Embedding into BD spaces and spaces with very few operators.

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlumprecht, and D. Zisimopoulou

March 5, 2012

Definition

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlt Embedding into BD spaces and spaces with very few operators.

Definition

Definition (Lindenstrauss, Pelczynski 1968)

Definition

Definition (Lindenstrauss, Pelczynski 1968)

Let $\lambda>1$. A Banach space X is called a $\mathcal{L}_{(\infty, \lambda)}$-space if for every finite dimensional subspace F of X, there is a finite dimensional subspace E of X such that $F \subset E$ and $d\left(E, \ell_{\infty}^{\operatorname{dim}(E)}\right)<\lambda$.

Definition

Definition (Lindenstrauss, Pelczynski 1968)

Let $\lambda>1$. A Banach space X is called a $\mathcal{L}_{(\infty, \lambda)}$-space if for every finite dimensional subspace F of X, there is a finite dimensional subspace E of X such that $F \subset E$ and $d\left(E, \ell_{\infty}^{\operatorname{dim}(E)}\right)<\lambda$.
X is called a \mathcal{L}_{∞}-space if it is a $\mathcal{L}_{(\infty, \lambda)}$-space for some $\lambda>1$.

Definition

> Definition (Lindenstrauss, Pelczynski 1968)
> Let $\lambda>1$. A Banach space X is called a $\mathcal{L}_{(\infty, \lambda) \text {-space }}$ if for every finite dimensional subspace F of X, there is a finite dimensional subspace E of X such that $F \subset E$ and $d\left(E, \ell_{\infty}^{\operatorname{dim}(E)}\right)<\lambda$.
> X is called a \mathcal{L}_{∞}-space if it is a $\mathcal{L}_{(\infty, \lambda)}$-space for some $\lambda>1$.

Examples:

Definition

Definition (Lindenstrauss, Pelczynski 1968)

Let $\lambda>1$. A Banach space X is called a $\mathcal{L}_{(\infty, \lambda) \text {-space }}$ if for every finite dimensional subspace F of X, there is a finite dimensional subspace E of X such that $F \subset E$ and $d\left(E, \ell_{\infty}^{\operatorname{dim}(E)}\right)<\lambda$.
X is called a \mathcal{L}_{∞}-space if it is a $\mathcal{L}_{(\infty, \lambda)}$-space for some $\lambda>1$.

Examples:

(1) c_{0} is a $\mathcal{L}_{(\infty, 1+\varepsilon)}$-space for all $\varepsilon>0$.

Definition

Definition (Lindenstrauss, Pelczynski 1968)

Let $\lambda>1$. A Banach space X is called a $\mathcal{L}_{(\infty, \lambda) \text {-space }}$ if for every finite dimensional subspace F of X, there is a finite dimensional subspace E of X such that $F \subset E$ and $d\left(E, \ell_{\infty}^{\operatorname{dim}(E)}\right)<\lambda$.
X is called a \mathcal{L}_{∞}-space if it is a $\mathcal{L}_{(\infty, \lambda)}$-space for some $\lambda>1$.

Examples:

(1) c_{0} is a $\mathcal{L}_{(\infty, 1+\varepsilon)}$-space for all $\varepsilon>0$.
(2) $C(K)$ is a $\mathcal{L}_{(\infty, 1+\varepsilon) \text {-space }}$ for all $\varepsilon>0$.

Definition

Definition (Lindenstrauss, Pelczynski 1968)

Let $\lambda>1$. A Banach space X is called a $\mathcal{L}_{(\infty, \lambda)}$-space if for every finite dimensional subspace F of X, there is a finite dimensional subspace E of X such that $F \subset E$ and $d\left(E, \ell_{\infty}^{\operatorname{dim}(E)}\right)<\lambda$.
X is called a \mathcal{L}_{∞}-space if it is a $\mathcal{L}_{(\infty, \lambda)}$-space for some $\lambda>1$.

Examples:

(1) c_{0} is a $\mathcal{L}_{(\infty, 1+\varepsilon)}$-space for all $\varepsilon>0$.
(2) $C(K)$ is a $\mathcal{L}_{(\infty, 1+\varepsilon)}$-space for all $\varepsilon>0$.

Theorem (Lewis, Stegall 1973)

If a \mathcal{L}_{∞} space X has a separable dual X^{*}, then X^{*} is isomorphic to ℓ_{1}.

Embedding into isomorphic preduals of ℓ_{1}

Embedding into isomorphic preduals of ℓ_{1}

Theorem (F, Odell, Schlumprecht 2011)

Let X be a Banach space with separable dual.

Embedding into isomorphic preduals of ℓ_{1}

Theorem (F, Odell, Schlumprecht 2011)
Let X be a Banach space with separable dual.
(1) X embeds into an isomorphic predual of ℓ_{1}

Embedding into isomorphic preduals of ℓ_{1}

Theorem (F, Odell, Schlumprecht 2011)

Let X be a Banach space with separable dual.
(1) X embeds into an isomorphic predual of ℓ_{1}
(2) If X does not contain c_{0}, then X embeds into an isomorphic predual of ℓ_{1} which does not contain c_{0}.

Embedding into isomorphic preduals of ℓ_{1}

Theorem (F, Odell, Schlumprecht 2011)

Let X be a Banach space with separable dual.
(1) X embeds into an isomorphic predual of ℓ_{1}
(2) If X does not contain c_{0}, then X embeds into an isomorphic predual of ℓ_{1} which does not contain c_{0}.
(3) If X is reflexive then X embeds into an isomorphic predual of ℓ_{1} which is somewhat reflexive.

Embedding into spaces with very few operators

Embedding into spaces with very few operators

```
Theorem (Argyros, F, Haydon, Odell, Raikoftsalis, Schlumprecht, Zisimopoulou
2012)
Let X be a separable uniformly convex Banach space.
```


Embedding into spaces with very few operators

```
Theorem (Argyros, F, Haydon, Odell, Raikoftsalis, Schlumprecht, Zisimopoulou
2012)
Let \(X\) be a separable uniformly convex Banach space. \(X\) embeds into a Banach space \(Z\) such that \(Z\) is an isomorphic predual of \(\ell_{1}\), and
```


Embedding into spaces with very few operators

> Theorem (Argyros, F, Haydon, Odell, Raikoftsalis, Schlumprecht, Zisimopoulou 2012)

Let X be a separable uniformly convex Banach space. X embeds into a Banach space Z such that Z is an isomorphic predual of ℓ_{1}, and Z has very few operators.

Embedding into spaces with very few operators

> Theorem (Argyros, F, Haydon, Odell, Raikoftsalis, Schlumprecht, Zisimopoulou 2012)

> Let X be a separable uniformly convex Banach space. X embeds into a Banach space Z such that Z is an isomorphic predual of ℓ_{1}, and Z has very few operators. That is, every operator on Z is equal to a scalar times the identity plus a compact operator.

Embedding into spaces with very few operators

> Theorem (Argyros, F, Haydon, Odell, Raikoftsalis, Schlumprecht, Zisimopoulou 2012)

Let X be a separable uniformly convex Banach space. X embeds into a Banach space Z such that Z is an isomorphic predual of ℓ_{1}, and Z has very few operators. That is, every operator on Z is equal to a scalar times the identity plus a compact operator.

Theorem (Argyros, F, Haydon, Odell, Raikoftsalis, Schlumprecht, Zisimopoulou (in preparation))

Embedding into spaces with very few operators

> Theorem (Argyros, F, Haydon, Odell, Raikoftsalis, Schlumprecht, Zisimopoulou 2012)

> Let X be a separable uniformly convex Banach space. X embeds into a Banach space Z such that Z is an isomorphic predual of ℓ_{1}, and Z has very few operators. That is, every operator on Z is equal to a scalar times the identity plus a compact operator.

Theorem (Argyros, F, Haydon, Odell, Raikoftsalis, Schlumprecht, Zisimopoulou (in preparation))
Let X be a separable Banach space such that ℓ_{1} is not isomorphic to a complemented subspace of X^{*}.

Embedding into spaces with very few operators

> Theorem (Argyros, F, Haydon, Odell, Raikoftsalis, Schlumprecht, Zisimopoulou 2012)

> Let X be a separable uniformly convex Banach space. X embeds into a Banach space Z such that Z is an isomorphic predual of ℓ_{1}, and Z has very few operators. That is, every operator on Z is equal to a scalar times the identity plus a compact operator.

Theorem (Argyros, F, Haydon, Odell, Raikoftsalis, Schlumprecht, Zisimopoulou (in preparation))
Let X be a separable Banach space such that ℓ_{1} is not isomorphic to a complemented subspace of X^{*}. X embeds into a Banach space Z such that Z is an isomorphic predual of ℓ_{1}, and

Embedding into spaces with very few operators

> Theorem (Argyros, F, Haydon, Odell, Raikoftsalis, Schlumprecht, Zisimopoulou 2012)

Let X be a separable uniformly convex Banach space. X embeds into a Banach space Z such that Z is an isomorphic predual of ℓ_{1}, and Z has very few operators. That is, every operator on Z is equal to a scalar times the identity plus a compact operator.

Theorem (Argyros, F, Haydon, Odell, Raikoftsalis, Schlumprecht, Zisimopoulou (in preparation))
Let X be a separable Banach space such that ℓ_{1} is not isomorphic to a complemented subspace of X^{*}. X embeds into a Banach space Z such that Z is an isomorphic predual of ℓ_{1}, and Z has very few operators.

General Bourgain Delbaen construction

General Bourgain Delbaen construction

Let $\left\{\Delta_{i}\right\}_{i=1}^{\infty}$ be a sequence of finite disjoint sets.
We will construct a separable \mathcal{L}_{∞} subspace of $\ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right)$.

General Bourgain Delbaen construction

Let $\left\{\Delta_{i}\right\}_{i=1}^{\infty}$ be a sequence of finite disjoint sets.
We will construct a separable \mathcal{L}_{∞} subspace of $\ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right)$.
For each $n \in \mathbb{N}$, let $U_{n}: \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right) \rightarrow \ell_{\infty}\left(\Delta_{n+1}\right)$ be some linear map.

General Bourgain Delbaen construction

Let $\left\{\Delta_{i}\right\}_{i=1}^{\infty}$ be a sequence of finite disjoint sets.
We will construct a separable \mathcal{L}_{∞} subspace of $\ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right)$.
For each $n \in \mathbb{N}$, let $U_{n}: \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right) \rightarrow \ell_{\infty}\left(\Delta_{n+1}\right)$ be some linear map.
Thus if $x \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right)$ then

General Bourgain Delbaen construction

Let $\left\{\Delta_{i}\right\}_{i=1}^{\infty}$ be a sequence of finite disjoint sets.
We will construct a separable \mathcal{L}_{∞} subspace of $\ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right)$.
For each $n \in \mathbb{N}$, let $U_{n}: \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right) \rightarrow \ell_{\infty}\left(\Delta_{n+1}\right)$ be some linear map.
Thus if $x \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right)$ then

$$
\left(x, U_{n}(x)\right) \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i} \cup \Delta_{n+1}\right)
$$

General Bourgain Delbaen construction

Let $\left\{\Delta_{i}\right\}_{i=1}^{\infty}$ be a sequence of finite disjoint sets.
We will construct a separable \mathcal{L}_{∞} subspace of $\ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right)$.
For each $n \in \mathbb{N}$, let $U_{n}: \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right) \rightarrow \ell_{\infty}\left(\Delta_{n+1}\right)$ be some linear map.
Thus if $x \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right)$ then

$$
\begin{aligned}
& \left(x, U_{n}(x)\right) \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i} \cup \Delta_{n+1}\right) \\
& \left(x, U_{n}(x), U_{n+1}\left(x, U_{n}(x)\right)\right) \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i} \cup \Delta_{n+1} \cup \Delta_{n+2}\right)
\end{aligned}
$$

General Bourgain Delbaen construction

Let $\left\{\Delta_{i}\right\}_{i=1}^{\infty}$ be a sequence of finite disjoint sets.
We will construct a separable \mathcal{L}_{∞} subspace of $\ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right)$.
For each $n \in \mathbb{N}$, let $U_{n}: \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right) \rightarrow \ell_{\infty}\left(\Delta_{n+1}\right)$ be some linear map.
Thus if $x \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right)$ then

$$
\begin{aligned}
& \left(x, U_{n}(x)\right) \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i} \cup \Delta_{n+1}\right) \\
& \left(x, U_{n}(x), U_{n+1}\left(x, U_{n}(x)\right)\right) \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i} \cup \Delta_{n+1} \cup \Delta_{n+2}\right)
\end{aligned}
$$

Want to have:

General Bourgain Delbaen construction

Let $\left\{\Delta_{i}\right\}_{i=1}^{\infty}$ be a sequence of finite disjoint sets.
We will construct a separable \mathcal{L}_{∞} subspace of $\ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right)$.
For each $n \in \mathbb{N}$, let $U_{n}: \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right) \rightarrow \ell_{\infty}\left(\Delta_{n+1}\right)$ be some linear map.
Thus if $x \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right)$ then

$$
\begin{aligned}
& \left(x, U_{n}(x)\right) \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i} \cup \Delta_{n+1}\right) \\
& \left(x, U_{n}(x), U_{n+1}\left(x, U_{n}(x)\right)\right) \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i} \cup \Delta_{n+1} \cup \Delta_{n+2}\right)
\end{aligned}
$$

Want to have:

$$
\left(x, U_{n}(x), U_{n+1}\left(x, U_{n}(x)\right), U_{n+2}(\ldots), \ldots\right) \in \ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right)
$$

General Bourgain Delbaen construction continued

Assume there exists some constant $C \geq 1$ such that

$$
\left\|\left(x, U_{n}(x), U_{n+1}\left(x, U_{n}(x)\right), U_{n+2}(\ldots), \ldots\right)\right\|_{\infty} \leq C\|x\|_{\infty} \quad \forall x \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right)
$$

General Bourgain Delbaen construction continued

Assume there exists some constant $C \geq 1$ such that

$$
\left\|\left(x, U_{n}(x), U_{n+1}\left(x, U_{n}(x)\right), U_{n+2}(\ldots), \ldots\right)\right\|_{\infty} \leq C\|x\|_{\infty} \quad \forall x \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right)
$$

We define $J_{n}: \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right) \rightarrow \ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right)$ by:

$$
J_{n}(x)=\left(x, U_{n}(x), U_{n+1}\left(x, U_{n}(x)\right), U_{n+2}(\ldots), \ldots\right) \quad \forall x \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right)
$$

General Bourgain Delbaen construction continued

Assume there exists some constant $C \geq 1$ such that

$$
\left\|\left(x, U_{n}(x), U_{n+1}\left(x, U_{n}(x)\right), U_{n+2}(\ldots), \ldots\right)\right\|_{\infty} \leq C\|x\|_{\infty} \quad \forall x \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right)
$$

We define $J_{n}: \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right) \rightarrow \ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right)$ by:

$$
J_{n}(x)=\left(x, U_{n}(x), U_{n+1}\left(x, U_{n}(x)\right), U_{n+2}(\ldots), \ldots\right) \quad \forall x \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right)
$$

We denote $Y_{n}=J_{n}\left(\ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right)\right)$

General Bourgain Delbaen construction continued

Assume there exists some constant $C \geq 1$ such that

$$
\left\|\left(x, U_{n}(x), U_{n+1}\left(x, U_{n}(x)\right), U_{n+2}(\ldots), \ldots\right)\right\|_{\infty} \leq C\|x\|_{\infty} \quad \forall x \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right)
$$

We define $J_{n}: \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right) \rightarrow \ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right)$ by:

$$
J_{n}(x)=\left(x, U_{n}(x), U_{n+1}\left(x, U_{n}(x)\right), U_{n+2}(\ldots), \ldots\right) \quad \forall x \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right)
$$

We denote $Y_{n}=J_{n}\left(\ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right)\right)$ and $Y=\overline{\cup_{n=1}^{\infty} Y_{n}}$.

General Bourgain Delbaen construction continued

Assume there exists some constant $C \geq 1$ such that

$$
\left\|\left(x, U_{n}(x), U_{n+1}\left(x, U_{n}(x)\right), U_{n+2}(\ldots), \ldots\right)\right\|_{\infty} \leq C\|x\|_{\infty} \quad \forall x \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right)
$$

We define $J_{n}: \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right) \rightarrow \ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right)$ by:

$$
J_{n}(x)=\left(x, U_{n}(x), U_{n+1}\left(x, U_{n}(x)\right), U_{n+2}(\ldots), \ldots\right) \quad \forall x \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right)
$$

We denote $Y_{n}=J_{n}\left(\ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right)\right)$ and $Y=\overline{\cup_{n=1}^{\infty} Y_{n}}$.
The space Y_{n} is C-isomorphic to $\ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right)$.

General Bourgain Delbaen construction continued

Assume there exists some constant $C \geq 1$ such that

$$
\left\|\left(x, U_{n}(x), U_{n+1}\left(x, U_{n}(x)\right), U_{n+2}(\ldots), \ldots\right)\right\|_{\infty} \leq C\|x\|_{\infty} \quad \forall x \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right)
$$

We define $J_{n}: \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right) \rightarrow \ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right)$ by:

$$
J_{n}(x)=\left(x, U_{n}(x), U_{n+1}\left(x, U_{n}(x)\right), U_{n+2}(\ldots), \ldots\right) \quad \forall x \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right)
$$

We denote $Y_{n}=J_{n}\left(\ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right)\right)$ and $Y=\overline{\cup_{n=1}^{\infty} Y_{n}}$.
The space Y_{n} is C-isomorphic to $\ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right)$.
Thus Y is a separable \mathcal{L}_{∞}-subspace of $\ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right)$.

How to ensure $\left\|J_{n}\right\|_{\infty} \leq 2$.

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlt Embedding into BD spaces and spaces with very few operators.

How to ensure $\left\|J_{n}\right\|_{\infty} \leq 2$.

$$
U_{n}: \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right) \rightarrow \ell_{\infty}\left(\Delta_{n+1}\right)
$$

How to ensure $\left\|J_{n}\right\|_{\infty} \leq 2$.

$$
\begin{aligned}
& U_{n}: \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right) \rightarrow \ell_{\infty}\left(\Delta_{n+1}\right) \\
& J_{n}(x)=\left(x, U_{n}(x), U_{n+1}\left(x, U_{n}(x)\right), U_{n+2}(\ldots), \ldots\right) \quad \forall x \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right)
\end{aligned}
$$

How to ensure $\left\|J_{n}\right\|_{\infty} \leq 2$.

$$
\begin{aligned}
& U_{n}: \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right) \rightarrow \ell_{\infty}\left(\Delta_{n+1}\right) \\
& J_{n}(x)=\left(x, U_{n}(x), U_{n+1}\left(x, U_{n}(x)\right), U_{n+2}(\ldots), \ldots\right) \quad \forall x \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right)
\end{aligned}
$$

Some notation: If $\gamma \in \Delta_{n+1}$ then $u_{\gamma}^{*}(x)=U_{n}(x)(\gamma)$ and $e_{\gamma}^{*}(x)=x(\gamma)$

$$
\begin{aligned}
& U_{n}: \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right) \rightarrow \ell_{\infty}\left(\Delta_{n+1}\right) \\
& J_{n}(x)=\left(x, U_{n}(x), U_{n+1}\left(x, U_{n}(x)\right), U_{n+2}(\ldots), \ldots\right) \quad \forall x \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right)
\end{aligned}
$$

Some notation: If $\gamma \in \Delta_{n+1}$ then $u_{\gamma}^{*}(x)=U_{n}(x)(\gamma)$ and $e_{\gamma}^{*}(x)=x(\gamma)$

Proposition (B-D condition)

How to ensure $\left\|J_{n}\right\|_{\infty} \leq 2$.

$U_{n}: \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right) \rightarrow \ell_{\infty}\left(\Delta_{n+1}\right)$
$J_{n}(x)=\left(x, U_{n}(x), U_{n+1}\left(x, U_{n}(x)\right), U_{n+2}(\ldots), \ldots\right) \quad \forall x \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right)$
Some notation: If $\gamma \in \Delta_{n+1}$ then $u_{\gamma}^{*}(x)=U_{n}(x)(\gamma)$ and $e_{\gamma}^{*}(x)=x(\gamma)$

Proposition (B-D condition)

The following condition guarantees that $\left\|J_{n}\right\|_{\infty} \leq 2$ for all $n \in \mathbb{N}$.

How to ensure $\left\|J_{n}\right\|_{\infty} \leq 2$.

$U_{n}: \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right) \rightarrow \ell_{\infty}\left(\Delta_{n+1}\right)$
$J_{n}(x)=\left(x, U_{n}(x), U_{n+1}\left(x, U_{n}(x)\right), U_{n+2}(\ldots), \ldots\right) \quad \forall x \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right)$
Some notation: If $\gamma \in \Delta_{n+1}$ then $u_{\gamma}^{*}(x)=U_{n}(x)(\gamma)$ and $e_{\gamma}^{*}(x)=x(\gamma)$

Proposition (B-D condition)

The following condition guarantees that $\left\|J_{n}\right\|_{\infty} \leq 2$ for all $n \in \mathbb{N}$.
For all $\gamma \in \Delta_{n+1}$ there exists constants $a_{\gamma}, b_{\gamma} \in \mathbb{R}$, an integer $1 \leq k<n$, an element $\eta \in \Delta_{k}$ and a functional $b^{*} \in B_{\ell_{1}\left(\cup_{i=1}^{n-1}\right)}$ such that:

How to ensure $\left\|J_{n}\right\|_{\infty} \leq 2$.

$U_{n}: \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right) \rightarrow \ell_{\infty}\left(\Delta_{n+1}\right)$
$J_{n}(x)=\left(x, U_{n}(x), U_{n+1}\left(x, U_{n}(x)\right), U_{n+2}(\ldots), \ldots\right) \quad \forall x \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right)$
Some notation: If $\gamma \in \Delta_{n+1}$ then $u_{\gamma}^{*}(x)=U_{n}(x)(\gamma)$ and $e_{\gamma}^{*}(x)=x(\gamma)$

Proposition (B-D condition)

The following condition guarantees that $\left\|J_{n}\right\|_{\infty} \leq 2$ for all $n \in \mathbb{N}$.
For all $\gamma \in \Delta_{n+1}$ there exists constants $a_{\gamma}, b_{\gamma} \in \mathbb{R}$, an integer $1 \leq k<n$, an element $\eta \in \Delta_{k}$ and a functional $b^{*} \in B_{\ell_{1}\left(\cup_{i=1}^{n-1}\right)}$ such that:
(1) $u_{\gamma}^{*}(x)=a_{\gamma} e_{\eta}^{*}(x)+b_{\gamma} b^{*}(x) \quad \forall x \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right)$

How to ensure $\left\|J_{n}\right\|_{\infty} \leq 2$.

$U_{n}: \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right) \rightarrow \ell_{\infty}\left(\Delta_{n+1}\right)$
$J_{n}(x)=\left(x, U_{n}(x), U_{n+1}\left(x, U_{n}(x)\right), U_{n+2}(\ldots), \ldots\right) \quad \forall x \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right)$
Some notation: If $\gamma \in \Delta_{n+1}$ then $u_{\gamma}^{*}(x)=U_{n}(x)(\gamma)$ and $e_{\gamma}^{*}(x)=x(\gamma)$

Proposition (B-D condition)

The following condition guarantees that $\left\|J_{n}\right\|_{\infty} \leq 2$ for all $n \in \mathbb{N}$.
For all $\gamma \in \Delta_{n+1}$ there exists constants $a_{\gamma}, b_{\gamma} \in \mathbb{R}$, an integer $1 \leq k<n$, an element $\eta \in \Delta_{k}$ and a functional $b^{*} \in B_{\ell_{1}\left(\cup_{i=1}^{n-1}\right)}$ such that:
(1) $u_{\gamma}^{*}(x)=a_{\gamma} e_{n}^{*}(x)+b_{\gamma} b^{*}(x) \quad \forall x \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right)$
(2) $\left|a_{\gamma}\right| \leq 1$ and $\left|b_{\gamma}\right| \leq 1 / 4$ or $a_{\gamma}=0$ and $\left|b_{\gamma}\right| \leq 1$
$U_{n}: \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right) \rightarrow \ell_{\infty}\left(\Delta_{n+1}\right)$
$J_{n}(x)=\left(x, U_{n}(x), U_{n+1}\left(x, U_{n}(x)\right), U_{n+2}(\ldots), \ldots\right) \quad \forall x \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right)$
Some notation: If $\gamma \in \Delta_{n+1}$ then $u_{\gamma}^{*}(x)=U_{n}(x)(\gamma)$ and $e_{\gamma}^{*}(x)=x(\gamma)$

Proposition (B-D condition)

The following condition guarantees that $\left\|J_{n}\right\|_{\infty} \leq 2$ for all $n \in \mathbb{N}$.
For all $\gamma \in \Delta_{n+1}$ there exists constants $a_{\gamma}, b_{\gamma} \in \mathbb{R}$, an integer $1 \leq k<n$, an element $\eta \in \Delta_{k}$ and a functional $b^{*} \in B_{\ell_{1}\left(\cup_{i=1}^{n-1}\right)}$ such that:
(1) $u_{\gamma}^{*}(x)=a_{\gamma} e_{\eta}^{*}(x)+b_{\gamma} b^{*}(x) \quad \forall x \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i}\right)$
(2) $\left|a_{\gamma}\right| \leq 1$ and $\left|b_{\gamma}\right| \leq 1 / 4$ or $a_{\gamma}=0$ and $\left|b_{\gamma}\right| \leq 1$

- $b^{*}\left(J_{n}(x)\right)=0$ for all $x \in \ell_{\infty}\left(\cup_{i=1}^{k} \Delta_{i}\right)$

Let X^{*} be a separable dual space with a boundedly complete FDD $\left(E_{i}^{*}\right)$.

Let X^{*} be a separable dual space with a boundedly complete FDD $\left(E_{i}^{*}\right)$.
Definition (c-decomposition)

Let X^{*} be a separable dual space with a boundedly complete FDD $\left(E_{i}^{*}\right)$.
Definition (c-decomposition)
Let $0<c<1$ be a constant.

Let X^{*} be a separable dual space with a boundedly complete FDD (E_{i}^{*}).
Definition (c-decomposition)
Let $0<c<1$ be a constant. We call a finite block sequence ($x_{1}^{*}, \ldots, x_{m}^{*}$) a c-decomposition of $x^{*} \in X^{*}$ with respect to (E_{i}^{*}) if:

Let X^{*} be a separable dual space with a boundedly complete FDD $\left(E_{i}^{*}\right)$.

Definition (c-decomposition)

Let $0<c<1$ be a constant. We call a finite block sequence $\left(x_{1}^{*}, \ldots, x_{m}^{*}\right)$ a c-decomposition of $x^{*} \in X^{*}$ with respect to $\left(E_{i}^{*}\right)$ if:
(1) $\sum_{i=1}^{m} x_{i}^{*}=x^{*}$

Let X^{*} be a separable dual space with a boundedly complete FDD $\left(E_{i}^{*}\right)$.

Definition (c-decomposition)

Let $0<c<1$ be a constant. We call a finite block sequence $\left(x_{1}^{*}, \ldots, x_{m}^{*}\right)$ a c-decomposition of $x^{*} \in X^{*}$ with respect to $\left(E_{i}^{*}\right)$ if:
(1) $\sum_{i=1}^{m} x_{i}^{*}=x^{*}$
(2) $\forall 1 \leq i \leq m$ either $\left\|x_{i}^{*}\right\|<c$ or $x_{i}^{*} \in E_{j}^{*}$ for some $j \in \mathbb{N}$

Let X^{*} be a separable dual space with a boundedly complete FDD $\left(E_{i}^{*}\right)$.

Definition (c-decomposition)

Let $0<c<1$ be a constant. We call a finite block sequence $\left(x_{1}^{*}, \ldots, x_{m}^{*}\right)$ a c-decomposition of $x^{*} \in X^{*}$ with respect to $\left(E_{i}^{*}\right)$ if:
(1) $\sum_{i=1}^{m} x_{i}^{*}=x^{*}$
(2) $\forall 1 \leq i \leq m$ either $\left\|x_{i}^{*}\right\|<c$ or $x_{i}^{*} \in E_{j}^{*}$ for some $j \in \mathbb{N}$

We use the c-decomp. of a countable subset of $B_{X^{*}}$ to create a B-D space containing X.

Let X^{*} be a separable dual space with a boundedly complete FDD $\left(E_{i}^{*}\right)$.

Definition (c-decomposition)

Let $0<c<1$ be a constant. We call a finite block sequence $\left(x_{1}^{*}, \ldots, x_{m}^{*}\right)$ a c-decomposition of $x^{*} \in X^{*}$ with respect to $\left(E_{i}^{*}\right)$ if:
(1) $\sum_{i=1}^{m} x_{i}^{*}=x^{*}$
(2) $\forall 1 \leq i \leq m$ either $\left\|x_{i}^{*}\right\|<c$ or $x_{i}^{*} \in E_{j}^{*}$ for some $j \in \mathbb{N}$

We use the c-decomp. of a countable subset of $B_{X^{*}}$ to create a B-D space containing X. We need to define $\left\{\Delta_{i}\right\}_{i=1}^{\infty}$ and $\left\{u_{\gamma}^{*}\right\}_{\gamma \in \cup \Delta_{i}}$.

Let X^{*} be a separable dual space with a boundedly complete FDD $\left(E_{i}^{*}\right)$.

Definition (c-decomposition)

Let $0<c<1$ be a constant. We call a finite block sequence $\left(x_{1}^{*}, \ldots, x_{m}^{*}\right)$ a c-decomposition of $x^{*} \in X^{*}$ with respect to $\left(E_{i}^{*}\right)$ if:
(1) $\sum_{i=1}^{m} x_{i}^{*}=x^{*}$
(2) $\forall 1 \leq i \leq m$ either $\left\|x_{i}^{*}\right\|<c$ or $x_{i}^{*} \in E_{j}^{*}$ for some $j \in \mathbb{N}$

We use the c-decomp. of a countable subset of $B_{X^{*}}$ to create a B-D space containing X. We need to define $\left\{\Delta_{i}\right\}_{i=1}^{\infty}$ and $\left\{u_{\gamma}^{*}\right\}_{\gamma \in \cup \Delta_{i}}$. Each Δ_{i} will be a collection of c-decomp. $\gamma=\left(x_{1}^{*}, \ldots, x_{m}^{*}\right)$.

Let X^{*} be a separable dual space with a boundedly complete FDD $\left(E_{i}^{*}\right)$.

Definition (c-decomposition)

Let $0<c<1$ be a constant. We call a finite block sequence $\left(x_{1}^{*}, \ldots, x_{m}^{*}\right)$ a c-decomposition of $x^{*} \in X^{*}$ with respect to $\left(E_{i}^{*}\right)$ if:
(1) $\sum_{i=1}^{m} x_{i}^{*}=x^{*}$
(2) $\forall 1 \leq i \leq m$ either $\left\|x_{i}^{*}\right\|<c$ or $x_{i}^{*} \in E_{j}^{*}$ for some $j \in \mathbb{N}$

We use the c-decomp. of a countable subset of $B_{X^{*}}$ to create a B-D space containing X. We need to define $\left\{\Delta_{i}\right\}_{i=1}^{\infty}$ and $\left\{u_{\gamma}^{*}\right\}_{\gamma \in \cup \Delta_{i}}$. Each Δ_{i} will be a collection of c-decomp. $\gamma=\left(x_{1}^{*}, \ldots, x_{m}^{*}\right)$. If $m>2$ then

Let X^{*} be a separable dual space with a boundedly complete FDD $\left(E_{i}^{*}\right)$.

Definition (c-decomposition)

Let $0<c<1$ be a constant. We call a finite block sequence $\left(x_{1}^{*}, \ldots, x_{m}^{*}\right)$ a c-decomposition of $x^{*} \in X^{*}$ with respect to $\left(E_{i}^{*}\right)$ if:
(1) $\sum_{i=1}^{m} x_{i}^{*}=x^{*}$
(2) $\forall 1 \leq i \leq m$ either $\left\|x_{i}^{*}\right\|<c$ or $x_{i}^{*} \in E_{j}^{*}$ for some $j \in \mathbb{N}$

We use the c-decomp. of a countable subset of $B_{X^{*}}$ to create a B-D space containing X. We need to define $\left\{\Delta_{i}\right\}_{i=1}^{\infty}$ and $\left\{u_{\gamma}^{*}\right\}_{\gamma \in \cup \Delta_{i}}$. Each Δ_{i} will be a collection of c-decomp. $\gamma=\left(x_{1}^{*}, \ldots, x_{m}^{*}\right)$. If $m>2$ then

$$
u_{\left(x_{1}^{*}, \ldots, x_{m}^{*}\right)}^{*}=e_{\left(x_{1}^{*}, \ldots, x_{m-1}^{*}\right)}^{*}+\left\|x_{m}^{*}\right\| e_{c d\left(x_{m}^{*} /\left\|x_{m}^{*}\right\|\right)}^{*}
$$

Let X^{*} be a separable dual space with a boundedly complete FDD $\left(E_{i}^{*}\right)$.

Definition (c-decomposition)

Let $0<c<1$ be a constant. We call a finite block sequence $\left(x_{1}^{*}, \ldots, x_{m}^{*}\right)$ a c-decomposition of $x^{*} \in X^{*}$ with respect to $\left(E_{i}^{*}\right)$ if:
(1) $\sum_{i=1}^{m} x_{i}^{*}=x^{*}$
(2) $\forall 1 \leq i \leq m$ either $\left\|x_{i}^{*}\right\|<c$ or $x_{i}^{*} \in E_{j}^{*}$ for some $j \in \mathbb{N}$

We use the c-decomp. of a countable subset of $B_{X^{*}}$ to create a B-D space containing X. We need to define $\left\{\Delta_{i}\right\}_{i=1}^{\infty}$ and $\left\{u_{\gamma}^{*}\right\}_{\gamma \in \cup \Delta_{i}}$. Each Δ_{i} will be a collection of c-decomp. $\gamma=\left(x_{1}^{*}, \ldots, x_{m}^{*}\right)$. If $m>2$ then

$$
u_{\left(x_{1}^{*}, \ldots, x_{m}^{*}\right)}^{*}=e_{\left(x_{1}^{*}, \ldots, x_{m-1}^{*}\right)}^{*}+\left\|x_{m}^{*}\right\| e_{c d\left(x_{m}^{*} /\left\|x_{m}^{*}\right\|\right)}^{*}
$$

If $m=2$ then

Let X^{*} be a separable dual space with a boundedly complete FDD $\left(E_{i}^{*}\right)$.

Definition (c-decomposition)

Let $0<c<1$ be a constant. We call a finite block sequence $\left(x_{1}^{*}, \ldots, x_{m}^{*}\right)$ a c-decomposition of $x^{*} \in X^{*}$ with respect to $\left(E_{i}^{*}\right)$ if:
(1) $\sum_{i=1}^{m} x_{i}^{*}=x^{*}$
(2) $\forall 1 \leq i \leq m$ either $\left\|x_{i}^{*}\right\|<c$ or $x_{i}^{*} \in E_{j}^{*}$ for some $j \in \mathbb{N}$

We use the c-decomp. of a countable subset of $B_{X^{*}}$ to create a B-D space containing X. We need to define $\left\{\Delta_{i}\right\}_{i=1}^{\infty}$ and $\left\{u_{\gamma}^{*}\right\}_{\gamma \in \cup \Delta_{i}}$. Each Δ_{i} will be a collection of c-decomp. $\gamma=\left(x_{1}^{*}, \ldots, x_{m}^{*}\right)$. If $m>2$ then

$$
u_{\left(x_{1}^{*}, \ldots, x_{m}^{*}\right)}^{*}=e_{\left(x_{1}^{*}, \ldots, x_{m-1}^{*}\right)}^{*}+\left\|x_{m}^{*}\right\| e_{c d\left(x_{m}^{*} /\left\|x_{m}^{*}\right\|\right)}^{*}
$$

If $m=2$ then

$$
u_{\left(x_{1}^{*}, x_{2}^{*}\right)}^{*}=\left\|x_{1}^{*}\right\| e_{c d\left(x_{1}^{*} /\left\|x_{1}^{*}\right\|\right)}^{*}+\left\|x_{2}^{*}\right\| e_{c d\left(x_{2}^{*} /\left\|x_{2}^{*}\right\|\right)}^{*}
$$

Embedding of X

S.A. Argyros, D. Freeman, R. Haydon, E. Odell, Th. Raikoftsalis, Th. Schlt Embedding into BD spaces and spaces with very few operators.

Embedding of X

If X is a Banach space then $\psi: X \rightarrow C\left(B_{X^{*}}\right)$ defined by $\psi(x)\left(x^{*}\right)=x^{*}(x)$ is an isometry.

Embedding of X

If X is a Banach space then $\psi: X \rightarrow C\left(B_{X^{*}}\right)$ defined by $\psi(x)\left(x^{*}\right)=x^{*}(x)$ is an isometry.
X embeds into Y in a very similar way.

Embedding of X

If X is a Banach space then $\psi: X \rightarrow C\left(B_{X^{*}}\right)$ defined by $\psi(x)\left(x^{*}\right)=x^{*}(x)$ is an isometry.
X embeds into Y in a very similar way.
We define the embedding $\phi: X \rightarrow Y \subset \ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right)$ by:

$$
\phi(x)(\gamma)=\sum_{i=1}^{m} x_{i}^{*}(x) \quad \text { where } \gamma=\left(x_{1}^{*}, \ldots, x_{m}^{*}\right)
$$

Augmentations

We have a Banach space X, finite sets $\left(\Delta_{i}\right)_{i=1}^{\infty}$, and a BD space Y with

Augmentations

We have a Banach space X, finite sets $\left(\Delta_{i}\right)_{i=1}^{\infty}$, and a BD space Y with

$$
X \subseteq Y \subseteq \ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right)
$$

Augmentations

We have a Banach space X, finite sets $\left(\Delta_{i}\right)_{i=1}^{\infty}$, and a BD space Y with

$$
X \subseteq Y \subseteq \ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right) .
$$

We create new finite sets $\left(\Theta_{i}\right)_{i=1}^{\infty}$ and a new BD space Z with

Augmentations

We have a Banach space X, finite sets $\left(\Delta_{i}\right)_{i=1}^{\infty}$, and a BD space Y with

$$
X \subseteq Y \subseteq \ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right) .
$$

We create new finite sets $\left(\Theta_{i}\right)_{i=1}^{\infty}$ and a new BD space Z with

$$
X \oplus 0 \subseteq Z \subset \ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right) \oplus \ell_{\infty}\left(\oplus \cup_{i=1}^{\infty} \Theta_{i}\right) .
$$

Depending on X, we want Z to have the additional property

Augmentations

We have a Banach space X, finite sets $\left(\Delta_{i}\right)_{i=1}^{\infty}$, and a BD space Y with

$$
X \subseteq Y \subseteq \ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right) .
$$

We create new finite sets $\left(\Theta_{i}\right)_{i=1}^{\infty}$ and a new BD space Z with

$$
X \oplus 0 \subseteq Z \subset \ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right) \oplus \ell_{\infty}\left(\oplus \cup_{i=1}^{\infty} \Theta_{i}\right) .
$$

Depending on X, we want Z to have the additional property of not containing c_{0},

Augmentations

We have a Banach space X, finite sets $\left(\Delta_{i}\right)_{i=1}^{\infty}$, and a BD space Y with

$$
X \subseteq Y \subseteq \ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right) .
$$

We create new finite sets $\left(\Theta_{i}\right)_{i=1}^{\infty}$ and a new BD space Z with

$$
X \oplus 0 \subseteq Z \subset \ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right) \oplus \ell_{\infty}\left(\oplus \cup_{i=1}^{\infty} \Theta_{i}\right) .
$$

Depending on X, we want Z to have the additional property of not containing c_{0}, being somewhat reflexive,

Augmentations

We have a Banach space X, finite sets $\left(\Delta_{i}\right)_{i=1}^{\infty}$, and a BD space Y with

$$
X \subseteq Y \subseteq \ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right) .
$$

We create new finite sets $\left(\Theta_{i}\right)_{i=1}^{\infty}$ and a new BD space Z with

$$
X \oplus 0 \subseteq Z \subset \ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right) \oplus \ell_{\infty}\left(\oplus \cup_{i=1}^{\infty} \Theta_{i}\right) .
$$

Depending on X, we want Z to have the additional property of not containing c_{0}, being somewhat reflexive, or having very few operators.
For $\gamma \in \Theta_{n+1}$, we need to define u_{γ}^{*}.

Augmentations

We have a Banach space X, finite sets $\left(\Delta_{i}\right)_{i=1}^{\infty}$, and a BD space Y with

$$
X \subseteq Y \subseteq \ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right) .
$$

We create new finite sets $\left(\Theta_{i}\right)_{i=1}^{\infty}$ and a new BD space Z with

$$
X \oplus 0 \subseteq Z \subset \ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right) \oplus \ell_{\infty}\left(\oplus \cup_{i=1}^{\infty} \Theta_{i}\right) .
$$

Depending on X, we want Z to have the additional property of not containing c_{0}, being somewhat reflexive, or having very few operators.
For $\gamma \in \Theta_{n+1}$, we need to define u_{γ}^{*}. We require that there exists constants $a_{\gamma}, b_{\gamma} \in \mathbb{R}$, an integer $1 \leq k<n$, an element $\eta \in \Theta_{k}$ and a functional $b^{*} \in B_{\ell_{1}\left(\cup_{i=1}^{n-1}\right)}$ such that:

Augmentations

We have a Banach space X, finite sets $\left(\Delta_{i}\right)_{i=1}^{\infty}$, and a BD space Y with

$$
X \subseteq Y \subseteq \ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right)
$$

We create new finite sets $\left(\Theta_{i}\right)_{i=1}^{\infty}$ and a new BD space Z with

$$
X \oplus 0 \subseteq Z \subset \ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right) \oplus \ell_{\infty}\left(\oplus \cup_{i=1}^{\infty} \Theta_{i}\right)
$$

Depending on X, we want Z to have the additional property of not containing c_{0}, being somewhat reflexive, or having very few operators.
For $\gamma \in \Theta_{n+1}$, we need to define u_{γ}^{*}. We require that there exists constants $a_{\gamma}, b_{\gamma} \in \mathbb{R}$, an integer $1 \leq k<n$, an element $\eta \in \Theta_{k}$ and a functional $b^{*} \in B_{\ell_{1}\left(\cup_{i=1}^{n-1}\right)}$ such that:
(1) $u_{\gamma}^{*}(x)=a_{\gamma} e_{\eta}^{*}(x)+b_{\gamma} b^{*}(x) \quad \forall x \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i} \cup \Theta_{i}\right)$

Augmentations

We have a Banach space X, finite sets $\left(\Delta_{i}\right)_{i=1}^{\infty}$, and a BD space Y with

$$
X \subseteq Y \subseteq \ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right)
$$

We create new finite sets $\left(\Theta_{i}\right)_{i=1}^{\infty}$ and a new BD space Z with

$$
X \oplus 0 \subseteq Z \subset \ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right) \oplus \ell_{\infty}\left(\oplus \cup_{i=1}^{\infty} \Theta_{i}\right)
$$

Depending on X, we want Z to have the additional property of not containing c_{0}, being somewhat reflexive, or having very few operators.

For $\gamma \in \Theta_{n+1}$, we need to define u_{γ}^{*}. We require that there exists constants $a_{\gamma}, b_{\gamma} \in \mathbb{R}$, an integer $1 \leq k<n$, an element $\eta \in \Theta_{k}$ and a functional $b^{*} \in B_{\ell_{1}\left(\cup_{i=1}^{n-1}\right)}$ such that:
(1) $u_{\gamma}^{*}(x)=a_{\gamma} e_{\eta}^{*}(x)+b_{\gamma} b^{*}(x) \quad \forall x \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i} \cup \Theta_{i}\right)$
(2) $\left|a_{\gamma}\right| \leq 1$ and $\left|b_{\gamma}\right| \leq 1 / 4$ or $\quad a_{\gamma}=0$ and $\left|b_{\gamma}\right| \leq 1$

Augmentations

We have a Banach space X, finite sets $\left(\Delta_{i}\right)_{i=1}^{\infty}$, and a BD space Y with

$$
X \subseteq Y \subseteq \ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right)
$$

We create new finite sets $\left(\Theta_{i}\right)_{i=1}^{\infty}$ and a new BD space Z with

$$
X \oplus 0 \subseteq Z \subset \ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right) \oplus \ell_{\infty}\left(\oplus \cup_{i=1}^{\infty} \Theta_{i}\right)
$$

Depending on X, we want Z to have the additional property of not containing c_{0}, being somewhat reflexive, or having very few operators.

For $\gamma \in \Theta_{n+1}$, we need to define u_{γ}^{*}. We require that there exists constants $a_{\gamma}, b_{\gamma} \in \mathbb{R}$, an integer $1 \leq k<n$, an element $\eta \in \Theta_{k}$ and a functional $b^{*} \in B_{\ell_{1}\left(\cup_{i=1}^{n-1}\right)}$ such that:
(1) $u_{\gamma}^{*}(x)=a_{\gamma} e_{\eta}^{*}(x)+b_{\gamma} b^{*}(x) \quad \forall x \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i} \cup \Theta_{i}\right)$
(2) $\left|a_{\gamma}\right| \leq 1$ and $\left|b_{\gamma}\right| \leq 1 / 4$ or $\quad a_{\gamma}=0$ and $\left|b_{\gamma}\right| \leq 1$
(3) $b^{*}\left(J_{n}(x)\right)=0$ for all $x \in \ell_{\infty}\left(\cup_{i=1}^{k} \Delta_{i} \cup \Theta_{i}\right)$

Augmentations

We have a Banach space X, finite sets $\left(\Delta_{i}\right)_{i=1}^{\infty}$, and a BD space Y with

$$
X \subseteq Y \subseteq \ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right)
$$

We create new finite sets $\left(\Theta_{i}\right)_{i=1}^{\infty}$ and a new BD space Z with

$$
X \oplus 0 \subseteq Z \subset \ell_{\infty}\left(\cup_{i=1}^{\infty} \Delta_{i}\right) \oplus \ell_{\infty}\left(\oplus \cup_{i=1}^{\infty} \Theta_{i}\right)
$$

Depending on X, we want Z to have the additional property of not containing c_{0}, being somewhat reflexive, or having very few operators.

For $\gamma \in \Theta_{n+1}$, we need to define u_{γ}^{*}. We require that there exists constants $a_{\gamma}, b_{\gamma} \in \mathbb{R}$, an integer $1 \leq k<n$, an element $\eta \in \Theta_{k}$ and a functional $b^{*} \in B_{\ell_{1}\left(\cup_{i=1}^{n-1}\right)}$ such that:
(1) $u_{\gamma}^{*}(x)=a_{\gamma} e_{\eta}^{*}(x)+b_{\gamma} b^{*}(x) \quad \forall x \in \ell_{\infty}\left(\cup_{i=1}^{n} \Delta_{i} \cup \Theta_{i}\right)$
(2) $\left|a_{\gamma}\right| \leq 1$ and $\left|b_{\gamma}\right| \leq 1 / 4$ or $\quad a_{\gamma}=0$ and $\left|b_{\gamma}\right| \leq 1$
(3) $b^{*}\left(J_{n}(x)\right)=0$ for all $x \in \ell_{\infty}\left(\cup_{i=1}^{k} \Delta_{i} \cup \Theta_{i}\right)$
(9) $\left.b^{*}\right|_{x}=0$

How to augment FOS with AH for X uniformly convex

How to augment FOS with AH for X uniformly convex

For each $\gamma \in A H$, there exists $m_{j} \in \mathbb{N}$, called the weight of gamma, such that:

How to augment FOS with AH for X uniformly convex

For each $\gamma \in A H$, there exists $m_{j} \in \mathbb{N}$, called the weight of gamma, such that:

$$
\begin{array}{ll}
u_{\gamma}^{*}=m_{j}^{-1} b^{*} & \text { or } \\
u_{\gamma}^{*}=e_{\xi}^{*}+m_{j}^{-1} b^{*} & \text { and weight of } \xi \text { is } m_{j}
\end{array}
$$

Define: $e_{\gamma}^{*}=u_{\gamma}^{*}+d_{\gamma}^{*}$. Note that u_{ξ}^{*} has the same form as u_{γ}^{*} !
After repeatedly substituting, we obtain the evaluation analysis of γ :

$$
e_{\gamma}^{*}=\sum_{i=1}^{a} d_{\xi}^{*}+m_{j}^{-1} \sum_{i=1}^{a} b_{i}^{*} \quad \text { and } a \leq n_{j}
$$

In FOS, each γ is a c-decomposition $\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{a}^{*}\right)$.

$$
u_{\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{a}^{*}\right)}^{*}=e_{\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{a-1}^{*}\right)}^{*}+\left\|x_{a}^{*}\right\| e_{\left(x_{a}^{*} /\left\|x_{a}^{*}\right\|\right)}^{*}
$$

The evaluation analysis of $\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{a}^{*}\right)$ is:

$$
e_{\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{a}^{*}\right)}^{*}=\sum_{i=1}^{a} d_{\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{i}^{*}\right)}^{*}+\left\|x_{i}^{*}\right\| \sum_{i=1}^{a} e_{\left(x_{i}^{*} /\left\|x_{i}^{*}\right\|\right)}^{*}
$$

How to augment FOS with AH for X uniformly convex

For each $\gamma \in A H$, there exists $m_{j} \in \mathbb{N}$, called the weight of gamma, such that:

$$
\begin{array}{ll}
u_{\gamma}^{*}=m_{j}^{-1} b^{*} & \text { or } \\
u_{\gamma}^{*}=e_{\xi}^{*}+m_{j}^{-1} b^{*} & \quad \text { and weight of } \xi \text { is } m_{j}
\end{array}
$$

How to augment FOS with AH for X uniformly convex

For each $\gamma \in A H$, there exists $m_{j} \in \mathbb{N}$, called the weight of gamma, such that:

$$
\begin{array}{lr}
u_{\gamma}^{*}=m_{j}^{-1} b^{*} & \text { or } \\
u_{\gamma}^{*}=e_{\xi}^{*}+m_{j}^{-1} b^{*} \quad \quad \text { and weight of } \xi \text { is } m_{j}
\end{array}
$$

Define: $e_{\gamma}^{*}=u_{\gamma}^{*}+d_{\gamma}^{*}$.

How to augment FOS with AH for X uniformly convex

For each $\gamma \in A H$, there exists $m_{j} \in \mathbb{N}$, called the weight of gamma, such that:

$$
\begin{array}{ll}
u_{\gamma}^{*}=m_{j}^{-1} b^{*} & \text { or } \\
u_{\gamma}^{*}=e_{\xi}^{*}+m_{j}^{-1} b^{*} & \quad \text { and weight of } \xi \text { is } m_{j}
\end{array}
$$

Define: $e_{\gamma}^{*}=u_{\gamma}^{*}+d_{\gamma}^{*}$. Note that u_{ξ}^{*} has the same form as u_{γ}^{*} !

How to augment FOS with AH for X uniformly convex

For each $\gamma \in A H$, there exists $m_{j} \in \mathbb{N}$, called the weight of gamma, such that:

$$
\begin{array}{ll}
u_{\gamma}^{*}=m_{j}^{-1} b^{*} & \text { or } \\
u_{\gamma}^{*}=e_{\xi}^{*}+m_{j}^{-1} b^{*} & \text { and weight of } \xi \text { is } m_{j}
\end{array}
$$

Define: $e_{\gamma}^{*}=u_{\gamma}^{*}+d_{\gamma}^{*}$. Note that u_{ξ}^{*} has the same form as u_{γ}^{*} !
After repeatedly substituting, we obtain the evaluation analysis of γ :

How to augment FOS with AH for X uniformly convex

For each $\gamma \in A H$, there exists $m_{j} \in \mathbb{N}$, called the weight of gamma, such that:

$$
\begin{array}{ll}
u_{\gamma}^{*}=m_{j}^{-1} b^{*} & \text { or } \\
u_{\gamma}^{*}=e_{\xi}^{*}+m_{j}^{-1} b^{*} & \text { and weight of } \xi \text { is } m_{j}
\end{array}
$$

Define: $e_{\gamma}^{*}=u_{\gamma}^{*}+d_{\gamma}^{*}$. Note that u_{ξ}^{*} has the same form as u_{γ}^{*} !
After repeatedly substituting, we obtain the evaluation analysis of γ :

$$
e_{\gamma}^{*}=\sum_{i=1}^{a} d_{\xi}^{*}+m_{j}^{-1} \sum_{i=1}^{a} b_{i}^{*}
$$

How to augment FOS with AH for X uniformly convex

For each $\gamma \in A H$, there exists $m_{j} \in \mathbb{N}$, called the weight of gamma, such that:

$$
\begin{array}{ll}
u_{\gamma}^{*}=m_{j}^{-1} b^{*} & \text { or } \\
u_{\gamma}^{*}=e_{\xi}^{*}+m_{j}^{-1} b^{*} & \text { and weight of } \xi \text { is } m_{j}
\end{array}
$$

Define: $e_{\gamma}^{*}=u_{\gamma}^{*}+d_{\gamma}^{*}$. Note that u_{ξ}^{*} has the same form as u_{γ}^{*} !
After repeatedly substituting, we obtain the evaluation analysis of γ :

$$
e_{\gamma}^{*}=\sum_{i=1}^{a} d_{\xi}^{*}+m_{j}^{-1} \sum_{i=1}^{a} b_{i}^{*} \quad \text { and } a \leq n_{j}
$$

How to augment FOS with AH for X uniformly convex

For each $\gamma \in A H$, there exists $m_{j} \in \mathbb{N}$, called the weight of gamma, such that:

$$
\begin{array}{ll}
u_{\gamma}^{*}=m_{j}^{-1} b^{*} & \text { or } \\
u_{\gamma}^{*}=e_{\xi}^{*}+m_{j}^{-1} b^{*} & \text { and weight of } \xi \text { is } m_{j}
\end{array}
$$

Define: $e_{\gamma}^{*}=u_{\gamma}^{*}+d_{\gamma}^{*}$. Note that u_{ξ}^{*} has the same form as u_{γ}^{*} !
After repeatedly substituting, we obtain the evaluation analysis of γ :

$$
e_{\gamma}^{*}=\sum_{i=1}^{a} d_{\xi}^{*}+m_{j}^{-1} \sum_{i=1}^{a} b_{i}^{*} \quad \text { and } a \leq n_{j}
$$

In FOS, each γ is a c-decomposition $\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{a}^{*}\right)$.

How to augment FOS with AH for X uniformly convex

For each $\gamma \in A H$, there exists $m_{j} \in \mathbb{N}$, called the weight of gamma, such that:

$$
\begin{array}{ll}
u_{\gamma}^{*}=m_{j}^{-1} b^{*} & \text { or } \\
u_{\gamma}^{*}=e_{\xi}^{*}+m_{j}^{-1} b^{*} \quad \text { and weight of } \xi \text { is } m_{j}
\end{array}
$$

Define: $e_{\gamma}^{*}=u_{\gamma}^{*}+d_{\gamma}^{*}$. Note that u_{ξ}^{*} has the same form as u_{γ}^{*} !
After repeatedly substituting, we obtain the evaluation analysis of γ :

$$
e_{\gamma}^{*}=\sum_{i=1}^{a} d_{\xi}^{*}+m_{j}^{-1} \sum_{i=1}^{a} b_{i}^{*} \quad \text { and } a \leq n_{j}
$$

In FOS, each γ is a c-decomposition $\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{a}^{*}\right)$.

$$
u_{\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{a}^{*}\right)}^{*}=e_{\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{a-1}^{*}\right)}^{*}+\left\|x_{a}^{*}\right\| e_{\left(x_{a}^{*} /\left\|x_{a}^{*}\right\|\right)}^{*}
$$

How to augment FOS with AH for X uniformly convex

For each $\gamma \in A H$, there exists $m_{j} \in \mathbb{N}$, called the weight of gamma, such that:

$$
\begin{array}{ll}
u_{\gamma}^{*}=m_{j}^{-1} b^{*} & \text { or } \\
u_{\gamma}^{*}=e_{\xi}^{*}+m_{j}^{-1} b^{*} \quad \text { and weight of } \xi \text { is } m_{j}
\end{array}
$$

Define: $e_{\gamma}^{*}=u_{\gamma}^{*}+d_{\gamma}^{*}$. Note that u_{ξ}^{*} has the same form as u_{γ}^{*} !
After repeatedly substituting, we obtain the evaluation analysis of γ :

$$
e_{\gamma}^{*}=\sum_{i=1}^{a} d_{\xi}^{*}+m_{j}^{-1} \sum_{i=1}^{a} b_{i}^{*} \quad \text { and } a \leq n_{j}
$$

In FOS, each γ is a c-decomposition $\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{a}^{*}\right)$.

$$
u_{\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{a}^{*}\right)}^{*}=e_{\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{a-1}^{*}\right)}^{*}+\left\|x_{a}^{*}\right\| e_{\left(x_{a}^{*} /\left\|x_{a}^{*}\right\|\right)}^{*}
$$

The evaluation analysis of $\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{a}^{*}\right)$ is:

How to augment FOS with AH for X uniformly convex

For each $\gamma \in A H$, there exists $m_{j} \in \mathbb{N}$, called the weight of gamma, such that:

$$
\begin{array}{ll}
u_{\gamma}^{*}=m_{j}^{-1} b^{*} & \text { or } \\
u_{\gamma}^{*}=e_{\xi}^{*}+m_{j}^{-1} b^{*} \quad \text { and weight of } \xi \text { is } m_{j}
\end{array}
$$

Define: $e_{\gamma}^{*}=u_{\gamma}^{*}+d_{\gamma}^{*}$. Note that u_{ξ}^{*} has the same form as u_{γ}^{*} !
After repeatedly substituting, we obtain the evaluation analysis of γ :

$$
e_{\gamma}^{*}=\sum_{i=1}^{a} d_{\xi}^{*}+m_{j}^{-1} \sum_{i=1}^{a} b_{i}^{*} \quad \text { and } a \leq n_{j}
$$

In FOS, each γ is a c-decomposition $\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{a}^{*}\right)$.

$$
u_{\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{a}^{*}\right)}^{*}=e_{\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{a-1}^{*}\right)}^{*}+\left\|x_{a}^{*}\right\| e_{\left(x_{a}^{*} /\left\|x_{a}^{*}\right\|\right)}^{*}
$$

The evaluation analysis of $\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{a}^{*}\right)$ is:

$$
e_{\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{a}^{*}\right)}^{*}=\sum_{i=1}^{a} d_{\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{i}^{*}\right)}^{*}+\left\|x_{i}^{*}\right\| \sum_{i=1}^{a} e_{\left(x_{i}^{*} /\left\|x_{i}^{*}\right\|\right)}^{*}
$$

How to augment FOS with AH for X uniformly convex

We replace each $\gamma=\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{a}^{*}\right)$ in FOS with $\left(c x_{1}^{*}, c x_{2}^{*}, \ldots, c x_{a}^{*}\right)$.

How to augment FOS with AH for X uniformly convex

We replace each $\gamma=\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{a}^{*}\right)$ in FOS with $\left(c x_{1}^{*}, c x_{2}^{*}, \ldots, c x_{a}^{*}\right)$. The evaluation analysis of $\left(c x_{1}^{*}, c x_{2}^{*}, \ldots, c x_{a}^{*}\right)$ is:

How to augment FOS with AH for X uniformly convex

We replace each $\gamma=\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{a}^{*}\right)$ in FOS with $\left(c x_{1}^{*}, c x_{2}^{*}, \ldots, c x_{a}^{*}\right)$.The evaluation analysis of $\left(c x_{1}^{*}, c x_{2}^{*}, \ldots, c x_{a}^{*}\right)$ is:

$$
e_{\left(c x_{1}^{*}, c x_{2}^{*}, \ldots, c x_{a}^{*}\right)}^{*}=\sum_{i=1}^{a} d_{\left(c x_{1}^{*}, c x_{2}^{*}, \ldots, c x_{i}^{*}\right)}^{*}+c \sum_{i=1}^{a} \frac{\left\|x_{i}^{*}\right\|}{c} e_{\left(c x_{i}^{*} /\left\|x_{i}^{*}\right\|\right)}^{*}
$$

We may choose $m_{1}=c$.

How to augment FOS with AH for X uniformly convex

We replace each $\gamma=\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{a}^{*}\right)$ in FOS with $\left(c x_{1}^{*}, c x_{2}^{*}, \ldots, c x_{a}^{*}\right)$.The evaluation analysis of $\left(c x_{1}^{*}, c x_{2}^{*}, \ldots, c x_{a}^{*}\right)$ is:

$$
e_{\left(c x_{1}^{*}, c x_{2}^{*}, \ldots, c x_{a}^{*}\right)}^{*}=\sum_{i=1}^{a} d_{\left(c x_{1}^{*}, c x_{2}^{*}, \ldots, c x_{i}^{*}\right)}^{*}+c \sum_{i=1}^{a} \frac{\left\|x_{i}^{*}\right\|}{c} e_{\left(c x_{i}^{*} /\left\|x_{i}^{*}\right\|\right)}^{*}
$$

We may choose $m_{1}=c$. If X is uniformly convex then there exists $n_{1} \in \mathbb{N}$

How to augment FOS with AH for X uniformly convex

We replace each $\gamma=\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{a}^{*}\right)$ in FOS with $\left(c x_{1}^{*}, c x_{2}^{*}, \ldots, c x_{a}^{*}\right)$.The evaluation analysis of $\left(c x_{1}^{*}, c x_{2}^{*}, \ldots, c x_{a}^{*}\right)$ is:

$$
e_{\left(c x_{1}^{*}, c x_{2}^{*}, \ldots, c x_{a}^{*}\right)}^{*}=\sum_{i=1}^{a} d_{\left(c x_{1}^{*}, c x_{2}^{*}, \ldots, c x_{i}^{*}\right)}^{*}+c \sum_{i=1}^{a} \frac{\left\|x_{i}^{*}\right\|}{c} e_{\left(c x_{i}^{*} /\left\|x_{i}^{*}\right\|\right)}^{*}
$$

We may choose $m_{1}=c$. If X is uniformly convex then there exists $n_{1} \in \mathbb{N}$ such that if $x^{*} \in B_{X^{*}}$ then x^{*} has a c -decomposition $\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{a}^{*}\right)$ with $a \leq n_{1}$.

How to augment FOS with AH for X uniformly convex

We replace each $\gamma=\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{a}^{*}\right)$ in FOS with $\left(c x_{1}^{*}, c x_{2}^{*}, \ldots, c x_{a}^{*}\right)$.The evaluation analysis of $\left(c x_{1}^{*}, c x_{2}^{*}, \ldots, c x_{a}^{*}\right)$ is:

$$
e_{\left(c x_{1}^{*}, c x_{2}^{*}, \ldots, c x_{a}^{*}\right)}^{*}=\sum_{i=1}^{a} d_{\left(c x_{1}^{*}, c x_{2}^{*}, \ldots, c x_{i}^{*}\right)}^{*}+c \sum_{i=1}^{a} \frac{\left\|x_{i}^{*}\right\|}{c} e_{\left(c x_{i}^{*} /\left\|x_{i}^{*}\right\|\right)}^{*}
$$

We may choose $m_{1}=c$. If X is uniformly convex then there exists $n_{1} \in \mathbb{N}$ such that if $x^{*} \in B_{X^{*}}$ then x^{*} has a c-decomposition $\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{a}^{*}\right)$ with $a \leq n_{1}$. Thus FOS fits the setup:

$$
\begin{array}{ll}
u_{\gamma}^{*}=m_{j}^{-1} b^{*} & \text { or } \\
u_{\gamma}^{*}=e_{\xi}^{*}+m_{j}^{-1} b^{*} & \text { and weight of } \xi \text { is } m_{j}
\end{array}
$$

After repeatedly substituting, we obtain the analysis of γ :

$$
e_{\gamma}^{*}=\sum_{i=1}^{a} d_{\xi}^{*}+m_{j}^{-1} \sum_{i=1}^{a} b_{i}^{*} \quad \text { and } a \leq n_{j}
$$

How to augment FOS with AH for X uniformly convex

We replace each $\gamma=\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{a}^{*}\right)$ in FOS with $\left(c x_{1}^{*}, c x_{2}^{*}, \ldots, c x_{a}^{*}\right)$.The evaluation analysis of $\left(c x_{1}^{*}, c x_{2}^{*}, \ldots, c x_{a}^{*}\right)$ is:

$$
e_{\left(c x_{1}^{*}, c x_{2}^{*}, \ldots, c x_{a}^{*}\right)}^{*}=\sum_{i=1}^{a} d_{\left(c x_{1}^{*}, c x_{2}^{*}, \ldots, c x_{i}^{*}\right)}^{*}+c \sum_{i=1}^{a} \frac{\left\|x_{i}^{*}\right\|}{c} e_{\left(c x_{i}^{*} /\left\|x_{i}^{*}\right\|\right)}^{*}
$$

We may choose $m_{1}=c$. If X is uniformly convex then there exists $n_{1} \in \mathbb{N}$ such that if $x^{*} \in B_{X^{*}}$ then x^{*} has a c-decomposition $\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{a}^{*}\right)$ with $a \leq n_{1}$. Thus FOS fits the setup:

$$
\begin{array}{ll}
u_{\gamma}^{*}=m_{j}^{-1} b^{*} & \text { or } \\
u_{\gamma}^{*}=e_{\xi}^{*}+m_{j}^{-1} b^{*} \quad \text { and weight of } \xi \text { is } m_{j}
\end{array}
$$

After repeatedly substituting, we obtain the analysis of γ :

$$
e_{\gamma}^{*}=\sum_{i=1}^{a} d_{\xi}^{*}+m_{j}^{-1} \sum_{i=1}^{a} b_{i}^{*}
$$

How to augment FOS with AH for X uniformly convex

We replace each $\gamma=\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{a}^{*}\right)$ in FOS with $\left(c x_{1}^{*}, c x_{2}^{*}, \ldots, c x_{a}^{*}\right)$.The evaluation analysis of $\left(c x_{1}^{*}, c x_{2}^{*}, \ldots, c x_{a}^{*}\right)$ is:

$$
e_{\left(c x_{1}^{*}, c x_{2}^{*}, \ldots, c x_{a}^{*}\right)}^{*}=\sum_{i=1}^{a} d_{\left(c x_{1}^{*}, c x_{2}^{*}, \ldots, c x_{i}^{*}\right)}^{*}+c \sum_{i=1}^{a} \frac{\left\|x_{i}^{*}\right\|}{c} e_{\left(c x_{i}^{*} /\left\|x_{i}^{*}\right\|\right)}^{*}
$$

We may choose $m_{1}=c$. If X is uniformly convex then there exists $n_{1} \in \mathbb{N}$ such that if $x^{*} \in B_{X^{*}}$ then x^{*} has a c-decomposition $\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{a}^{*}\right)$ with $a \leq n_{1}$. Thus FOS fits the setup:

$$
\begin{array}{ll}
u_{\gamma}^{*}=m_{j}^{-1} b^{*} & \text { or } \\
u_{\gamma}^{*}=e_{\xi}^{*}+m_{j}^{-1} b^{*} \quad \text { and weight of } \xi \text { is } m_{j}
\end{array}
$$

After repeatedly substituting, we obtain the analysis of γ :

$$
e_{\gamma}^{*}=\sum_{i=1}^{a} d_{\xi}^{*}+m_{j}^{-1} \sum_{i=1}^{a} b_{i}^{*} \quad \text { and } a \leq n_{j}
$$

How to augment FOS with AH for X uniformly convex

For $A H$, given any bounded operator T, there exists a constant λ such that T - $\lambda I d$ is compact.

How to augment FOS with AH for X uniformly convex

For $A H$, given any bounded operator T, there exists a constant λ such that $T-\lambda / d$ is compact.

After augmenting FOS with AH when X is uniformly convex, given any bounded operator T, there exists a constant λ and a compact operator K such that $T-\lambda / d-K$ factors through X.

How to augment FOS with AH for X uniformly convex

For $A H$, given any bounded operator T, there exists a constant λ such that $T-\lambda / d$ is compact.

After augmenting FOS with AH when X is uniformly convex, given any bounded operator T, there exists a constant λ and a compact operator K such that $T-\lambda / d-K$ factors through X. Thus $T-\lambda I d-K$ is weakly compact.

For $A H$, given any bounded operator T, there exists a constant λ such that $T-\lambda I d$ is compact.

After augmenting FOS with AH when X is uniformly convex, given any bounded operator T, there exists a constant λ and a compact operator K such that $T-\lambda / d-K$ factors through X. Thus $T-\lambda / d-K$ is weakly compact. Thus $T^{*}-\lambda I d^{*}-K^{*}: \ell_{1} \rightarrow \ell_{1}$ is weakly compact,

For $A H$, given any bounded operator T, there exists a constant λ such that $T-\lambda I d$ is compact.

After augmenting FOS with AH when X is uniformly convex, given any bounded operator T, there exists a constant λ and a compact operator K such that $T-\lambda / d-K$ factors through X. Thus $T-\lambda I d-K$ is weakly compact. Thus $T^{*}-\lambda I d^{*}-K^{*}: \ell_{1} \rightarrow \ell_{1}$ is weakly compact, and hence compact.

For $A H$, given any bounded operator T, there exists a constant λ such that $T-\lambda I d$ is compact.

After augmenting FOS with AH when X is uniformly convex, given any bounded operator T, there exists a constant λ and a compact operator K such that $T-\lambda / d-K$ factors through X. Thus $T-\lambda / d-K$ is weakly compact. Thus $T^{*}-\lambda I d^{*}-K^{*}: \ell_{1} \rightarrow \ell_{1}$ is weakly compact, and hence compact. This gives that $T-\lambda / d$ is compact.

