On a class of operators on C(K)

Detelin Dosev

Weizmann Institute of Science Israel

Banff, 2012

Detelin Dosev (Weizmann Institute)

On a class of operators on C(K)

 Image: Note of the second s

(日) (同) (三) (三)

Let \mathcal{X} be a Banach space. An operator $T \in \mathcal{L}(\mathcal{X})$ is called a commutator if T = AB - BA(=[A, B]) for some bounded operators A and B in $\mathcal{L}(\mathcal{X})$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let \mathcal{X} be a Banach space. An operator $T \in \mathcal{L}(\mathcal{X})$ is called a commutator if T = AB - BA(=[A, B]) for some bounded operators A and B in $\mathcal{L}(\mathcal{X})$.

 The identity element in a unital, normed algebra is not a commutator. (Wintner, 1947) (AB - BA = I ⇒ AⁿB - BAⁿ = nAⁿ⁻¹ ⇒ n||Aⁿ⁻¹|| ≤ 2||A||||B|||Aⁿ⁻¹||) (Wielandt, 1949)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Let \mathcal{X} be a Banach space. An operator $T \in \mathcal{L}(\mathcal{X})$ is called a commutator if T = AB - BA(=[A, B]) for some bounded operators A and B in $\mathcal{L}(\mathcal{X})$.

- The identity element in a unital, normed algebra is not a commutator. (Wintner, 1947) (AB - BA = I ⇒ AⁿB - BAⁿ = nAⁿ⁻¹ ⇒ n||Aⁿ⁻¹|| ≤ 2||A||||B||||Aⁿ⁻¹||) (Wielandt, 1949)
- $\lambda I + K$ can not be a commutator for any K- compact and $\lambda \neq 0$.

Let \mathcal{X} be a Banach space. An operator $T \in \mathcal{L}(\mathcal{X})$ is called a commutator if T = AB - BA(=[A, B]) for some bounded operators A and B in $\mathcal{L}(\mathcal{X})$.

- The identity element in a unital, normed algebra is not a commutator. (Wintner, 1947) (AB - BA = I ⇒ AⁿB - BAⁿ = nAⁿ⁻¹ ⇒ n||Aⁿ⁻¹|| ≤ 2||A||||B||||Aⁿ⁻¹||) (Wielandt, 1949)
- $\lambda I + K$ can not be a commutator for any K- compact and $\lambda \neq 0$.
- An operator *T* on a separable Hilbert space is a commutator if and only if *T* is not of the form λ*I* + *K* for some compact operator *K* and some λ ≠ 0.
 (Brown Pearcy, 1965)

 If T ∈ L(ℓ_p), (1 0</sub>) then T is a commutator if and only if T is not of the form T = λI + K, where K - compact operator, λ ≠ 0. (Apostol, 1972-1973)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction

- If T ∈ L(ℓ_p), (1 0</sub>) then T is a commutator if and only if T is not of the form T = λI + K, where K - compact operator, λ ≠ 0. (Apostol, 1972-1973)
- If T ∈ L(ℓ₁) then T is a commutator if and only if T is not of the form T = λI + K, where K compact operator, λ ≠ 0. (Dosev, 2009)

Introduction

- If T ∈ L(ℓ_p), (1 0</sub>) then T is a commutator if and only if T is not of the form T = λI + K, where K compact operator, λ ≠ 0. (Apostol, 1972-1973)
- If T ∈ L(ℓ₁) then T is a commutator if and only if T is not of the form T = λI + K, where K compact operator, λ ≠ 0. (Dosev, 2009)
- If T ∈ L(ℓ_∞) then T is a commutator if and only if T is not of the form T = λI + S, where S strictly singular, λ ≠ 0. (Dosev & Johnson, 2010)

Introduction

- If T ∈ L(ℓ_p), (1 0</sub>) then T is a commutator if and only if T is not of the form T = λI + K, where K compact operator, λ ≠ 0. (Apostol, 1972-1973)
- If T ∈ L(ℓ₁) then T is a commutator if and only if T is not of the form T = λI + K, where K compact operator, λ ≠ 0. (Dosev, 2009)
- If $T \in \mathcal{L}(\ell_{\infty})$ then T is a commutator if and only if T is not of the form $T = \lambda I + S$, where S strictly singular, $\lambda \neq 0$. (Dosev & Johnson, 2010)
- Let \mathcal{M} be the largest ideal in $\mathcal{L}(L^p)$, $1 \leq p < \infty$. An operator $T \in \mathcal{L}(L^p)$ is a commutator if and only if $T \lambda I \notin \mathcal{M}$ for any $\lambda \neq 0$. (Dosev, Johnson & Schechtman, 2011)

 Let *M* be the largest ideal in *L*((∑ℓ_q)_p) for 1 ≤ q < ∞ and 1 T ∈ *L*((∑ℓ_q)_p) is a commutator if and only if *T* − λ*I* ∉ *M* for any λ ≠ 0. (Chen, Johnson & Zheng, 2011)

(日) (同) (三) (三)

 Let *M* be the largest ideal in *L*((∑ ℓ_q)_p) for 1 ≤ q < ∞ and 1 T ∈ *L*((∑ ℓ_q)_p) is a commutator if and only if *T* − λ*I* ∉ *M* for any λ ≠ 0. (Chen, Johnson & Zheng, 2011)

For all aforementioned examples the largest ideal $\mathcal M$ is defined as follows:

 $\mathcal{M}_{\mathcal{X}} = \{ T \in \mathcal{L}(\mathcal{X}) : I_{\mathcal{X}} \text{ does not factor through } T \}.$

 Let *M* be the largest ideal in *L*((∑ ℓ_q)_p) for 1 ≤ q < ∞ and 1 T ∈ *L*((∑ ℓ_q)_p) is a commutator if and only if *T* − λ*I* ∉ *M* for any λ ≠ 0. (Chen, Johnson & Zheng, 2011)

For all aforementioned examples the largest ideal $\mathcal M$ is defined as follows:

 $\mathcal{M}_{\mathcal{X}} = \{ T \in \mathcal{L}(\mathcal{X}) : I_{\mathcal{X}} \text{ does not factor through } T \}.$

For a general Banach space \mathcal{X} , $\mathcal{M}_{\mathcal{X}}$ may not be an ideal but if it is in fact an ideal (equivalently, closed under addition) it is the largest ideal on $\mathcal{L}(\mathcal{X})$.

Let \mathcal{X} be a Banach space such that $\mathcal{X} \simeq (\sum \mathcal{X})_p$, $1 \le p \le \infty$ or p = 0. Assume that $\mathcal{L}(\mathcal{X})$ has a largest ideal \mathcal{M} . Then every non-commutator on \mathcal{X} has the form $\lambda I + K$, where $K \in \mathcal{M}$ and $\lambda \ne 0$.

Let \mathcal{X} be a Banach space such that $\mathcal{X} \simeq (\sum \mathcal{X})_p$, $1 \le p \le \infty$ or p = 0. Assume that $\mathcal{L}(\mathcal{X})$ has a largest ideal \mathcal{M} . Then every non-commutator on \mathcal{X} has the form $\lambda I + K$, where $K \in \mathcal{M}$ and $\lambda \ne 0$.

To verify the conjecture for a given Banach space \mathcal{X} , one must prove two statements:

< 回 > < 三 > < 三 >

Let \mathcal{X} be a Banach space such that $\mathcal{X} \simeq \left(\sum \mathcal{X}\right)_p$, $1 \le p \le \infty$ or p = 0. Assume that $\mathcal{L}(\mathcal{X})$ has a largest ideal \mathcal{M} . Then every non-commutator on \mathcal{X} has the form $\lambda I + K$, where $K \in \mathcal{M}$ and $\lambda \ne 0$.

To verify the conjecture for a given Banach space \mathcal{X} , one must prove two statements:

Step 1. Every operator $T \in \mathcal{M}$ is a commutator.

< 回 ト < 三 ト < 三 ト

Let \mathcal{X} be a Banach space such that $\mathcal{X} \simeq \left(\sum \mathcal{X}\right)_p$, $1 \le p \le \infty$ or p = 0. Assume that $\mathcal{L}(\mathcal{X})$ has a largest ideal \mathcal{M} . Then every non-commutator on \mathcal{X} has the form $\lambda I + K$, where $K \in \mathcal{M}$ and $\lambda \ne 0$.

To verify the conjecture for a given Banach space \mathcal{X} , one must prove two statements:

Step 1. Every operator $T \in \mathcal{M}$ is a commutator.

Step 2. If $T \in \mathcal{L}(\mathcal{X})$ is not of the form $\lambda I + K$, where $K \in \mathcal{M}$ and $\lambda \neq 0$, then T is a commutator.

イロト イポト イヨト イヨト 三日

Theorem (Used in Step 1)

Let \mathcal{X} be a Banach space for which $\mathcal{X} \simeq \left(\bigoplus_{i=0}^{\infty} \mathcal{X} \right)_p$ for some $1 \le p < \infty$ or p = 0. In the case p = 1 we will assume that $\mathcal{X} = L_1$ or $\mathcal{X} = \ell_1$. Then every compact operator on \mathcal{X} is a commutator.

Theorem (Used in Step 1)

Let \mathcal{X} be a Banach space for which $\mathcal{X} \simeq \left(\bigoplus_{i=0}^{\infty} \mathcal{X}\right)_{p}$ for some $1 \leq p < \infty$ or p = 0. In the case p = 1 we will assume that $\mathcal{X} = L_1$ or $\mathcal{X} = \ell_1$. Then every compact operator on \mathcal{X} is a commutator.

Theorem (Used in Step 1)

Let \mathcal{X} be a Banach space for which $\mathcal{X} \simeq \left(\bigoplus_{i=0}^{\infty} \mathcal{X}\right)_p$ for some 1or <math>p = 0. Let $T \in \mathcal{L}(\mathcal{X})$ and suppose that P is a projection on \mathcal{X} such that $P\mathcal{X} \simeq \mathcal{X} \simeq (I - P)\mathcal{X}$ and that either TP or PT is a compact operator. Then T is a commutator.

Detelin Dosev (Weizmann Institute)

イロト イポト イヨト イヨト 二日

Theorem (Used in Step 2)

Let \mathcal{X} be a Banach space such that $\mathcal{X} \simeq \left(\sum \mathcal{X}\right)_p$, $1 \le p \le \infty$ or p = 0. Let $T \in \mathcal{L}(\mathcal{X})$ be such that there exists a subspace $X \subset \mathcal{X}$ such that $X \simeq \mathcal{X}$, $T_{|X}$ is an isomorphism, X + T(X) is complemented in \mathcal{X} , and d(X, T(X)) > 0. Then T is a commutator.

< 回 > < 三 > < 三 >

Theorem (Used in Step 2)

Let \mathcal{X} be a Banach space such that $\mathcal{X} \simeq \left(\sum \mathcal{X}\right)_p$, $1 \le p \le \infty$ or p = 0. Let $T \in \mathcal{L}(\mathcal{X})$ be such that there exists a subspace $X \subset \mathcal{X}$ such that $X \simeq \mathcal{X}$, $T_{|X}$ is an isomorphism, X + T(X) is complemented in \mathcal{X} , and d(X, T(X)) > 0. Then T is a commutator.

Definition

Let \mathcal{X} be a Banach space and $T \in \mathcal{L}(\mathcal{X})$. We say that a subspace $Z \subseteq \mathcal{X}$ is "nice" for T if $Z \simeq \mathcal{X}$, Z is complemented in \mathcal{X} , $T_{|Z}$ is an isomorphism, d(TZ, Z) > 0, and Z + TZ is a subspace isomorphic to \mathcal{X} and complemented in \mathcal{X} .

Main tools

Cheap tricks

Detelin Dosev (Weizmann Institute)

On a class of operators on C(K)

▲口> ▲圖> ▲屋> ▲屋>

Cheap tricks

Proposition

Let $T \in \mathcal{L}(C(K))$ and $Z \subset C(K)$ be subspace which is "nice" for T. Then for every $\lambda \in \mathbb{C}$, there exists a subspace Y_{λ} which is "nice" for $(T - \lambda I)_{|Y}$.

.

Cheap tricks

Proposition

Let $T \in \mathcal{L}(C(K))$ and $Z \subset C(K)$ be subspace which is "nice" for T. Then for every $\lambda \in \mathbb{C}$, there exists a subspace Y_{λ} which is "nice" for $(T - \lambda I)_{|Y}$.

Proposition

Let $Z \subseteq C(K)$ be a "nice" subspace for an operator $T \in \mathcal{L}(C(K))$ and let $S \in \mathcal{M}_{C(K)}$. Then there exists a subspace $Y \subseteq Z$ which is "nice" for T + S.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Proposition (J. Lindenstrauss & A. Pelczynski, 1971)

Let $T : C(\Delta) \to Y$ be an operator such that for every $\varepsilon > 0$ and for every clopen nonempty subset Δ_1 of Δ , there is an $f \in C(\Delta_1)$ such that $\|f\| = 1$ and $\|Tf\| < \varepsilon$. Then for each $\varepsilon > 0$ there is a sequence $\{g_i\}_{i=1}^{\infty}$ in $C(\Delta)$ which is isometrically equivalent to the Haar system and such that $\sum_{i=1}^{\infty} \|Tg_i\| < \varepsilon$.

- 4 同下 4 三下 4 三下

Proposition (J. Lindenstrauss & A. Pelczynski, 1971)

Let $T : C(\Delta) \to Y$ be an operator such that for every $\varepsilon > 0$ and for every clopen nonempty subset Δ_1 of Δ , there is an $f \in C(\Delta_1)$ such that $\|f\| = 1$ and $\|Tf\| < \varepsilon$. Then for each $\varepsilon > 0$ there is a sequence $\{g_i\}_{i=1}^{\infty}$ in $C(\Delta)$ which is isometrically equivalent to the Haar system and such that $\sum_{i=1}^{\infty} \|Tg_i\| < \varepsilon$.

All C(K) - strictly singular operators satisfy the conditions of the above Proposition and combining this with the fact that all C(K) spaces are isomorphic we have that there exists a subspace Y of X such that $Y \simeq C(K)$ and $T_{|Y}$ is a compact operator.

イロト 不得 とくまとう きょう

General case

Setup: K be a compact metric space, μ be a probability measure on K, $T: C(K) \to C(K)$ and let $\{\mu_s\}_{s \in K}$ be the representing kernel of T (the family of Borel measures on K defined by $\mu_s = T^* \delta_s, s \in K$).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

General case

Setup: K be a compact metric space, μ be a probability measure on K, $T: C(K) \to C(K)$ and let $\{\mu_s\}_{s \in K}$ be the representing kernel of T (the family of Borel measures on K defined by $\mu_s = T^* \delta_s, s \in K$). Using a theorem of Kalton, we decompose each μ_s into their atomic and diffuse parts as follows

$$\mu_{s} = \sum_{n=1}^{\infty} a_{n}(s) \delta_{\sigma_{n}(s)} + \nu_{s}$$

where by δ_x we denote point evaluation at the point x and

- Each a_n : K → ℝ is measurable for the completion ∑_µ of the Borel sets of K with respect to µ
- Each $\sigma_n: K \to K$ is \sum_{μ} -Borel measurable
- Each ν_s is diffuse, and $s \to |\nu_s|$ is \sum_{μ} -Borel measurable with respect to the weak* Borel sets of the unit ball of $C(K)^*$

• If
$$i \neq j$$
 then $\sigma_i(s) \neq \sigma_j(s)$ for all $s \in K$

• $|a_j(s)| \ge |a_{j+1}(s)|$ for all $s \in K$ and all $j \ge 1$

•
$$\sum_{n=1}^{\infty} |a_n(s)| \le ||T||$$
 for all $s \in K$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Theorem

Let $T \in \mathcal{L}(C(K))$ be an operator such that

- $Tf(x) = \sum_{n=1}^{N} a_n(x) f(\sigma_n(x))$ for every $f \in C(K)$ and $x \in K$
- $a_n : K \to \mathbb{R}$ and $\sigma_n : K \to K$ are continuous functions for n = 1, 2, ..., N
- For all $i \neq j$, $\sigma_i(x) \neq \sigma_j(x)$ for all $x \in K$
- $T \lambda I \notin \mathcal{M}$ for any $\lambda \in \mathbb{C}$.

Then there exists a subspace $Y \subset C(K)$ which is "nice" for T.

• What are the commutators on $(\oplus \ell_2^n)_{c_0}$ and $(\oplus \ell_2^n)_{\ell_1}$.

E 990

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

- What are the commutators on $(\oplus \ell_2^n)_{c_0}$ and $(\oplus \ell_2^n)_{\ell_1}$.
- Are the compact operators (on any Banach space) always commutators ?

< ロ > < 同 > < 回 > < 回 > < 回

- What are the commutators on $(\oplus \ell_2^n)_{c_0}$ and $(\oplus \ell_2^n)_{\ell_1}$.
- Are the compact operators (on any Banach space) always commutators ?
- In which spaces every compact operator is a commutator of two compacts?