"Tensor products" between metric spaces and Banach spaces

J. Alejandro Chávez-Domínguez

Department of Mathematics
Texas A\&M University

BIRS

March $8^{\text {th }}, 2012$

Algebraic tensor products

Tensor products are normally used to linearize bilinear maps.

What sense could there possibly be in thinking about tensor products of a metric space with a Banach space?

Tensor products and Banach spaces

In Banach space theory, tensor products are used for more than linearizing bilinear maps.

There are many different choices for a "reasonable" norm on $E \otimes F$.

Most importantly, there are deep connections between tensor norms and operator ideals.

Duality relations

It often happens that

$$
\left(E \otimes_{\alpha} F\right)^{*} \equiv \mathcal{A}\left(E, F^{*}\right)
$$

for some tensor norm α and some operator ideal \mathcal{A}.

Examples:

$$
\begin{aligned}
& 1\left(E \otimes_{\pi} F\right)^{*} \equiv L\left(E, F^{*}\right) . \\
& 2\left(E \otimes_{d_{p}} F\right)^{*} \equiv \Pi_{p^{\prime}}\left(E, F^{*}\right) . \\
& 3\left(E \otimes_{w_{2}} F\right)^{*} \equiv \Gamma_{2}\left(E, F^{*}\right) .
\end{aligned}
$$

All of these examples have nonlinear counterparts.

Tensoring with the identity

Another type of result takes the form

$$
T \in \mathcal{A}(E, F) \quad \Leftrightarrow \quad\left\|T \otimes i d_{G}: E \otimes_{\alpha} G \rightarrow F \otimes_{\beta} G\right\|<\infty \quad \forall G
$$

with \mathcal{A} an operator ideal and α, β tensor norms.

Examples:

$$
\begin{aligned}
& 1 \text { } T \in \Pi_{p}(E, F) \Leftrightarrow\left\|T \otimes i d_{G}: E \otimes_{d_{p^{\prime}}} G \rightarrow F \otimes_{d_{1}} G\right\|<\infty \forall G . \\
& 2 T \in M_{q, p}(E, F) \Leftrightarrow\left\|T \otimes i d_{G}: E \otimes_{d_{p^{\prime}}} G \rightarrow F \otimes_{d_{q^{\prime}}} G\right\|<\infty \forall G .
\end{aligned}
$$

Again, these and other examples have nonlinear counterparts.

Duality results

A baby example for duality

Suppose we want to find a nonlinear version of $\left(E \otimes_{\pi} F\right)^{*} \equiv L\left(E, F^{*}\right)$.

In the nonlinear setting, Lipschitz maps play the role corresponding to that of linear bounded maps.

That means we want to find some sort of tensor product so that $\left(X \boxtimes_{\pi} F\right)^{*} \equiv \operatorname{Lip}_{0}\left(X, F^{*}\right)$.

The easiest instance of this would be when $F=\mathbb{R}$.

The Arens-Eells space

The Arens-Eells space of a metric space X (denoted $\nVdash(X)$), also known as the free Lipschitz space of X (denoted $\mathscr{F}(X)$) satisfies
$\mathscr{F}(X)^{*} \equiv X^{\#}:=\operatorname{Lip}_{0}(X, \mathbb{R})=\{f: X \rightarrow \mathbb{R}: \operatorname{Lip}(f)<\infty, f(0)=0\}$.
It was introduced in [Arens/Eells 1956], and has been used in Banach space theory [Godefroy/Kalton 2003], [Kalton 2004].

Molecules and the Arens-Eells space

\square A molecule on a metric space X is a finitely supported $m: X \rightarrow \mathbb{R}$ such that

$$
\sum_{x \in X} m(x)=0
$$

Note that the space of molecules is a vector space.
■ Those of the form $a m_{x x^{\prime}}$ where

$$
m_{x x^{\prime}}:=\chi_{\{x\}}-\chi_{\left\{x^{\prime}\right\}}
$$

with $a \in \mathbb{R}$ and $x, x^{\prime} \in X$ are called atoms.
■ The Arens-Eells space of X is the space of molecules with the norm

$$
\|m\|_{\mathscr{F}(X)}:=\inf \left\{\sum_{j=1}^{n}\left|a_{j}\right| d\left(x_{j}, x_{j}^{\prime}\right): m=\sum_{j=1}^{n} a_{j} m_{x_{j} x_{j}^{\prime}}\right\}
$$

Properties of the Arens-Eells space

(a) $\|\cdot\|_{\mathscr{F}(X)}$ is a norm.
(b) $\delta: X \hookrightarrow \mathscr{F}(X)$ given by $\delta(x)=m_{x 0}$ is an isometric embedding.
(c) $\mathscr{F}(X)^{*}=\operatorname{Lip}_{0}(X, \mathbb{R})=X^{\#}$ via the duality pairing

$$
\langle f, m\rangle=\sum_{x \in X} f(x) m(x)
$$

(d) Whenever $T: X \rightarrow E$ is a Lipschitz map, there is a linear map $\hat{T}: \mathscr{F}(X) \rightarrow E$ such that $\|\hat{T}\|=\operatorname{Lip}(T)$ and $\hat{T} \circ \delta=T$.

Duality for $L(E, F)$

Theorem

$\left(E \otimes_{\pi} F\right)^{*}=L\left(E, F^{*}\right)$.
Where for $w \in E \otimes F$

$$
\|w\|_{\pi}=\inf \left\{\sum_{j=1}^{n}\left\|u_{j}\right\| \cdot\left\|v_{j}\right\|: w=\sum_{j=1}^{n} u_{j} \otimes v_{j}\right\}
$$

and the identification is given via trace duality, considering an element in $E \otimes F$ as a map $F^{*} \rightarrow E$. That is, for $w=\sum_{j=1}^{n} u_{j} \otimes v_{j} \in E \otimes F$ and $T: E \rightarrow F^{*}$,

$$
\langle T, w\rangle=\operatorname{tr}(w \circ T)=\sum_{j=1}^{n}\left\langle T x_{j}, y_{j}\right\rangle
$$

Vector valued molecules

Definition (C, 2011)

Let X be a metric space and E a Banach space.
An E-valued molecule on X is a function $m: X \rightarrow E$ such that

$$
\sum_{x \in X} m(x)=0
$$

■ An E-valued atom is a function of the form $v m_{x x^{\prime}}$ with $x, x^{\prime} \in X$ and v in E.
■ Every E-valued molecule on X can be expressed as a sum of E-valued atoms.

Projective norm for vector valued molecules

For an E-valued molecule m, let

$$
\|m\|_{\pi}:=\inf \left\{\sum_{j=1}^{n}\left\|v_{j}\right\| d\left(x_{j}, x_{j}^{\prime}\right): m=\sum_{j=1}^{n} v_{j} m_{x_{j} x_{j}^{\prime}}\right\} .
$$

We will denote by $X \boxtimes_{\pi} E$ the space of E-valued molecules on X with the projective norm. It is not hard to show that

$$
\left(X \boxtimes_{\pi} E\right)^{*}=\operatorname{Lip}_{0}\left(X, E^{*}\right)
$$

with the duality given by the pointwise pairing

$$
\langle T, m\rangle=\sum_{x \in X}\langle T(x), m(x)\rangle .
$$

It was known that $\operatorname{Lip}_{0}\left(X, E^{*}\right)$ is a dual space [J. Johnson, 1970], but as far as I know the approach via molecules is new.

"Products" of operators

Proposition (C, 2012)

Let $S: X \rightarrow Z$ be a Lipschitz map mapping 0 to 0 , and $T: E \rightarrow F$ a bounded linear map. Then there is a unique operator $S \boxtimes T: X \boxtimes_{\pi} E \rightarrow Z \boxtimes_{\pi} F$ such that

$$
(S \boxtimes T)\left(v m_{x y}\right)=(T v) m_{(S x)(S y)}, \quad \text { for all } v \in E, x, y \in X .
$$

Furthermore, $\left\|S \boxtimes_{\pi} T\right\|=\operatorname{Lip}(S)\|T\|$.

Justifying the "projective" name

Recall that a linear operator $T: E \rightarrow F$ is a linear quotient if it is surjective and

$$
\|w\|=\inf \{\|v\|: v \in E, T v=w\} \text { for every } w \in F
$$

On the other hand, a map $S: X \rightarrow Z$ is called a C-co-Lipschitz if for every $x \in X$ and $r>0$,

$$
f(B(x, r)) \supseteq B(f(x), r / C)
$$

A map that is Lipschitz, co-Lipschitz and surjective is a Lipschitz quotient.

Theorem (C, 2012)

Let $S: X \rightarrow Z$ be a Lipschitz quotient with Lipschitz and co-Lipschitz constants equal to 1, and mapping 0 to 0 , and let $T: E \rightarrow F$ be a linear quotient map. Then
$S \boxtimes_{\pi} T:\left(X \boxtimes_{\pi} E\right) \rightarrow\left(Z \boxtimes_{\pi} F\right)$ is also a linear quotient map.

Example: $X=$ a graph-theoretic tree

Recall

$$
\|m\|_{\pi}=\inf \left\{\sum_{j=1}^{n}\left\|v_{j}\right\| d\left(x_{j}, x_{j}^{\prime}\right): m=\sum_{j=1}^{n} v_{j} m_{x_{j} x_{j}^{\prime}}\right\}
$$

Note we can consider only representations where the pairs $\left(x_{j}, x_{j}^{\prime}\right)$ are endpoints of edges. Since X is a tree, every molecule has only one such representation so

$$
X \boxtimes_{\pi} E \equiv \ell_{1}^{N}(E)
$$

where $N=\#$ of edges of X.
I suspect a similar result should work for more general metric trees as in [Godard 2010].

Reasonable tensor norms

A tensor norm α is called reasonable if it satisfies
(a) $\alpha(u \otimes v) \leq\|u\| \cdot\|v\|$ for every $u \in E, v \in F$.
(b) $\alpha^{*}\left(u^{*} \otimes v^{*}\right) \leq\left\|u^{*}\right\|\left\|v^{*}\right\|$ for every $u^{*} \in E^{*}, v^{*} \in F^{*}$.

Reasonable tensor norms are characterized by being between the projective and injective tensor norms: a tensor norm α is reasonable if and only if $\varepsilon \leq \alpha \leq \pi$, where

$$
\|w\|_{\varepsilon}=\sup \left\{\sum_{j=1}^{n}\left\langle u^{*}, u_{j}\right\rangle\left\langle v^{*}, v_{j}\right\rangle: w=\sum_{j=1}^{n} u_{j} \otimes v_{j}, u^{*} \in B_{E^{*}}, v^{*} \in B_{F}^{*}\right\} .
$$

Reasonable molecular norms

A norm $\|\cdot\|$ on the space of E-valued molecules on a metric space X is called reasonable if
(i) $\left\|v m_{x x^{\prime}}\right\| \leq\|v\| d\left(x, x^{\prime}\right)$ for all $x, x^{\prime} \in X, v \in E$.
(ii) $\left|\left\langle v^{*} \circ m, f\right\rangle\right| \leq\left\|v^{*}\right\| \operatorname{Lip}(f)\|m\|$ for all $v^{*} \in E^{*}, m \in \mathcal{M}(X, E)$ and $f \in X^{\#}$.
Reasonable molecular norms are also characterized by being between the projective and injective norms: a molecular norm α is reasonable if and only if $\varepsilon \leq \alpha \leq \pi$, where

$$
\begin{aligned}
& \|m\|_{\varepsilon}=\sup \left\{\sum_{j=1}^{n}\left[f\left(x_{j}\right)-f\left(x_{j}^{\prime}\right)\right] v^{*}\left(v_{j}\right)\right. \\
& \\
& \left.: m=\sum_{j=1}^{n} v_{j} m_{x_{j} x_{j}^{\prime}}, f \in B_{X^{\#}}, v^{*} \in B_{E^{*}}\right\} .
\end{aligned}
$$

The injective norm

The injective norm is also deserving of its name: it behaves well under injections.

However, it is not so interesting for us because it "forgets" about the metric space and only takes into account the structure of $\mathscr{F}(X)$. In fact,

$$
X \boxtimes_{\varepsilon} E \equiv \mathscr{F}(X) \otimes_{\varepsilon} E .
$$

p-summing operators

E, F Banach spaces, $T: E \rightarrow F$ a linear map, $1 \leq p \leq \infty$.
T is called p-summing if there exists $C>0$ such that for any $v_{1}, \ldots v_{n}$ in E we have

$$
\left[\sum_{j=1}^{n}\left\|T v_{j}\right\|^{p}\right]^{1 / p} \leq C \sup _{\phi \in B_{E^{*}}}\left[\sum_{j=1}^{n}\left|\phi\left(v_{j}\right)\right|^{p}\right]^{1 / p} .
$$

The p-summing norm of T is

$$
\pi_{p}(T):=\inf C
$$

The space of p-summing operators from E to F is denoted

$$
\Pi_{p}(E, F) .
$$

Chevet-Saphar norms

Theorem (Saphar 1970)

$$
\left(E \otimes_{d_{p}} F\right)^{*}=\Pi_{p^{\prime}}\left(E, F^{*}\right)
$$

Where

Definition (Chevet 1969, Saphar 1965,1970)
For $1 \leq p \leq \infty$ and $w \in E \otimes F$, define p^{\prime} by $1 / p+1 / p^{\prime}=1$ and

$$
\begin{array}{r}
\|w\|_{d_{p}}:=\inf \left\{\sup _{\phi \in B_{E^{*}}}\left[\sum_{j=1}^{n}\left|\phi\left(u_{j}\right)\right|^{p^{\prime}}\right]^{1 / p^{\prime}} \cdot\left[\sum_{j=1}^{n}\left\|v_{j}\right\|^{p}\right]^{1 / p}\right. \\
\left.: w=\sum_{j=1}^{n} u_{j} \otimes v_{j}\right\}
\end{array}
$$

p-summing operators

Definition (Pietsch, 1966)

E, F Banach spaces , $T: E \rightarrow F$ a linear map, $1 \leq p \leq \infty$.
T is called p-summing if there exists $C>0$ such that for any $v_{1}, \ldots v_{n}$ in E we have

$$
\left[\sum_{j=1}^{n}\left\|T v_{j}\right\|^{p}\right]^{1 / p} \leq C \sup _{\phi \in B_{E^{*}}}\left[\sum_{j=1}^{n}\left|\phi\left(v_{j}\right)\right|^{p}\right]^{1 / p}
$$

The p-summing norm of T is

$$
\pi_{p}(T):=\inf C .
$$

Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

E, F Banach spaces $, T: E \rightarrow F$ a linear map, $1 \leq p \leq \infty$.
T is called p-summing if there exists $C>0$ such that for any $v_{1}, \ldots v_{n}$ in E we have

$$
\left[\sum_{j=1}^{n}\left\|T v_{j}\right\|^{p}\right]^{1 / p} \leq C \sup _{\phi \in B_{E^{*}}}\left[\sum_{j=1}^{n}\left|\phi\left(v_{j}\right)\right|^{p}\right]^{1 / p}
$$

The p-summing norm of T is

$$
\pi_{p}(T):=\inf C
$$

Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

E, F Banach spaces , $T: E \rightarrow F$ a linear map, $1 \leq p \leq \infty$.
T is called p-summing if there exists $C>0$ such that for any $v_{1}, \ldots v_{n}$ in E we have

$$
\left[\sum_{j=1}^{n}\left\|T v_{j}\right\|^{p}\right]^{1 / p} \leq C \sup _{\phi \in B_{E^{*}}}\left[\sum_{j=1}^{n}\left|\phi\left(v_{j}\right)\right|^{p}\right]^{1 / p}
$$

The p-summing norm of T is

$$
\pi_{p}(T):=\inf C
$$

Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

X, Y metric spaces , $T: E \rightarrow F$ a linear map, $1 \leq p \leq \infty$.
T is called p-summing if there exists $C>0$ such that for any $v_{1}, \ldots v_{n}$ in E we have

$$
\left[\sum_{j=1}^{n}\left\|T v_{j}\right\|^{p}\right]^{1 / p} \leq C \sup _{\phi \in B_{E^{*}}}\left[\sum_{j=1}^{n}\left|\phi\left(v_{j}\right)\right|^{p}\right]^{1 / p}
$$

The p-summing norm of T is

$$
\pi_{p}(T):=\inf C
$$

Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

X, Y metric spaces $, \quad T: E \rightarrow F$ a linear map, $1 \leq p \leq \infty$.
T is called p-summing if there exists $C>0$ such that for any $v_{1}, \ldots v_{n}$ in E we have

$$
\left[\sum_{j=1}^{n}\left\|T v_{j}\right\|^{p}\right]^{1 / p} \leq C \sup _{\phi \in B_{E^{*}}}\left[\sum_{j=1}^{n}\left|\phi\left(v_{j}\right)\right|^{p}\right]^{1 / p}
$$

The p-summing norm of T is

$$
\pi_{p}(T):=\inf C
$$

Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

X, Y metric spaces , $\quad T: X \rightarrow Y$ a Lipschitz map, $1 \leq p \leq \infty$.
T is called p-summing if there exists $C>0$ such that for any $v_{1}, \ldots v_{n}$ in E we have

$$
\left[\sum_{j=1}^{n}\left\|T v_{j}\right\|^{p}\right]^{1 / p} \leq C \sup _{\phi \in B_{E^{*}}}\left[\sum_{j=1}^{n}\left|\phi\left(v_{j}\right)\right|^{p}\right]^{1 / p}
$$

The p-summing norm of T is

$$
\pi_{p}(T):=\inf C
$$

Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

X, Y metric spaces $, T: X \rightarrow Y$ a Lipschitz map, $1 \leq p \leq \infty$. T is called p-summing if there exists $C>0$ such that for any $v_{1}, \ldots v_{n}$ in E we have

$$
\left[\sum_{j=1}^{n}\left\|T v_{j}\right\|^{p}\right]^{1 / p} \leq C \sup _{\phi \in B_{E^{*}}}\left[\sum_{j=1}^{n}\left|\phi\left(v_{j}\right)\right|^{p}\right]^{1 / p}
$$

The p-summing norm of T is

$$
\pi_{p}(T):=\inf C
$$

Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

X, Y metric spaces $, T: X \rightarrow Y$ a Lipschitz map, $1 \leq p \leq \infty$.
T is called Lipschitz p-summing if there exists $C>0$ such that for any $v_{1}, \ldots v_{n}$ in E we have

$$
\left[\sum_{j=1}^{n}\left\|T v_{j}\right\|^{p}\right]^{1 / p} \leq C \sup _{\phi \in B_{E^{*}}}\left[\sum_{j=1}^{n}\left|\phi\left(v_{j}\right)\right|^{p}\right]^{1 / p}
$$

The p-summing norm of T is

$$
\pi_{p}(T):=\inf C
$$

Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

X, Y metric spaces $, T: X \rightarrow Y$ a Lipschitz map, $1 \leq p \leq \infty$.
T is called Lipschitz p-summing if there exists $C>0$ such that for any $v_{1}, \ldots v_{n}$ in E we have

$$
\left[\sum_{j=1}^{n}\left\|T v_{j}\right\|^{p}\right]^{1 / p} \leq C \sup _{\phi \in B_{E^{*}}}\left[\sum_{j=1}^{n}\left|\phi\left(v_{j}\right)\right|^{p}\right]^{1 / p}
$$

The p-summing norm of T is

$$
\pi_{p}(T):=\inf C
$$

Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

X, Y metric spaces , $T: X \rightarrow Y$ a Lipschitz map, $1 \leq p \leq \infty$.
T is called Lipschitz p-summing if there exists $C>0$ such that for any $x_{1}, \ldots x_{n}, x_{1}^{\prime}, \ldots x_{n}^{\prime}$ in X we have

$$
\left[\sum_{j=1}^{n}\left\|T v_{j}\right\|^{p}\right]^{1 / p} \leq C \sup _{\phi \in B_{E^{*}}}\left[\sum_{j=1}^{n}\left|\phi\left(v_{j}\right)\right|^{p}\right]^{1 / p}
$$

The p-summing norm of T is

$$
\pi_{p}(T):=\inf C
$$

Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

X, Y metric spaces $, T: X \rightarrow Y$ a Lipschitz map, $1 \leq p \leq \infty$.
T is called Lipschitz p-summing if there exists $C>0$ such that for any $x_{1}, \ldots x_{n}, x_{1}^{\prime}, \ldots x_{n}^{\prime}$ in X we have

$$
\left[\sum_{j=1}^{n}\left\|T v_{j}\right\|^{p}\right]^{1 / p} \leq C \sup _{\phi \in B_{E^{*}}}\left[\sum_{j=1}^{n}\left|\phi\left(v_{j}\right)\right|^{p}\right]^{1 / p}
$$

The p-summing norm of T is

$$
\pi_{p}(T):=\inf C
$$

Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

X, Y metric spaces $, T: X \rightarrow Y$ a Lipschitz map, $1 \leq p \leq \infty$.
T is called Lipschitz p-summing if there exists $C>0$ such that for any $x_{1}, \ldots x_{n}, x_{1}^{\prime}, \ldots x_{n}^{\prime}$ in X we have

$$
\left[\sum_{j=1}^{n} d\left(T x_{j}, T x_{j}^{\prime}\right)^{p}\right]^{1 / p} \leq C \sup _{\phi \in B_{E^{*}}}\left[\sum_{j=1}^{n}\left|\phi\left(v_{j}\right)\right|^{p}\right]^{1 / p}
$$

The p-summing norm of T is

$$
\pi_{p}(T):=\inf C
$$

Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

X, Y metric spaces $, T: X \rightarrow Y$ a Lipschitz map, $1 \leq p \leq \infty$.
T is called Lipschitz p-summing if there exists $C>0$ such that for any $x_{1}, \ldots x_{n}, x_{1}^{\prime}, \ldots x_{n}^{\prime}$ in X we have

$$
\left[\sum_{j=1}^{n} d\left(T x_{j}, T x_{j}^{\prime}\right)^{p}\right]^{1 / p} \leq C \sup _{\phi \in B_{E^{*}}}\left[\sum_{j=1}^{n}\left|\phi\left(v_{j}\right)\right|^{p}\right]^{1 / p}
$$

The p-summing norm of T is

$$
\pi_{p}(T):=\inf C
$$

Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

X, Y metric spaces $, T: X \rightarrow Y$ a Lipschitz map, $1 \leq p \leq \infty$.
T is called Lipschitz p-summing if there exists $C>0$ such that for any $x_{1}, \ldots x_{n}, x_{1}^{\prime}, \ldots x_{n}^{\prime}$ in X we have

$$
\left[\sum_{j=1}^{n} d\left(T x_{j}, T x_{j}^{\prime}\right)^{p}\right]^{1 / p} \leq C \sup _{f \in B_{X} \#}\left[\sum_{j=1}^{n}\left|f\left(x_{j}\right)-f\left(x_{j}^{\prime}\right)\right|^{p}\right]^{1 / p}
$$

The p-summing norm of T is

$$
\pi_{p}(T):=\inf C
$$

Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

X, Y metric spaces $, T: X \rightarrow Y$ a Lipschitz map, $1 \leq p \leq \infty$.
T is called Lipschitz p-summing if there exists $C>0$ such that for any $x_{1}, \ldots x_{n}, x_{1}^{\prime}, \ldots x_{n}^{\prime}$ in X we have

$$
\left[\sum_{j=1}^{n} d\left(T x_{j}, T x_{j}^{\prime}\right)^{p}\right]^{1 / p} \leq C \sup _{f \in B_{X} \#}\left[\sum_{j=1}^{n}\left|f\left(x_{j}\right)-f\left(x_{j}^{\prime}\right)\right|^{p}\right]^{1 / p}
$$

The p-summing norm of T is

$$
\pi_{p}(T):=\inf C
$$

Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

X, Y metric spaces $, T: X \rightarrow Y$ a Lipschitz map, $1 \leq p \leq \infty$.
T is called Lipschitz p-summing if there exists $C>0$ such that for any $x_{1}, \ldots x_{n}, x_{1}^{\prime}, \ldots x_{n}^{\prime}$ in X we have

$$
\left[\sum_{j=1}^{n} d\left(T x_{j}, T x_{j}^{\prime}\right)^{p}\right]^{1 / p} \leq C \sup _{f \in B_{X} \#}\left[\sum_{j=1}^{n}\left|f\left(x_{j}\right)-f\left(x_{j}^{\prime}\right)\right|^{p}\right]^{1 / p}
$$

The Lipschitz p-summing norm of T is

$$
\pi_{p}^{L}(T):=\inf C
$$

Duality for Lipschitz p-summing operators

Theorem (C 2011)

$$
\left(X \boxtimes_{d_{p}} F\right)^{*}=\Pi_{p^{\prime}}^{L}\left(X, F^{*}\right)
$$

Where Π_{p}^{L} denotes the Lipschitz p-summing operators of [Farmer/Johnson 2009] and

Definition (C 2011)

For an E-valued molecule m on a metric space X,

$$
\begin{array}{r}
\|m\|_{d_{p}}=\inf \left\{\left(\sum_{j} \lambda_{j}^{p}\left\|v_{j}\right\|^{p}\right)^{1 / p} \sup _{f \in B_{X} \#}\left(\lambda_{j}^{-p^{\prime}}\left|f\left(x_{j}\right)-f\left(x_{j}^{\prime}\right)\right|^{p^{\prime}}\right)^{1 / p^{\prime}}\right. \\
\left.: m=\sum_{j} v_{j} m_{x_{j} x_{j}^{\prime}}, \lambda_{j}>0\right\}
\end{array}
$$

Linear factorization through Hilbert space

Define for a linear map $T: E \rightarrow F$

$$
\gamma_{2}(T):=\inf \{\|R\| \cdot\|S\|\}
$$

where

and H is a Hilbert space.
$\Gamma_{2}(E, F)$ will denote the space of all operators admitting such a factorization.

Duality for $\Gamma_{2}(E, F)$

Theorem

$\left(E \otimes_{w_{2}} F\right)^{*}=\Gamma_{2}\left(E, F^{*}\right)$
Where for $w \in E \otimes F$

$$
\begin{aligned}
&\|u\|_{w_{2}}=\inf \left\{\left(\sum_{j=1}^{n}\left\|u_{j}\right\|^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n}\left\|v_{i}\right\|^{2}\right)^{1 / 2}:\right. \\
& u\left.=\sum_{i j} a_{i j} u_{j} \otimes v_{i},\left\|\left(a_{i j}\right): \ell_{2}^{n} \rightarrow \ell_{2}^{n}\right\| \leq 1\right\}
\end{aligned}
$$

and the identification is given again via trace duality.

Lipschitz factorization through subsets of Hilbert space

Define for a Lipschitz map $T: X \rightarrow Y$

$$
\gamma_{2}^{\operatorname{Lip}}(T):=\inf \{\operatorname{Lip}(R) \cdot \operatorname{Lip}(S)\}
$$

where

and Z is a subset of a Hilbert space.

Duality for $\Gamma_{2}^{\text {Lip }}$

The norm on molecules that gives the duality for $\Gamma_{2}^{\text {Lip }}$ is

$$
\begin{aligned}
\|m\|_{w_{2}} & =\inf \left\{\left(\sum_{i=1}^{n}\left\|v_{i}\right\|^{2}\right)^{1 / 2}\left(\sum_{j=1}^{m} d\left(x, x_{j}^{\prime}\right)^{2}\right)^{1 / 2}:\right. \\
m & \left.=\sum_{i=1}^{n} v_{i} m_{y v_{i}^{\prime}}, m_{y y_{i}^{\prime}}=\sum_{j=1}^{m} a_{i j} m_{x x_{j}^{\prime}},\left\|\left(a_{i j}\right): \ell_{2}^{m} \rightarrow \ell_{2}^{n}\right\| \leq 1\right\}
\end{aligned}
$$

Tensoring with the identity

Representation theorems

Operator ideals satisfying certain technical properties can be characterized by theorems of the following form:

Representation theorem

A linear operator $T: E \rightarrow F$ belongs to the operator ideal \mathfrak{A} if and only if for every Banach space G, the map

$$
T \otimes i d_{G}: E \otimes_{\alpha} G \rightarrow F \otimes_{\beta} G
$$

is continuous.
Here, α and β are certain tensor norms.

Example

A linear operator $T: E \rightarrow F$ is p-summing if and only if for every Banach space G the map

$$
T \otimes i d_{G}: E \otimes_{d_{p^{\prime}}} G \rightarrow F \otimes_{\pi} G
$$

is continuous.

Moreover, in this case

$$
\pi_{p}(T)=\inf _{G}\left\|T \otimes i d_{G}\right\|
$$

A nonlinear version

Theorem (C, 2011)

TFAE:

(a) $T: X \rightarrow Y$ is Lipschitz p-summing.
(b) For every Banach space E (or only $E=Y^{\#}$),

$$
\left\|T \boxtimes i d_{E}: X \boxtimes_{d_{p}^{\prime}} E \rightarrow Y \boxtimes_{\pi} E\right\|<\infty
$$

(q,p)-mixing operators

Theorem
Let $T: E \rightarrow F$ be a linear map, $1 \leq p \leq q \leq \infty$. TFAE:
(a) $\exists C>0$ such that for every $S: F \rightarrow G$,

$$
\pi_{p}(S \circ T) \leq C \pi_{q}(S)
$$

(b) For every Banach space G (or only $G=\ell_{q^{\prime}}$),

$$
\left\|T \otimes i d_{G}: E \otimes_{d_{p^{\prime}}} G \rightarrow F \otimes_{d_{q^{\prime}}} G\right\|<\infty
$$

Similarly

Theorem (C, 2011)

Let $T: X \rightarrow Y$ be a Lipschitz map, $1 \leq p \leq q \leq \infty$. TFAE:
(a) $\exists C>0$ such that for every $S: Y \rightarrow Z$,

$$
\pi_{p}^{L}(S \circ T) \leq C \pi_{q}^{L}(S)
$$

(b) For every Banach space E (or only $E=\ell_{q^{\prime}}$),

$$
\left\|T \boxtimes i d_{E}: X \boxtimes_{d_{p^{\prime}}} E \rightarrow Y \boxtimes_{d_{q^{\prime}}} E\right\|<\infty
$$

