

d∗(x∗1 ,x∗2 ,...,x∗i ) + ‖x∗i ‖
a∑

i=1

e∗(x∗i /‖x
∗
i ‖)

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D. ZisimopoulouEmbedding into BD spaces and spaces with very few operators.



How to augment FOS with AH for X uniformly convex

For each γ ∈ AH, there exists mj ∈ N, called the weight of gamma, such that:

u∗γ = m−1
j b∗ or

u∗γ = e∗ξ + m−1
j b∗ and weight of ξ is mj

Define: e∗γ = u∗γ + d∗γ . Note that u∗ξ has the same form as u∗γ !

After repeatedly substituting, we obtain the evaluation analysis of γ:

e∗γ =
a∑

i=1

d∗ξ + m−1
j

a∑
i=1

b∗i and a ≤ nj

In FOS, each γ is a c-decomposition (x∗1 , x
∗
2 , ..., x

∗
a ).

u∗(x∗1 ,x∗2 ,...,x∗a ) = e∗(x∗1 ,x∗2 ,...,x∗a−1) + ‖x∗a ‖e∗(x∗a /‖x∗a ‖)

The evaluation analysis of (x∗1 , x
∗
2 , ..., x

∗
a ) is:

e∗(x∗1 ,x∗2 ,...,x∗a ) =
a∑

i=1

d∗(x∗1 ,x∗2 ,...,x∗i ) + ‖x∗i ‖
a∑

i=1

e∗(x∗i /‖x
∗
i ‖)

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D. ZisimopoulouEmbedding into BD spaces and spaces with very few operators.



How to augment FOS with AH for X uniformly convex

For each γ ∈ AH, there exists mj ∈ N, called the weight of gamma, such that:

u∗γ = m−1
j b∗ or

u∗γ = e∗ξ + m−1
j b∗ and weight of ξ is mj

Define: e∗γ = u∗γ + d∗γ . Note that u∗ξ has the same form as u∗γ !

After repeatedly substituting, we obtain the evaluation analysis of γ:

e∗γ =
a∑

i=1

d∗ξ + m−1
j

a∑
i=1

b∗i

and a ≤ nj

In FOS, each γ is a c-decomposition (x∗1 , x
∗
2 , ..., x

∗
a ).

u∗(x∗1 ,x∗2 ,...,x∗a ) = e∗(x∗1 ,x∗2 ,...,x∗a−1) + ‖x∗a ‖e∗(x∗a /‖x∗a ‖)

The evaluation analysis of (x∗1 , x
∗
2 , ..., x

∗
a ) is:

e∗(x∗1 ,x∗2 ,...,x∗a ) =
a∑

i=1

d∗(x∗1 ,x∗2 ,...,x∗i ) + ‖x∗i ‖
a∑

i=1

e∗(x∗i /‖x
∗
i ‖)

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D. ZisimopoulouEmbedding into BD spaces and spaces with very few operators.



How to augment FOS with AH for X uniformly convex

For each γ ∈ AH, there exists mj ∈ N, called the weight of gamma, such that:

u∗γ = m−1
j b∗ or

u∗γ = e∗ξ + m−1
j b∗ and weight of ξ is mj

Define: e∗γ = u∗γ + d∗γ . Note that u∗ξ has the same form as u∗γ !

After repeatedly substituting, we obtain the evaluation analysis of γ:

e∗γ =
a∑

i=1

d∗ξ + m−1
j

a∑
i=1

b∗i and a ≤ nj

In FOS, each γ is a c-decomposition (x∗1 , x
∗
2 , ..., x

∗
a ).

u∗(x∗1 ,x∗2 ,...,x∗a ) = e∗(x∗1 ,x∗2 ,...,x∗a−1) + ‖x∗a ‖e∗(x∗a /‖x∗a ‖)

The evaluation analysis of (x∗1 , x
∗
2 , ..., x

∗
a ) is:

e∗(x∗1 ,x∗2 ,...,x∗a ) =
a∑

i=1

d∗(x∗1 ,x∗2 ,...,x∗i ) + ‖x∗i ‖
a∑

i=1

e∗(x∗i /‖x
∗
i ‖)

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D. ZisimopoulouEmbedding into BD spaces and spaces with very few operators.



How to augment FOS with AH for X uniformly convex

For each γ ∈ AH, there exists mj ∈ N, called the weight of gamma, such that:

u∗γ = m−1
j b∗ or

u∗γ = e∗ξ + m−1
j b∗ and weight of ξ is mj

Define: e∗γ = u∗γ + d∗γ . Note that u∗ξ has the same form as u∗γ !

After repeatedly substituting, we obtain the evaluation analysis of γ:

e∗γ =
a∑

i=1

d∗ξ + m−1
j

a∑
i=1

b∗i and a ≤ nj

In FOS, each γ is a c-decomposition (x∗1 , x
∗
2 , ..., x

∗
a ).

u∗(x∗1 ,x∗2 ,...,x∗a ) = e∗(x∗1 ,x∗2 ,...,x∗a−1) + ‖x∗a ‖e∗(x∗a /‖x∗a ‖)

The evaluation analysis of (x∗1 , x
∗
2 , ..., x

∗
a ) is:

e∗(x∗1 ,x∗2 ,...,x∗a ) =
a∑

i=1

d∗(x∗1 ,x∗2 ,...,x∗i ) + ‖x∗i ‖
a∑

i=1

e∗(x∗i /‖x
∗
i ‖)

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D. ZisimopoulouEmbedding into BD spaces and spaces with very few operators.



How to augment FOS with AH for X uniformly convex

For each γ ∈ AH, there exists mj ∈ N, called the weight of gamma, such that:

u∗γ = m−1
j b∗ or

u∗γ = e∗ξ + m−1
j b∗ and weight of ξ is mj

Define: e∗γ = u∗γ + d∗γ . Note that u∗ξ has the same form as u∗γ !

After repeatedly substituting, we obtain the evaluation analysis of γ:

e∗γ =
a∑

i=1

d∗ξ + m−1
j

a∑
i=1

b∗i and a ≤ nj

In FOS, each γ is a c-decomposition (x∗1 , x
∗
2 , ..., x

∗
a ).

u∗(x∗1 ,x∗2 ,...,x∗a ) = e∗(x∗1 ,x∗2 ,...,x∗a−1) + ‖x∗a ‖e∗(x∗a /‖x∗a ‖)

The evaluation analysis of (x∗1 , x
∗
2 , ..., x

∗
a ) is:

e∗(x∗1 ,x∗2 ,...,x∗a ) =
a∑

i=1

d∗(x∗1 ,x∗2 ,...,x∗i ) + ‖x∗i ‖
a∑

i=1

e∗(x∗i /‖x
∗
i ‖)

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D. ZisimopoulouEmbedding into BD spaces and spaces with very few operators.



How to augment FOS with AH for X uniformly convex

For each γ ∈ AH, there exists mj ∈ N, called the weight of gamma, such that:

u∗γ = m−1
j b∗ or

u∗γ = e∗ξ + m−1
j b∗ and weight of ξ is mj

Define: e∗γ = u∗γ + d∗γ . Note that u∗ξ has the same form as u∗γ !

After repeatedly substituting, we obtain the evaluation analysis of γ:

e∗γ =
a∑

i=1

d∗ξ + m−1
j

a∑
i=1

b∗i and a ≤ nj

In FOS, each γ is a c-decomposition (x∗1 , x
∗
2 , ..., x

∗
a ).

u∗(x∗1 ,x∗2 ,...,x∗a ) = e∗(x∗1 ,x∗2 ,...,x∗a−1) + ‖x∗a ‖e∗(x∗a /‖x∗a ‖)

The evaluation analysis of (x∗1 , x
∗
2 , ..., x

∗
a ) is:

e∗(x∗1 ,x∗2 ,...,x∗a ) =
a∑

i=1

d∗(x∗1 ,x∗2 ,...,x∗i ) + ‖x∗i ‖
a∑

i=1

e∗(x∗i /‖x
∗
i ‖)

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D. ZisimopoulouEmbedding into BD spaces and spaces with very few operators.



How to augment FOS with AH for X uniformly convex

For each γ ∈ AH, there exists mj ∈ N, called the weight of gamma, such that:

u∗γ = m−1
j b∗ or

u∗γ = e∗ξ + m−1
j b∗ and weight of ξ is mj

Define: e∗γ = u∗γ + d∗γ . Note that u∗ξ has the same form as u∗γ !

After repeatedly substituting, we obtain the evaluation analysis of γ:

e∗γ =
a∑

i=1

d∗ξ + m−1
j

a∑
i=1

b∗i and a ≤ nj

In FOS, each γ is a c-decomposition (x∗1 , x
∗
2 , ..., x

∗
a ).

u∗(x∗1 ,x∗2 ,...,x∗a ) = e∗(x∗1 ,x∗2 ,...,x∗a−1) + ‖x∗a ‖e∗(x∗a /‖x∗a ‖)

The evaluation analysis of (x∗1 , x
∗
2 , ..., x

∗
a ) is:

e∗(x∗1 ,x∗2 ,...,x∗a ) =
a∑

i=1

d∗(x∗1 ,x∗2 ,...,x∗i ) + ‖x∗i ‖
a∑

i=1

e∗(x∗i /‖x
∗
i ‖)

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D. ZisimopoulouEmbedding into BD spaces and spaces with very few operators.



How to augment FOS with AH for X uniformly convex

We replace each γ = (x∗1 , x
∗
2 , ..., x

∗
a ) in FOS with (cx∗1 , cx∗2 , ..., cx∗a ).

The

evaluation analysis of (cx∗1 , cx∗2 , ..., cx∗a ) is:

e∗(cx∗1 ,cx∗2 ,...,cx∗a ) =
a∑

i=1

d∗(cx∗1 ,cx∗2 ,...,cx∗i ) + c
a∑

i=1

‖x∗i ‖
c

e∗(cx∗i /‖x
∗
i ‖)

We may choose m1 = c. If X is uniformly convex then there exists n1 ∈ N
such that if x∗ ∈ BX∗ then x∗ has a c-decomposition (x∗1 , x

∗
2 , ..., x

∗
a ) with

a ≤ n1.Thus FOS fits the setup:

u∗γ = m−1
j b∗ or

u∗γ = e∗ξ + m−1
j b∗ and weight of ξ is mj

After repeatedly substituting, we obtain the analysis of γ:

e∗γ =
a∑

i=1
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How to augment FOS with AH for X uniformly convex

For AH, given any bounded operator T , there exists a constant λ such that

T − λId is compact.

After augmenting FOS with AH when X is uniformly convex, given any

bounded operator T , there exists a constant λ and a compact operator K such

that T − λId − K factors through X . Thus T − λId − K is weakly compact.

Thus T ∗ − λId∗ − K∗ : `1 → `1 is weakly compact, and hence compact. This

gives that T − λId is compact.
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