Supports and ranges in Banach spaces

Valentin Ferenczi, University of São Paulo

Banff, March 6th, 2012

Contents ${ }^{1}$

1. Banach's hyperplane problem, Gowers' dichotomies and classification program
2. Other dichotomies and progress in the classification Joint work with C. Rosendal, 2007
3. Properties of Gowers and Maurey's spaces Joint work with Th. Schlumprecht, 2011
[^0]
Contents

1. Banach's hyperplane problem, Gowers' dichotomies and classification program
2. Other dichotomies and progress in the classification Joint work with C. Rosendal, 2007
3. Properties of Gowers and Maurey's spaces Joint work with Th. Schlumprecht, 2011

1. Banach's hyperplane problem

Kalton-Peck's space was the first space conjectured not to be isomorphic to its hyperplanes (still unsolved).

1. Banach's hyperplane problem

Kalton-Peck's space was the first space conjectured not to be isomorphic to its hyperplanes (still unsolved).
Casazza defined a sufficient condition for a space not to be isomorphic to its hyperplanes.

1. Banach's hyperplane problem

Kalton-Peck's space was the first space conjectured not to be isomorphic to its hyperplanes (still unsolved).
Casazza defined a sufficient condition for a space not to be isomorphic to its hyperplanes.

Definition

- We shall call even-odd a basic sequence $\left(x_{n}\right)$ such that the odd subsequence $\left(x_{2 n+1}\right)$ is equivalent to the even subsequence ($x_{2 n}$).

1. Banach's hyperplane problem

Kalton-Peck's space was the first space conjectured not to be isomorphic to its hyperplanes (still unsolved).
Casazza defined a sufficient condition for a space not to be isomorphic to its hyperplanes.

Definition

- We shall call even-odd a basic sequence $\left(x_{n}\right)$ such that the odd subsequence $\left(x_{2 n+1}\right)$ is equivalent to the even subsequence ($x_{2 n}$).
- A space with a basis satisfies Casazza's criterion if it contains no even-odd block sequence.

1. Banach's hyperplane problem

Kalton-Peck's space was the first space conjectured not to be isomorphic to its hyperplanes (still unsolved).
Casazza defined a sufficient condition for a space not to be isomorphic to its hyperplanes.

Definition

- We shall call even-odd a basic sequence $\left(x_{n}\right)$ such that the odd subsequence $\left(x_{2 n+1}\right)$ is equivalent to the even subsequence ($x_{2 n}$).
- A space with a basis satisfies Casazza's criterion if it contains no even-odd block sequence.

Proposition (Casazza, 90's)

A space which satisfies Casazza's criterion is isomorphic to no proper subspaces.

1. Casazza's criterion and HI spaces

Theorem (Gowers-Maurey, 90's)
There exists a Banach space GM without an unconditional basic sequence.

1. Casazza's criterion and HI spaces

Theorem (Gowers-Maurey, 90's)
There exists a Banach space GM without an unconditional basic sequence.
it was unclear whether GM satisfied Casazza's criterion, so Gowers defined an unconditional version G_{u} of Gowers-Maurey's space and proved:

1. Casazza's criterion and HI spaces

Theorem (Gowers-Maurey, 90's)
There exists a Banach space GM without an unconditional basic sequence.
it was unclear whether GM satisfied Casazza's criterion, so Gowers defined an unconditional version G_{u} of Gowers-Maurey's space and proved:
Theorem (Gowers, 90's)
The space G_{u} satisfies Casazza's criterion, and therefore is not isomorphic to its proper subspaces.

1. Casazza's criterion and HI spaces

Theorem (Gowers-Maurey, 90's)
There exists a Banach space GM without an unconditional basic sequence.
it was unclear whether GM satisfied Casazza's criterion, so Gowers defined an unconditional version G_{u} of
Gowers-Maurey's space and proved:
Theorem (Gowers, 90's)
The space G_{u} satisfies Casazza's criterion, and therefore is not isomorphic to its proper subspaces.

But then Gowers and Maurey improved the properties of GM.
Theorem (Gowers-Maurey, 90's)
The space GM is HI and no HI space is isomorphic to its proper subspaces.

1. Casazza's criterion and HI spaces

So the proof that GM also solves Banach's hyperplane problem was based on general properties on HI spaces and Fredholm theory, and it remained unclear whether Casazza's criterion was satisfied by GM.

1. Casazza's criterion and HI spaces

So the proof that GM also solves Banach's hyperplane problem was based on general properties on HI spaces and Fredholm theory, and it remained unclear whether Casazza's criterion was satisfied by GM.
That Casazza's criterion is not a necessary condition is easy:

1. Casazza's criterion and HI spaces

So the proof that GM also solves Banach's hyperplane problem was based on general properties on HI spaces and Fredholm theory, and it remained unclear whether Casazza's criterion was satisfied by GM.
That Casazza's criterion is not a necessary condition is easy:
Observation
Let $\left(e_{n}\right)$ be the natural basis of the complex GM space. Then $e_{1}, i e_{1}, e_{2}, i e_{2}, \ldots$ is an even-odd real basis of GM, yet GM is not \mathbb{R}-linearly isomorphic to its real proper subspaces.
But the problem remained in the complex case.

1. Casazza's criterion and HI spaces

So the proof that GM also solves Banach's hyperplane problem was based on general properties on HI spaces and Fredholm theory, and it remained unclear whether Casazza's criterion was satisfied by GM.
That Casazza's criterion is not a necessary condition is easy:
Observation
Let $\left(e_{n}\right)$ be the natural basis of the complex GM space. Then $e_{1}, i e_{1}, e_{2}, i e_{2}, \ldots$ is an even-odd real basis of GM, yet GM is not \mathbb{R}-linearly isomorphic to its real proper subspaces.
But the problem remained in the complex case.
Actually our results will suggest that GM fails Casazza's criterion in a strong way:
Theorem (F., Schlumprecht, 11)
A version of GM is saturated with even-odd block sequences.

1. Gowers' dichotomies

1. Gowers' dichotomies

Theorem (Gowers' 1st dichotomy, 96)
Every Banach space contains either an HI subspace or a subspace with an unconditional basis.

1. Gowers' dichotomies

Theorem (Gowers' 1st dichotomy, 96)

Every Banach space contains either an HI subspace or a subspace with an unconditional basis.
A space is said to be quasi-minimal if any two subspaces have further subspaces which are isomorphic.
Theorem (Gowers' 2nd dichotomy, 02)
Every Banach space contains a quasi-minimal subspace or a subspace with a basis such that no two disjointly supported block subspaces are isomorphic.

1. Gowers' dichotomies

Theorem (Gowers' 1st dichotomy, 96)

Every Banach space contains either an HI subspace or a subspace with an unconditional basis.
A space is said to be quasi-minimal if any two subspaces have further subspaces which are isomorphic.
Theorem (Gowers' 2nd dichotomy, 02)
Every Banach space contains a quasi-minimal subspace or a subspace with a basis such that no two disjointly supported block subspaces are isomorphic.

Note that the property that no two disjointly supported block subspaces are isomorphic is a strong form of the criterion of Casazza.

1. Gowers classification program

These results opened the way to a loose classification of Banach spaces up to subspaces, known as Gowers' program. The aim of this program is to produce a list of classes of infinite dimensional Banach spaces such that:

1. Gowers classification program

These results opened the way to a loose classification of Banach spaces up to subspaces, known as Gowers' program. The aim of this program is to produce a list of classes of infinite dimensional Banach spaces such that:
(a) the classes are hereditary, i.e., stable under taking subspaces (or block subspaces),

1. Gowers classification program

These results opened the way to a loose classification of Banach spaces up to subspaces, known as Gowers' program. The aim of this program is to produce a list of classes of infinite dimensional Banach spaces such that:
(a) the classes are hereditary, i.e., stable under taking subspaces (or block subspaces),
(b) the classes are inevitable, i.e., every infinite dimensional Banach space contains a subspace in one of the classes,

1. Gowers classification program

These results opened the way to a loose classification of Banach spaces up to subspaces, known as Gowers' program. The aim of this program is to produce a list of classes of infinite dimensional Banach spaces such that:
(a) the classes are hereditary, i.e., stable under taking subspaces (or block subspaces),
(b) the classes are inevitable, i.e., every infinite dimensional Banach space contains a subspace in one of the classes, (c) the classes are mutually disjoint,

1. Gowers classification program

These results opened the way to a loose classification of Banach spaces up to subspaces, known as Gowers' program. The aim of this program is to produce a list of classes of infinite dimensional Banach spaces such that:
(a) the classes are hereditary, i.e., stable under taking subspaces (or block subspaces),
(b) the classes are inevitable, i.e., every infinite dimensional Banach space contains a subspace in one of the classes, (c) the classes are mutually disjoint,
(d) belonging to one class gives some information about the operators that may be defined on the space or on its subspaces.

1. Gowers' list of four classes

Finally, H. Rosenthal had defined a space to be minimal if it embeds into any of its subspaces. A quasi minimal space which does not contain a minimal subspace was called strictly quasi minimal by Gowers.

1. Gowers' list of four classes

Finally, H. Rosenthal had defined a space to be minimal if it embeds into any of its subspaces. A quasi minimal space which does not contain a minimal subspace was called strictly quasi minimal by Gowers.

Gowers deduced from these dichotomies and from easy implications (e.g. HI implies strictly quasi minimal) a list of four inevitable classes of Banach spaces characterized by the properties:

1. Gowers' list of four classes

Finally, H. Rosenthal had defined a space to be minimal if it embeds into any of its subspaces. A quasi minimal space which does not contain a minimal subspace was called strictly quasi minimal by Gowers.

Gowers deduced from these dichotomies and from easy implications (e.g. HI implies strictly quasi minimal) a list of four inevitable classes of Banach spaces characterized by the properties:

- HI spaces (GM),
- no disjointly supported subspaces are isomorphic $\left(G_{u}\right)$,
- strictly quasi-minimal with an unconditional basis (T),
- minimal spaces $\left(c_{0}, \ell_{p}, T^{*}, S\right)$.

Contents

1. Banach's hyperplane problem, Gowers' dichotomies and classification program
2. Other dichotomies and progress in the classification Joint work with C. Rosendal, 2007
3. Properties of Gowers and Maurey's spaces Joint work with Th. Schlumprecht, 2011

2. New dichotomies

The second dichotomy of Gowers is of the form "many versus few" isomorphisms between subspaces. We shall now define another dichotomy of this form.

We use here a presentation of results of F. - Rosendal (2007) based on observations made with G. Godefroy (2011).

2. Tightness

Proposition (F. - Godefroy)

Let X have a basis $\left(e_{n}\right)$. Then for any space Y, are equivalent:

2. Tightness

Proposition (F. - Godefroy)

Let X have a basis $\left(e_{n}\right)$. Then for any space Y, are equivalent:

1. $\left\{u \in 2^{\omega}: Y\right.$ embeds into $\left.\left[e_{n}: n \in u\right]\right\}$ is a meager subset of the Cantor space 2^{ω}.

2. Tightness

Proposition (F. - Godefroy)

Let X have a basis $\left(e_{n}\right)$. Then for any space Y, are equivalent:

1. $\left\{u \in 2^{\omega}: Y\right.$ embeds into $\left.\left[e_{n}: n \in u\right]\right\}$ is a meager subset of the Cantor space 2^{ω}.
2. Y embeds in no more than a meager class of block-subspaces of X.

2. Tightness

Proposition (F. - Godefroy)

Let X have a basis $\left(e_{n}\right)$. Then for any space Y, are equivalent:

1. $\left\{u \in 2^{\omega}: Y\right.$ embeds into $\left.\left[e_{n}: n \in u\right]\right\}$ is a meager subset of the Cantor space 2^{ω}.
2. Y embeds in no more than a meager class of block-subspaces of X.
3. there is a sequence of subsets $I_{0}<I_{1}<I_{2}<\ldots$ of \mathbb{N}, such that the support on (e_{n}) of any isomorphic copy of Y intersects all but finitely many of the l_{j} 's.

2. Tightness

Proposition (F. - Godefroy)

Let X have a basis $\left(e_{n}\right)$. Then for any space Y, are equivalent:

1. $\left\{u \in 2^{\omega}: Y\right.$ embeds into $\left.\left[e_{n}: n \in u\right]\right\}$ is a meager subset of the Cantor space 2^{ω}.
2. Y embeds in no more than a meager class of block-subspaces of X.
3. there is a sequence of subsets $I_{0}<I_{1}<I_{2}<\ldots$ of \mathbb{N}, such that the support on (e_{n}) of any isomorphic copy of Y intersects all but finitely many of the l_{j} 's.
If (i)-(ii)-(iii) occurs we say that Y is tight in X.

2. Tightness

Proposition (F. - Godefroy)

Let X have a basis $\left(e_{n}\right)$. Then for any space Y, are equivalent:

1. $\left\{u \in 2^{\omega}: Y\right.$ embeds into $\left.\left[e_{n}: n \in u\right]\right\}$ is a meager subset of the Cantor space 2^{ω}.
2. Y embeds in no more than a meager class of block-subspaces of X.
3. there is a sequence of subsets $I_{0}<I_{1}<I_{2}<\ldots$ of \mathbb{N}, such that the support on (e_{n}) of any isomorphic copy of Y intersects all but finitely many of the l_{j} 's.
If (i)-(ii)-(iii) occurs we say that Y is tight in X.
$0-1$ topological laws imply that Y is either tight in X, or embeds in a comeager class of block-subspaces of X. But a much more powerful result is true.

2. Tightness

Proposition (F. - Godefroy)

Let X have a basis $\left(e_{n}\right)$. Then for any space Y, are equivalent:

1. $\left\{u \in 2^{\omega}: Y\right.$ embeds into $\left.\left[e_{n}: n \in u\right]\right\}$ is a meager subset of the Cantor space 2^{ω}.
2. Y embeds in no more than a meager class of block-subspaces of X.
3. there is a sequence of subsets (intervals) $I_{0}<I_{1}<I_{2}<\ldots$ of \mathbb{N}, such that the support on $\left(e_{n}\right)$ of any isomorphic copy of Y intersects all but finitely many of the l_{j} 's.
If (i)-(ii)-(iii) occurs we say that Y is tight in X.
Definition (F. - Rosendal)
A space X is tight if Y is tight in X for any space Y.
So we may reformulate tightness more explicitely as:

2. Tightness

Proposition

Let X be a space with a basis $\left(e_{n}\right)$. Then the following are equivalent

1. X is tight.
2. any (block-subspace) Y embeds in no more than a meager class of block-subspaces of X (or the equivalent in the Cantor space setting)
3. for any (block-subspace) Y, there is a sequence of subsets (intervals) $I_{0}<I_{1}<I_{2}<\ldots$ of \mathbb{N}, such that the support on $\left(e_{n}\right)$ of any isomorphic copy of Y intersects all but finitely many of the l_{j} 's.

2. Tightness

Proposition

Let X be a space with a basis $\left(e_{n}\right)$. Then the following are equivalent

1. X is tight.
2. any (block-subspace) Y embeds in no more than a meager class of block-subspaces of X (or the equivalent in the Cantor space setting)
3. for any (block-subspace) Y, there is a sequence of subsets (intervals) $I_{0}<I_{1}<I_{2}<\ldots$ of \mathbb{N}, such that the support on $\left(e_{n}\right)$ of any isomorphic copy of Y intersects all but finitely many of the l_{j} 's.

Theorem (3d dichotomy, F. - Rosendal, 2007)

Every Banach space contains a minimal subspace or a tight subspace.

2. Tightness

Proposition

Let X be a space with a basis $\left(e_{n}\right)$. Then the following are equivalent

1. X is tight.
2. any (block-subspace) Y embeds in no more than a meager class of block-subspaces of X (or the equivalent in the Cantor space setting)
3. for any (block-subspace) Y, there is a sequence of subsets (intervals) $I_{0}<I_{1}<I_{2}<\ldots$ of \mathbb{N}, such that the support on $\left(e_{n}\right)$ of any isomorphic copy of Y intersects all but finitely many of the l_{j} 's.

Before seeing how this may improve Gowers' classification, let us see how special types of tightness may be defined according to the way the l_{j} 's may be chosen in function of Y in 3.

2. Tightness

Proposition

Let X be a space with a basis $\left(e_{n}\right)$. Then the following are equivalent

1. X is tight.
2. any (block-subspace) Y embeds in no more than a meager class of block-subspaces of X (or the equivalent in the Cantor space setting)
3. for any (block-subspace) Y, there is a sequence of subsets (intervals) $I_{0}<I_{1}<I_{2}<\ldots$ of \mathbb{N}, such that the support on $\left(e_{n}\right)$ of any isomorphic copy of Y intersects all but finitely many of the l_{j} 's.

For example, if Y is a block-subspace $\left[y_{n}\right]_{n \in \mathbb{N}}$ of X, a natural choice is $I_{j}=\operatorname{supp} y_{j}$ for all j.

2. Forms of tightness

Lemma
Let X be a space with a basis. The following are equivalent:

1. X is tight and for every block subspace $Y=\left[y_{j}\right] \subset X$, the tightness of Y in X is witnessed by the sequence $I_{j}=\operatorname{supp} y_{j}$
2. no subspace of X embeds in X disjointly from its support,
3. no disjointly supported subspaces of X are isomorphic.

2. Forms of tightness

Lemma

Let X be a space with a basis. The following are equivalent:

1. X is tight and for every block subspace $Y=\left[y_{j}\right] \subset X$, the tightness of Y in X is witnessed by the sequence $I_{j}=\operatorname{supp} y_{j}$
2. no subspace of X embeds in X disjointly from its support,
3. no disjointly supported subspaces of X are isomorphic.

So we recover Gowers' space G_{u} 's main property.

2. Forms of tightness

Lemma

Let X be a space with a basis. The following are equivalent:

1. X is tight and for every block subspace $Y=\left[y_{j}\right] \subset X$, the tightness of Y in X is witnessed by the sequence $I_{j}=\operatorname{supp} y_{j}$
2. no subspace of X embeds in X disjointly from its support,
3. no disjointly supported subspaces of X are isomorphic.

So we recover Gowers' space G_{u} 's main property. We shall call this property of G_{u} tightness by support.

2. Forms of tightness

Lemma

Let X be a space with a basis. The following are equivalent:

1. X is tight and for every block subspace $Y=\left[y_{j}\right] \subset X$, the tightness of Y in X is witnessed by the sequence $I_{j}=\operatorname{supp} y_{j}$
2. no subspace of X embeds in X disjointly from its support,
3. no disjointly supported subspaces of X are isomorphic.

So we recover Gowers' space G_{u} 's main property. We shall call this property of G_{u} tightness by support.

Also Gowers' 2nd dichotomy is interpreted as between a strong form of tightness and a weak form of minimality.

2. Four classes revisited

In passing, note that Gowers' classification is therefore refined as follows:

2. Four classes revisited

In passing, note that Gowers' classification is therefore refined as follows:

Every Banach space contains a subspace with one of the four properties:

- tight and HI (a subspace of GM),
- tight by support $\left(G_{u}\right)$,
- tight, quasi-minimal with an unconditional basis (T),
- minimal $\left(c_{0}, \ell_{p}, T^{*}, S\right)$.

2. Four classes revisited

In passing, note that Gowers' classification is therefore refined as follows:

Every Banach space contains a subspace with one of the four properties:

- tight and HI (a subspace of GM),
- tight by support $\left(G_{u}\right)$,
- tight, quasi-minimal with an unconditional basis (T),
- minimal $\left(c_{0}, \ell_{p}, T^{*}, S\right)$.

To further divide these classes, we shall now recall the notion of range of a vector.

2. Supports and ranges

Tightness by support is very strong, for example, implies unconditionality.

2. Supports and ranges

Tightness by support is very strong, for example, implies unconditionality. So we may look for a more general form of tightness that could hold for HI spaces and would be closer to Casazza's criterion.

2. Supports and ranges

Tightness by support is very strong, for example, implies unconditionality. So we may look for a more general form of tightness that could hold for HI spaces and would be closer to Casazza's criterion. For this the following distinction is useful.

If X is a space with a basis $\left(e_{i}\right)_{i}$, and $x=\sum_{i=0}^{\infty} x_{i} e_{i} \in X$, then

2. Supports and ranges

Tightness by support is very strong, for example, implies unconditionality. So we may look for a more general form of tightness that could hold for HI spaces and would be closer to Casazza's criterion. For this the following distinction is useful.

If X is a space with a basis $\left(e_{i}\right)_{i}$, and $x=\sum_{i=0}^{\infty} x_{i} e_{i} \in X$, then

- while supp $x=\left\{i \in \mathbb{N}: x_{i} \neq 0\right\}$,

2. Supports and ranges

Tightness by support is very strong, for example, implies unconditionality. So we may look for a more general form of tightness that could hold for HI spaces and would be closer to Casazza's criterion. For this the following distinction is useful.

If X is a space with a basis $\left(e_{i}\right)_{i}$, and $x=\sum_{i=0}^{\infty} x_{i} e_{i} \in X$, then

- while supp $x=\left\{i \in \mathbb{N}: x_{i} \neq 0\right\}$,
- the range ran x of x is the smallest interval of integers containing its support.

2. Supports and ranges

Tightness by support is very strong, for example, implies unconditionality. So we may look for a more general form of tightness that could hold for HI spaces and would be closer to Casazza's criterion. For this the following distinction is useful.

If X is a space with a basis $\left(e_{i}\right)_{i}$, and $x=\sum_{i=0}^{\infty} x_{i} e_{i} \in X$, then

- while supp $x=\left\{i \in \mathbb{N}: x_{i} \neq 0\right\}$,
- the range ran x of x is the smallest interval of integers containing its support.
If $Y=\left[y_{n}, n \in \mathbb{N}\right]$ is a block subspace of X, then the support of Y is $\cup_{n \in \mathbb{N}}$ supp y_{n}, and the range of Y is $\cup_{n \in \mathbb{N}}$ ran y_{n}.

2. Supports and ranges

Tightness by support is very strong, for example, implies unconditionality. So we may look for a more general form of tightness that could hold for HI spaces and would be closer to Casazza's criterion. For this the following distinction is useful.

If X is a space with a basis $\left(e_{i}\right)_{i}$, and $x=\sum_{i=0}^{\infty} x_{i} e_{i} \in X$, then

- while supp $x=\left\{i \in \mathbb{N}: x_{i} \neq 0\right\}$,
- the range ran x of x is the smallest interval of integers containing its support.
If $Y=\left[y_{n}, n \in \mathbb{N}\right]$ is a block subspace of X, then the support of Y is $\cup_{n \in \mathbb{N}}$ supp y_{n}, and the range of Y is $\cup_{n \in \mathbb{N}}$ ran y_{n}.

So say $\left[e_{1}+e_{2}, e_{5}+e_{6}, \ldots\right]$ and $\left[e_{3}+e_{4}, e_{7}+e_{8}, \ldots\right]$ have dijsoint ranges,
but [$e_{1}+e_{3}, e_{5}+e_{7}, \ldots$] and [$\left.e_{2}+e_{4}, e_{6}+e_{8}, \ldots\right]$ have disjoint supports but not disjoint ranges.

2. Tightness by range

Ranges may now be used to define a weaker form of tightness:

2. Tightness by range

Ranges may now be used to define a weaker form of tightness:
Lemma
Let X be a space with a basis. The following are equivalent:

1. X is tight and for every block subspace $Y=\left[y_{j}\right] \subset X$, the tightness of Y in X is witnessed by the sequence $I_{j}=$ ran y_{j}
2. no block-subspace of X embeds in X disjointly from its range.
In this case we shall say that X is tight by range.

2. Tightness by range

Ranges may now be used to define a weaker form of tightness:
Lemma
Let X be a space with a basis. The following are equivalent:

1. X is tight and for every block subspace $Y=\left[y_{j}\right] \subset X$, the tightness of Y in X is witnessed by the sequence $I_{j}=\operatorname{ran} y_{j}$
2. no block-subspace of X embeds in X disjointly from its range.
In this case we shall say that X is tight by range.

Observe that if $\left(x_{n}\right)$ is an even-odd block-sequence, then $\left[x_{2 n}\right]$ embeds disjointly from its range. Therefore by 2. , tightness by range may be seen as a slightly stronger form of Casazza's criterion.

2. Tightness by range

Ranges may now be used to define a weaker form of tightness:

Lemma

Let X be a space with a basis. The following are equivalent:

1. X is tight and for every block subspace $Y=\left[y_{j}\right] \subset X$, the tightness of Y in X is witnessed by the sequence $I_{j}=\operatorname{ran} y_{j}$
2. no block-subspace of X embeds in X disjointly from its range.
In this case we shall say that X is tight by range.
Observe that if $\left(x_{n}\right)$ is an even-odd block-sequence, then [$x_{2 n}$] embeds disjointly from its range. Therefore by 2 ., tightness by range may be seen as a slightly stronger form of Casazza's criterion. The two properties are so similar that we shall give ideas of some proofs in the case of Casazza's criterion instead of tightness by range.

2. Tightness by range

Question
Is tightness by range really weaker than tightness by support?

2. Tightness by range

Question
Is tightness by range really weaker than tightness by support?
Theorem (F. - Rosendal, 07)
Yes. Gowers' asymptotically unconditional and HI space $G_{a u}$ is tight by range.

2. Tightness by range

Question

Is tightness by range really weaker than tightness by support?
Theorem (F. - Rosendal, 07)
Yes. Gowers' asymptotically unconditional and HI space $G_{a u}$ is tight by range.

However it is not tight by support, since it is HI .

2. Tightness by range

Question

Is tightness by range really weaker than tightness by support?
Theorem (F. - Rosendal, 07)
Yes. Gowers' asymptotically unconditional and HI space $G_{a u}$ is tight by range.

However it is not tight by support, since it is HI .
We shall now see that there also exists a dichotomy relative to tightness by range.

2. The fourth dichotomy

Definition
A space X with a basis (e_{n}) is subsequentially minimal if every subspace of X contains an isomorphic copy of a subsequence of $\left(e_{n}\right)$. Example: T.

2. The fourth dichotomy

Definition
A space X with a basis $\left(e_{n}\right)$ is subsequentially minimal if every subspace of X contains an isomorphic copy of a subsequence of $\left(e_{n}\right)$. Example: T.
Theorem (4th dichotomy, F. - Rosendal 07)
Any Banach space contains a subspace with a basis which is either tight by range or subsequentially minimal.

2. The fourth dichotomy

Definition
A space X with a basis $\left(e_{n}\right)$ is subsequentially minimal if every subspace of X contains an isomorphic copy of a subsequence of $\left(e_{n}\right)$. Example: T.
Theorem (4th dichotomy, F. - Rosendal 07)
Any Banach space contains a subspace with a basis which is either tight by range or subsequentially minimal.

Why?

2. The fourth dichotomy

Definition
A space X with a basis (e_{n}) is subsequentially minimal if every subspace of X contains an isomorphic copy of a subsequence of (e_{n}). Example: T.
Theorem (4th dichotomy, F. - Rosendal 07)
Any Banach space contains a subspace with a basis which is either tight by range or subsequentially minimal.

Why?

- If X is subsequentially minimal, then a subsequence embeds into a very flat, wlog disjointly ranged, block-sequence - therefore X is not tight by range.

2. The fourth dichotomy

Definition

A space X with a basis $\left(e_{n}\right)$ is subsequentially minimal if every subspace of X contains an isomorphic copy of a subsequence of $\left(e_{n}\right)$. Example: T.
Theorem (4th dichotomy, F. - Rosendal 07)
Any Banach space contains a subspace with a basis which is either tight by range or subsequentially minimal.

Why?

- If X is subsequentially minimal, then a subsequence embeds into a very flat, wlog disjointly ranged, block-sequence - therefore X is not tight by range.
- if X is saturated with even-odd block sequences, use Gowers' Ramsey theorem to enumerate, as a block sequence, sufficiently many vectors witnessing the equivalences.

2. The list of 6 inevitable classes

The first four dichotomies and the interdependence of the properties involved can be visualized in the following diagram.

2. The list of 6 inevitable classes

The first four dichotomies and the interdependence of the properties involved can be visualized in the following diagram.

(*) Sequential minimality is a hereditary version of subsequential minimality.

2. The list of 6 inevitable classes

Theorem (F. - Rosendal 2007)
Any infinite dimensional Banach space contains a subspace of one of the types listed in the following chart:

Type	Properties	Examples
(1)	HI, tight by range	$G_{a u}$
(2)	HI, tight, sequentially minimal	$?$
(3)	tight by support	G_{u}
(4)	unconditional basis, tight by range, quasi minimal	$?$
(5)	unconditional basis, tight, sequentially minimal	$T, T^{(p)}$
(6)	unconditional basis, minimal	$S, T^{*}, c_{0}, \ell_{p}$

Contents

1. Banach's hyperplane problem, Gowers' dichotomies and classification program
2. Other dichotomies and progress in the classification Joint work with C. Rosendal, 2007
3. Properties of Gowers and Maurey's spaces Joint work with Th. Schlumprecht, 2011

3. Type (2) spaces

Theorem (F. - Schlumprecht, 11)
A version of GM is saturated with even-odd block sequences.

3. Type (2) spaces

Theorem (F. - Schlumprecht, 11)

A version of GM is saturated with even-odd block sequences.
In other words this space does not contain any block-subspace with Casazza's criterion, and therefore no subspace tight by range, so by the 4th dichotomy, some subspace is sequentially minimal.
Also the space does not contain unconditional basic sequences, so some further subspace $\mathcal{X}_{G M}$ is HI (1st dichotomy) and also tight (3rd dichotomy).

3. Type (2) spaces

Theorem (F. - Schlumprecht, 11)

A version of GM is saturated with even-odd block sequences.
In other words this space does not contain any block-subspace with Casazza's criterion, and therefore no subspace tight by range, so by the 4th dichotomy, some subspace is sequentially minimal.
Also the space does not contain unconditional basic sequences, so some further subspace $\mathcal{X}_{G M}$ is HI (1st dichotomy) and also tight (3rd dichotomy).

So we just needed to "look" at the first known HI space to obtain a type (2) space!

3. Six classes

Theorem

Any infinite dimensional Banach space contains a subspace of one of the types listed in the following chart:

Type	Properties	Examples
(1)	HI, tight by range	$G_{a u}$
(2)	HI, tight, sequentially minimal	$\mathcal{X}_{G M}$
(3)	tight by support	G_{u}
(4)	unconditional basis, tight by range, quasi minimal	$?$
(5)	unconditional basis, tight, sequentially minimal	$T, T^{(p)}$
(6)	unconditional basis, minimal	$S, T^{*}, c_{0}, \ell_{p}$

3. Technical ideas

We end with ideas of the construction of the version $\mathcal{G M}$ of Gowers-Maurey's space which is saturated with even-odd block sequences.

3. Technical ideas

We end with ideas of the construction of the version $\mathcal{G M}$ of Gowers-Maurey's space which is saturated with even-odd block sequences.

Assuming we want to disprove the existence of equivalent sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ with $x_{1}<y_{1}<x_{2}<y_{2}<\cdots$ in a Gowers-Maurey space, the Gowers-Maurey method is to

3. Technical ideas

We end with ideas of the construction of the version $\mathcal{G M}$ of Gowers-Maurey's space which is saturated with even-odd block sequences.

Assuming we want to disprove the existence of equivalent sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ with $x_{1}<y_{1}<x_{2}<y_{2}<\cdots$ in a Gowers-Maurey space, the Gowers-Maurey method is to

1. block cleverly the x_{i} 's to build ℓ_{1}-averages (then RIS vectors...)

3. Technical ideas

We end with ideas of the construction of the version $\mathcal{G M}$ of Gowers-Maurey's space which is saturated with even-odd block sequences.

Assuming we want to disprove the existence of equivalent sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ with $x_{1}<y_{1}<x_{2}<y_{2}<\cdots$ in a Gowers-Maurey space, the Gowers-Maurey method is to

1. block cleverly the x_{i} 's to build ℓ_{1}-averages (then RIS vectors...)
2. find norming functionals x_{n}^{*} for these ℓ_{1}-averages, which do not act on the y_{i} 's - for example functionals disjointly supported from the y_{i} 's,

3. Technical ideas

We end with ideas of the construction of the version $\mathcal{G} \mathcal{M}$ of Gowers-Maurey's space which is saturated with even-odd block sequences.

Assuming we want to disprove the existence of equivalent sequences $\left(x_{n}\right)$ and (y_{n}) with $x_{1}<y_{1}<x_{2}<y_{2}<\cdots$ in a Gowers-Maurey space, the Gowers-Maurey method is to

1. block cleverly the x_{i} 's to build ℓ_{1}-averages (then RIS vectors...)
2. find norming functionals x_{n}^{*} for these ℓ_{1}-averages, which do not act on the y_{i} 's - for example functionals disjointly supported from the $y_{i}^{\prime} \mathrm{s}$,
3. special functionals built from the x_{n}^{*} show that a combination of the x_{i} 's has norm much larger than the corresponding combination of the y_{i} 's, contradicting equivalence.

3. Technical ideas

- In GM this fails at the first step, namely, the construction of ℓ_{1}^{n}-averages.

3. Technical ideas

- In GM this fails at the first step, namely, the construction of ℓ_{1}^{n}-averages. Indeed, assume $x_{1}<y_{1}<x_{2}<y_{2}<\cdots$; by James' argument, given n, one may find a sum of x_{i} 's which is an ℓ_{1}^{n}-sum x. But the functional x^{*} norming x may have a non-trivial action on the y_{i} 's in between.

3. Technical ideas

- In GM this fails at the first step, namely, the construction of ℓ_{1}^{n}-averages. Indeed, assume $x_{1}<y_{1}<x_{2}<y_{2}<\cdots$; by James' argument, given n, one may find a sum of x_{i} 's which is an ℓ_{1}^{n}-sum x. But the functional x^{*} norming x may have a non-trivial action on the y_{i} 's in between.
- In the unconditional Gowers-Maurey space G_{u}, however, one may just replace x^{*} by its projection on the union of the supports of the x_{i} 's. Then everything works...

3. Technical ideas

- In GM this fails at the first step, namely, the construction of ℓ_{1}^{n}-averages. Indeed, assume $x_{1}<y_{1}<x_{2}<y_{2}<\cdots$; by James' argument, given n, one may find a sum of x_{i} 's which is an ℓ_{1}^{n}-sum x. But the functional x^{*} norming x may have a non-trivial action on the y_{i} 's in between.
- In the unconditional Gowers-Maurey space G_{u}, however, one may just replace x^{*} by its projection on the union of the supports of the x_{i} 's. Then everything works...
- Actually a closer look shows that asymptotic unconditionality is enough to construct $\ell_{1}^{n \text { 's }}$ from the x_{i} 's, normed by functionals with support disjoint from the y_{i} 's.

3. Technical ideas

- In GM this fails at the first step, namely, the construction of ℓ_{1}^{n}-averages. Indeed, assume $x_{1}<y_{1}<x_{2}<y_{2}<\cdots$; by James' argument, given n, one may find a sum of x_{i} 's which is an ℓ_{1}^{n}-sum x. But the functional x^{*} norming x may have a non-trivial action on the y_{i} 's in between.
- In the unconditional Gowers-Maurey space G_{u}, however, one may just replace x^{*} by its projection on the union of the supports of the x_{i} 's. Then everything works...
- Actually a closer look shows that asymptotic unconditionality is enough to construct ℓ_{1}^{n} 's from the x_{i} 's, normed by functionals with support disjoint from the y_{i} 's.

So this is why G_{u} and $G_{a u}$ satisfy Casazza's criterion, but the question remained for $G M$.

Technical ideas: GM

So let us on the contrary try to find an even-odd block sequence in GM.

Technical ideas: GM

So let us on the contrary try to find an even-odd block sequence in GM. Remember the proof of the "trivial" quasi-minimality of HI spaces, i.e. of equivalence of many disjointly supported sequences.

Technical ideas: GM

So let us on the contrary try to find an even-odd block sequence in GM. Remember the proof of the "trivial" quasi-minimality of HI spaces, i.e. of equivalence of many disjointly supported sequences.

- By the HI property, we may find in two disjointly supported subspaces two normalized sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$, so that $\left\|x_{n}-y_{n}\right\|$ tends fast enough to 0 . Then the map $x_{n} \mapsto y_{n}-x_{n}$ is compact, and therefore x_{n} is equivalent to y_{n}, and disjointly supported.

Technical ideas: GM

So let us on the contrary try to find an even-odd block sequence in GM. Remember the proof of the "trivial" quasi-minimality of HI spaces, i.e. of equivalence of many disjointly supported sequences.

- By the HI property, we may find in two disjointly supported subspaces two normalized sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$, so that $\left\|x_{n}-y_{n}\right\|$ tends fast enough to 0 . Then the map $x_{n} \mapsto y_{n}-x_{n}$ is compact, and therefore x_{n} is equivalent to y_{n}, and disjointly supported.
Now if we wish $x_{1}<y_{1}<x_{2}<y_{2}<\cdots$, then $\inf _{n}\left\|x_{n}-y_{n}\right\|>0$ (by projecting on the range of x_{n}) and so $x_{n} \mapsto y_{n}-x_{n}$ can never be compact!

Technical ideas: GM

So let us on the contrary try to find an even-odd block sequence in GM. Remember the proof of the "trivial" quasi-minimality of HI spaces, i.e. of equivalence of many disjointly supported sequences.

- By the HI property, we may find in two disjointly supported subspaces two normalized sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$, so that $\left\|x_{n}-y_{n}\right\|$ tends fast enough to 0 . Then the map $x_{n} \mapsto y_{n}-x_{n}$ is compact, and therefore x_{n} is equivalent to y_{n}, and disjointly supported.
Now if we wish $x_{1}<y_{1}<x_{2}<y_{2}<\cdots$, then $\inf _{n}\left\|x_{n}-y_{n}\right\|>0$ (by projecting on the range of x_{n}) and so $x_{n} \mapsto y_{n}-x_{n}$ can never be compact! It may however be strictly singular and then essentially $x_{n} \mapsto y_{n}$ is an isomorphism.

Technical ideas: GM

So let us on the contrary try to find an even-odd block sequence in GM. Remember the proof of the "trivial" quasi-minimality of HI spaces, i.e. of equivalence of many disjointly supported sequences.

- By the HI property, we may find in two disjointly supported subspaces two normalized sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$, so that $\left\|x_{n}-y_{n}\right\|$ tends fast enough to 0 . Then the map $x_{n} \mapsto y_{n}-x_{n}$ is compact, and therefore x_{n} is equivalent to y_{n}, and disjointly supported.

Now if we wish $x_{1}<y_{1}<x_{2}<y_{2}<\cdots$, then $\inf _{n}\left\|x_{n}-y_{n}\right\|>0$ (by projecting on the range of x_{n}) and so $x_{n} \mapsto y_{n}-x_{n}$ can never be compact! It may however be strictly singular and then essentially $x_{n} \mapsto y_{n}$ is an isomorphism.

- So we build $x_{1}<y_{1}<x_{2}<y_{2}<\cdots$ so that $x_{n} \mapsto x_{n}-y_{n}$ (and $y_{n} \mapsto x_{n}-y_{n}$) is bounded and strictly singular.

Technical ideas: GM

Summing up we want to build $x_{1}<y_{1}<x_{2}<y_{2}<\cdots$ so that $x_{n} \mapsto x_{n}-y_{n}$ is bounded (and strictly singular).

Technical ideas: GM

Summing up we want to build $x_{1}<y_{1}<x_{2}<y_{2}<\cdots$ so that $x_{n} \mapsto x_{n}-y_{n}$ is bounded (and strictly singular).

- by works of Schlumprecht we guarantee this if the spreading model of $x_{n}-y_{n}$ is strongly dominated by the spreading models of $x_{n}, y_{n}, x_{n}+y_{n}$.

Technical ideas: GM

Summing up we want to build $x_{1}<y_{1}<x_{2}<y_{2}<\cdots$ so that $x_{n} \mapsto x_{n}-y_{n}$ is bounded (and strictly singular).

- by works of Schlumprecht we guarantee this if the spreading model of $x_{n}-y_{n}$ is strongly dominated by the spreading models of $x_{n}, y_{n}, x_{n}+y_{n}$.
- in other words we want linear combinations of x_{n} and y_{n} to add very conditionally, which we know how to do in GM using special functionals.

Technical ideas: GM

Summing up we want to build $x_{1}<y_{1}<x_{2}<y_{2}<\cdots$ so that $x_{n} \mapsto x_{n}-y_{n}$ is bounded (and strictly singular).

- by works of Schlumprecht we guarantee this if the spreading model of $x_{n}-y_{n}$ is strongly dominated by the spreading models of $x_{n}, y_{n}, x_{n}+y_{n}$.
- in other words we want linear combinations of x_{n} and y_{n} to add very conditionally, which we know how to do in GM using special functionals.
- but we need this conditionality for all combinations of the x_{n} 's (resp. y_{n} 's) defining the spreading models, so need much more information than in the classical GM: for example we shall need $x_{n}+y_{n}$ to be normed by z_{n}^{*} such that $\left(z_{2}^{*}, z_{3}^{*}\right),\left(z_{2}^{*}, z_{4}^{*}\right)$ but also $\left(z_{3}^{*}, z_{4}^{*}\right)$ are special sequences...

Technical ideas: GM

Summing up we want to build $x_{1}<y_{1}<x_{2}<y_{2}<\cdots$ so that $x_{n} \mapsto x_{n}-y_{n}$ is bounded (and strictly singular).

- by works of Schlumprecht we guarantee this if the spreading model of $x_{n}-y_{n}$ is strongly dominated by the spreading models of $x_{n}, y_{n}, x_{n}+y_{n}$.
- in other words we want linear combinations of x_{n} and y_{n} to add very conditionally, which we know how to do in GM using special functionals.
- but we need this conditionality for all combinations of the x_{n} 's (resp. y_{n} 's) defining the spreading models, so need much more information than in the classical GM: for example we shall need $x_{n}+y_{n}$ to be normed by z_{n}^{*} such that $\left(z_{2}^{*}, z_{3}^{*}\right),\left(z_{2}^{*}, z_{4}^{*}\right)$ but also $\left(z_{3}^{*}, z_{4}^{*}\right)$ are special sequences...
- this is possible using functionals with multiple weights, thanks to the "yardstick vectors" of Kutzarova - Lin.

Technical ideas: differences with GM

How is our space different from GM?

Technical ideas: differences with GM

How is our space different from GM?

- to deal with spreading models, need special sequences of length k starting with $m_{1}=j_{2 k^{\prime}}$, with all $k^{\prime} \geq k$.

Technical ideas: differences with GM

How is our space different from GM?

- to deal with spreading models, need special sequences of length k starting with $m_{1}=j_{2 k^{\prime}}$, with all $k^{\prime} \geq k$.
- need to work with all lengths, rather than lengths in lacunary K.

Technical ideas: differences with GM

How is our space different from GM?

- to deal with spreading models, need special sequences of length k starting with $m_{1}=j_{2 k^{\prime}}$, with all $k^{\prime} \geq k$.
- need to work with all lengths, rather than lengths in lacunary K.
- to work with sequences generating spreading models, need to pass to subsequences, so lose some control and only know that the space does not contain unconditional basic sequences.

Technical ideas: differences with GM

How is our space different from GM?

- to deal with spreading models, need special sequences of length k starting with $m_{1}=j_{2 k^{\prime}}$, with all $k^{\prime} \geq k$.
- need to work with all lengths, rather than lengths in lacunary K.
- to work with sequences generating spreading models, need to pass to subsequences, so lose some control and only know that the space does not contain unconditional basic sequences.

But we conjecture that GM itself is saturated with even-odd sequences.

Many interesting questions relative to a different form of tightness (of a more local nature) also remain unsolved.

Technical ideas: differences with GM

How is our space different from GM?

- to deal with spreading models, need special sequences of length k starting with $m_{1}=j_{2 k^{\prime}}$, with all $k^{\prime} \geq k$.
- need to work with all lengths, rather than lengths in lacunary K.
- to work with sequences generating spreading models, need to pass to subsequences, so lose some control and only know that the space does not contain unconditional basic sequences.

But we conjecture that GM itself is saturated with even-odd sequences.

Many interesting questions relative to a different form of tightness (of a more local nature) also remain unsolved. And also of course the existence of a type (4) space.

冨 V．F．and G．Godefroy，Tightness of Banach spaces and Baire category，preprint 2011，arXiv 1111.6444.
圊 V．F．and C．Rosendal，Banach spaces without minimal subspaces，J．Funct．Anal． 257 （2009）149－193．
國 V．F．and C．Rosendal，Banach spaces without minimal subspaces－examples，Ann．Inst．Fourier，to appear．
嗇 V．F．and Th．Schlumprecht，Subsequential minimality in Gowers and Maurey spaces，preprint 2011，arXiv 1112．2411．
－W．T．Gowers，A solution to Banach＇s hyperplane problem， Bull．London Math．Soc． 26 （1994）no． 6 523－530．

囯 W．T．Gowers，An infinite Ramsey theorem and some Banach－space dichotomies，Ann．of Math．2， 156 （2002）no． 3 797－833．
囯 W．T．Gowers and B．Maurey，The unconditional basis problem，J．Am．Math．Soc．6，no． 4 851－874．

[^0]: ${ }^{1}$ The author acknowledges the support of FAPESP, process 2010/17493-1

