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Algebraic tensor products

Tensor products are normally used to linearize bilinear maps.

E × F
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What sense could there possibly be in thinking about tensor
products of a metric space with a Banach space?



Tensor products and Banach spaces

In Banach space theory, tensor products are used for more
than linearizing bilinear maps.

There are many different choices for a “reasonable” norm on
E ⊗ F.

Most importantly, there are deep connections between tensor
norms and operator ideals.



Duality relations

It often happens that

(E ⊗α F)∗ ≡ A(E,F∗)

for some tensor norm α and some operator ideal A.

Examples:
1 (E ⊗π F)∗ ≡ L(E,F∗).

2 (E ⊗dp F)∗ ≡ Πp′(E,F∗).

3 (E ⊗w2 F)∗ ≡ Γ2(E,F∗).

All of these examples have nonlinear counterparts.



Tensoring with the identity

Another type of result takes the form

T ∈ A(E,F) ⇔ ‖T ⊗ idG : E ⊗α G→ F ⊗β G‖ <∞ ∀G.

with A an operator ideal and α, β tensor norms.
Examples:

1 T ∈ Πp(E,F)⇔
∥∥∥T ⊗ idG : E ⊗dp′ G→ F ⊗d1 G

∥∥∥ <∞∀G.

2 T ∈ Mq,p(E,F)⇔
∥∥∥T ⊗ idG : E ⊗dp′ G→ F ⊗dq′ G

∥∥∥ <∞∀G.

Again, these and other examples have nonlinear counterparts.



Duality results



A baby example for duality

Suppose we want to find a nonlinear version of
(E ⊗π F)∗ ≡ L(E,F∗).

In the nonlinear setting, Lipschitz maps play the role
corresponding to that of linear bounded maps.

That means we want to find some sort of tensor product so that
(X �π F)∗ ≡ Lip0(X,F∗).

The easiest instance of this would be when F = R.



The Arens-Eells space

The Arens-Eells space of a metric space X (denoted Æ(X)),
also known as the free Lipschitz space of X (denoted F (X))
satisfies

F (X)∗ ≡ X# := Lip0(X,R) = {f : X → R : Lip(f ) <∞, f (0) = 0}.

It was introduced in [Arens/Eells 1956], and has been used in
Banach space theory [Godefroy/Kalton 2003], [Kalton 2004].



Molecules and the Arens-Eells space

A molecule on a metric space X is a finitely supported
m : X → R such that ∑

x∈X

m(x) = 0.

Note that the space of molecules is a vector space.
Those of the form amxx′ where

mxx′ := χ{x} − χ{x′}

with a ∈ R and x, x′ ∈ X are called atoms.
The Arens-Eells space of X is the space of molecules with
the norm

‖m‖F (X) := inf
{ n∑

j=1

|aj|d(xj, x′j) : m =

n∑
j=1

ajmxjx′j

}
.



Properties of the Arens-Eells space

(a) ‖·‖F (X) is a norm.
(b) δ : X ↪→ F (X) given by δ(x) = mx0 is an isometric

embedding.
(c) F (X)∗ = Lip0(X,R) = X# via the duality pairing

〈f ,m〉 =
∑
x∈X

f (x)m(x)

(d) Whenever T : X → E is a Lipschitz map, there is a linear
map T̂ : F (X)→ E such that ‖T̂‖ = Lip(T) and T̂ ◦ δ = T.

F (X)

T̂
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X

δ
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Duality for L(E,F)

Theorem

(E ⊗π F)∗ = L(E,F∗).

Where for w ∈ E ⊗ F

‖w‖π = inf


n∑

j=1

‖uj‖ · ‖vj‖ : w =

n∑
j=1

uj ⊗ vj


and the identification is given via trace duality, considering an
element in E ⊗ F as a map F∗ → E. That is, for
w =

∑n
j=1 uj ⊗ vj ∈ E ⊗ F and T : E → F∗,

〈T,w〉 = tr(w ◦ T) =

n∑
j=1

〈Txj, yj〉.



Vector valued molecules

Definition (C, 2011)

Let X be a metric space and E a Banach space.
An E-valued molecule on X is a function m : X → E such that∑

x∈X

m(x) = 0.

An E-valued atom is a function of the form vmxx′ with
x, x′ ∈ X and v in E.
Every E-valued molecule on X can be expressed as a sum
of E-valued atoms.



Projective norm for vector valued molecules

For an E-valued molecule m, let

‖m‖π := inf
{ n∑

j=1

‖vj‖ d(xj, x′j) : m =

n∑
j=1

vjmxjx′j

}
.

We will denote by X �π E the space of E-valued molecules on X
with the projective norm. It is not hard to show that

(X �π E)∗ = Lip0(X,E∗)

with the duality given by the pointwise pairing

〈T,m〉 =
∑
x∈X

〈T(x),m(x)〉.

It was known that Lip0(X,E∗) is a dual space [J. Johnson,
1970], but as far as I know the approach via molecules is new.



“Products” of operators

Proposition (C, 2012)

Let S : X → Z be a Lipschitz map mapping 0 to 0, and T : E → F
a bounded linear map. Then there is a unique operator
S � T : X �π E → Z �π F such that

(S � T)(vmxy) = (Tv)m(Sx)(Sy), for all v ∈ E, x, y ∈ X.

Furthermore, ‖S �π T‖ = Lip(S) ‖T‖.



Justifying the “projective” name

Recall that a linear operator T : E → F is a linear quotient if it is
surjective and

‖w‖ = inf
{
‖v‖ : v ∈ E, Tv = w

}
for every w ∈ F.

On the other hand, a map S : X → Z is called a C-co-Lipschitz if
for every x ∈ X and r > 0,

f
(
B(x, r)

)
⊇ B

(
f (x), r/C

)
.

A map that is Lipschitz, co-Lipschitz and surjective is a
Lipschitz quotient.

Theorem (C, 2012)

Let S : X → Z be a Lipschitz quotient with Lipschitz and
co-Lipschitz constants equal to 1, and mapping 0 to 0, and let
T : E → F be a linear quotient map. Then
S �π T : (X �π E)→ (Z �π F) is also a linear quotient map.



Example: X = a graph-theoretic tree

Recall

‖m‖π = inf
{ n∑

j=1

‖vj‖ d(xj, x′j) : m =

n∑
j=1

vjmxjx′j

}

Note we can consider only representations where the pairs
(xj, x′j) are endpoints of edges. Since X is a tree, every
molecule has only one such representation so

X �π E ≡ `N
1 (E)

where N = # of edges of X.
I suspect a similar result should work for more general metric
trees as in [Godard 2010].



Reasonable tensor norms

A tensor norm α is called reasonable if it satisfies
(a) α(u⊗ v) ≤ ‖u‖ · ‖v‖ for every u ∈ E, v ∈ F.
(b) α∗(u∗ ⊗ v∗) ≤ ‖u∗‖ ‖v∗‖ for every u∗ ∈ E∗, v∗ ∈ F∗.

Reasonable tensor norms are characterized by being between
the projective and injective tensor norms: a tensor norm α is
reasonable if and only if ε ≤ α ≤ π, where

‖w‖ε = sup


n∑

j=1

〈u∗, uj〉〈v∗, vj〉 : w =

n∑
j=1

uj ⊗ vj, u∗ ∈ BE∗ , v∗ ∈ B∗F

 .



Reasonable molecular norms

A norm ‖·‖ on the space of E-valued molecules on a metric
space X is called reasonable if

(i) ‖vmxx′‖ ≤ ‖v‖ d(x, x′) for all x, x′ ∈ X, v ∈ E.
(ii) |〈v∗ ◦ m, f 〉| ≤ ‖v∗‖Lip(f ) ‖m‖ for all v∗ ∈ E∗, m ∈M(X,E)

and f ∈ X#.
Reasonable molecular norms are also characterized by being
between the projective and injective norms: a molecular norm α
is reasonable if and only if ε ≤ α ≤ π, where

‖m‖ε = sup
{ n∑

j=1

[
f (xj)− f (x′j)

]
v∗(vj)

: m =

n∑
j=1

vjmxjx′j
, f ∈ BX# , v∗ ∈ BE∗

}
.



The injective norm

The injective norm is also deserving of its name: it behaves
well under injections.

However, it is not so interesting for us because it “forgets” about
the metric space and only takes into account the structure of
F (X). In fact,

X �ε E ≡ F (X)⊗ε E.



p-summing operators

E, F Banach spaces, T : E → F a linear map, 1 ≤ p ≤ ∞.

T is called p-summing if there exists C > 0 such that for any
v1, . . . vn in E we have n∑

j=1

‖Tvj‖p

1/p

≤ C sup
φ∈BE∗

 n∑
j=1

|φ(vj)|p
1/p

.

The p-summing norm of T is

πp(T) := inf C.

The space of p-summing operators from E to F is denoted

Πp(E,F).



Chevet-Saphar norms

Theorem (Saphar 1970)

(
E ⊗dp F

)∗
= Πp′(E,F∗).

Where

Definition (Chevet 1969, Saphar 1965,1970)

For 1 ≤ p ≤ ∞ and w ∈ E ⊗ F, define p′ by 1/p + 1/p′ = 1 and

‖w‖dp
:= inf

{
sup
φ∈BE∗

[ n∑
j=1

|φ(uj)|p
′
]1/p′

·
[ n∑

j=1

‖vj‖p
]1/p

: w =

n∑
j=1

uj ⊗ vj

}
.



p-summing operators

Definition (Pietsch, 1966)

E, F Banach spaces , T : E → F a linear map , 1 ≤ p ≤ ∞.

T is called p-summing if there exists C > 0 such that for any
v1, . . . vn in E we have n∑

j=1

‖Tvj‖p

1/p

≤ C sup
φ∈BE∗

 n∑
j=1

|φ(vj)|p
1/p

The p-summing norm of T is

πp(T) := inf C.



Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

E, F Banach spaces , T : E → F a linear map , 1 ≤ p ≤ ∞.

T is called p-summing if there exists C > 0 such that for any
v1, . . . vn in E we have n∑

j=1

‖Tvj‖p

1/p

≤ C sup
φ∈BE∗

 n∑
j=1

|φ(vj)|p
1/p

The p-summing norm of T is

πp(T) := inf C.



Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

E, F Banach spaces , T : E → F a linear map , 1 ≤ p ≤ ∞.

T is called p-summing if there exists C > 0 such that for any
v1, . . . vn in E we have n∑

j=1

‖Tvj‖p

1/p

≤ C sup
φ∈BE∗

 n∑
j=1

|φ(vj)|p
1/p

The p-summing norm of T is

πp(T) := inf C.



Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

X, Y metric spaces , T : E → F a linear map , 1 ≤ p ≤ ∞.

T is called p-summing if there exists C > 0 such that for any
v1, . . . vn in E we have n∑

j=1

‖Tvj‖p

1/p

≤ C sup
φ∈BE∗

 n∑
j=1

|φ(vj)|p
1/p

The p-summing norm of T is

πp(T) := inf C.



Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

X, Y metric spaces , T : E → F a linear map , 1 ≤ p ≤ ∞.

T is called p-summing if there exists C > 0 such that for any
v1, . . . vn in E we have n∑

j=1

‖Tvj‖p

1/p

≤ C sup
φ∈BE∗

 n∑
j=1

|φ(vj)|p
1/p

The p-summing norm of T is

πp(T) := inf C.



Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

X, Y metric spaces , T : X → Y a Lipschitz map , 1 ≤ p ≤ ∞.

T is called p-summing if there exists C > 0 such that for any
v1, . . . vn in E we have n∑

j=1

‖Tvj‖p

1/p

≤ C sup
φ∈BE∗

 n∑
j=1

|φ(vj)|p
1/p

The p-summing norm of T is

πp(T) := inf C.



Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

X, Y metric spaces , T : X → Y a Lipschitz map , 1 ≤ p ≤ ∞.

T is called p-summing if there exists C > 0 such that for any
v1, . . . vn in E we have n∑

j=1

‖Tvj‖p

1/p

≤ C sup
φ∈BE∗

 n∑
j=1

|φ(vj)|p
1/p

The p-summing norm of T is

πp(T) := inf C.



Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

X, Y metric spaces , T : X → Y a Lipschitz map , 1 ≤ p ≤ ∞.

T is called Lipschitz p-summing if there exists C > 0 such that
for any v1, . . . vn in E we have n∑

j=1

‖Tvj‖p

1/p

≤ C sup
φ∈BE∗

 n∑
j=1

|φ(vj)|p
1/p

The p-summing norm of T is

πp(T) := inf C.



Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

X, Y metric spaces , T : X → Y a Lipschitz map , 1 ≤ p ≤ ∞.

T is called Lipschitz p-summing if there exists C > 0 such that
for any v1, . . . vn in E we have n∑

j=1

‖Tvj‖p

1/p

≤ C sup
φ∈BE∗

 n∑
j=1

|φ(vj)|p
1/p

The p-summing norm of T is

πp(T) := inf C.



Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

X, Y metric spaces , T : X → Y a Lipschitz map , 1 ≤ p ≤ ∞.

T is called Lipschitz p-summing if there exists C > 0 such that
for any x1, . . . xn, x′1, . . . x

′
n in X we have n∑

j=1

‖Tvj‖p

1/p

≤ C sup
φ∈BE∗

 n∑
j=1

|φ(vj)|p
1/p

The p-summing norm of T is

πp(T) := inf C.



Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

X, Y metric spaces , T : X → Y a Lipschitz map , 1 ≤ p ≤ ∞.

T is called Lipschitz p-summing if there exists C > 0 such that
for any x1, . . . xn, x′1, . . . x

′
n in X we have n∑

j=1

‖Tvj‖p

1/p

≤ C sup
φ∈BE∗

 n∑
j=1

|φ(vj)|p
1/p

The p-summing norm of T is

πp(T) := inf C.



Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

X, Y metric spaces , T : X → Y a Lipschitz map , 1 ≤ p ≤ ∞.

T is called Lipschitz p-summing if there exists C > 0 such that
for any x1, . . . xn, x′1, . . . x

′
n in X we have n∑

j=1

d(Txj,Tx′j)
p

1/p

≤ C sup
φ∈BE∗

 n∑
j=1

|φ(vj)|p
1/p

The p-summing norm of T is

πp(T) := inf C.



Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

X, Y metric spaces , T : X → Y a Lipschitz map , 1 ≤ p ≤ ∞.

T is called Lipschitz p-summing if there exists C > 0 such that
for any x1, . . . xn, x′1, . . . x

′
n in X we have n∑

j=1

d(Txj,Tx′j)
p

1/p

≤ C sup
φ∈BE∗

 n∑
j=1

|φ(vj)|p
1/p

The p-summing norm of T is

πp(T) := inf C.



Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

X, Y metric spaces , T : X → Y a Lipschitz map , 1 ≤ p ≤ ∞.

T is called Lipschitz p-summing if there exists C > 0 such that
for any x1, . . . xn, x′1, . . . x

′
n in X we have n∑

j=1

d(Txj,Tx′j)
p

1/p

≤ C sup
f∈BX#

 n∑
j=1

∣∣f (xj)− f (x′j)
∣∣p1/p

The p-summing norm of T is

πp(T) := inf C.



Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

X, Y metric spaces , T : X → Y a Lipschitz map , 1 ≤ p ≤ ∞.

T is called Lipschitz p-summing if there exists C > 0 such that
for any x1, . . . xn, x′1, . . . x

′
n in X we have n∑

j=1

d(Txj,Tx′j)
p

1/p

≤ C sup
f∈BX#

 n∑
j=1

∣∣f (xj)− f (x′j)
∣∣p1/p

The p-summing norm of T is

πp(T) := inf C.



Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

X, Y metric spaces , T : X → Y a Lipschitz map , 1 ≤ p ≤ ∞.

T is called Lipschitz p-summing if there exists C > 0 such that
for any x1, . . . xn, x′1, . . . x

′
n in X we have n∑

j=1

d(Txj,Tx′j)
p

1/p

≤ C sup
f∈BX#

 n∑
j=1

∣∣f (xj)− f (x′j)
∣∣p1/p

The Lipschitz p-summing norm of T is

πL
p (T) := inf C.



Duality for Lipschitz p-summing operators

Theorem (C 2011)

(
X �dp F

)∗
= ΠL

p′(X,F∗).

Where ΠL
p denotes the Lipschitz p-summing operators of

[Farmer/Johnson 2009] and

Definition (C 2011)

For an E-valued molecule m on a metric space X,

‖m‖dp
= inf

{(∑
j

λp
j ‖vj‖p

)1/p
sup

f∈BX#

(
λ−p′

j |f (xj)− f (x′j)|p
′
)1/p′

: m =
∑

j

vjmxjx′j
, λj > 0

}
.



Linear factorization through Hilbert space

Define for a linear map T : E → F

γ2(T) := inf
{
‖R‖ · ‖S‖

}
where

H
S

��@
@@

@@
@@

E

R
??~~~~~~~ T // F

and H is a Hilbert space.

Γ2(E,F) will denote the space of all operators admitting such a
factorization.



Duality for Γ2(E,F)

Theorem

(E ⊗w2 F)∗ = Γ2(E,F∗)

Where for w ∈ E ⊗ F

‖u‖w2
= inf

{( n∑
j=1

‖uj‖2
)1/2( n∑

i=1

‖vi‖2
)1/2

:

u =
∑

ij

aijuj ⊗ vi, ‖(aij) : `n
2 → `n

2‖ ≤ 1
}

and the identification is given again via trace duality.



Lipschitz factorization through subsets of Hilbert space

Define for a Lipschitz map T : X → Y

γ
Lip
2 (T) := inf

{
Lip(R) · Lip(S)

}
where

Z
S

��?
??

??
??

X

R
??������� T // Y

and Z is a subset of a Hilbert space.



Duality for ΓLip
2

The norm on molecules that gives the duality for Γ
Lip
2 is

‖m‖w2
= inf

{( n∑
i=1

‖vi‖2
)1/2( m∑

j=1

d(x,x′j)
2
)1/2

:

m =

n∑
i=1

vimyiy′i
, myiy′i

=

m∑
j=1

aijmxjx′j
, ‖(aij) : `m

2 → `n
2‖ ≤ 1

}



Tensoring with the identity



Representation theorems

Operator ideals satisfying certain technical properties can be
characterized by theorems of the following form:

Representation theorem

A linear operator T : E → F belongs to the operator ideal A if
and only if for every Banach space G, the map

T ⊗ idG : E ⊗α G→ F ⊗β G

is continuous.

Here, α and β are certain tensor norms.



Example

A linear operator T : E → F is p-summing if and only if for every
Banach space G the map

T ⊗ idG : E ⊗dp′ G→ F ⊗π G

is continuous.

Moreover, in this case

πp(T) = inf
G
‖T ⊗ idG‖



A nonlinear version

Theorem (C, 2011)

TFAE:
(a) T : X → Y is Lipschitz p-summing.
(b) For every Banach space E (or only E = Y#),∥∥∥T � idE : X �d′p E → Y �π E

∥∥∥ <∞



(q, p)-mixing operators

Theorem

Let T : E → F be a linear map, 1 ≤ p ≤ q ≤ ∞. TFAE:
(a) ∃ C > 0 such that for every S : F → G,

πp(S ◦ T) ≤ Cπq(S).

(b) For every Banach space G (or only G = `q′),∥∥∥T ⊗ idG : E ⊗dp′ G→ F ⊗dq′ G
∥∥∥ <∞



Similarly

Theorem (C, 2011)

Let T : X → Y be a Lipschitz map, 1 ≤ p ≤ q ≤ ∞. TFAE:
(a) ∃ C > 0 such that for every S : Y → Z,

πL
p (S ◦ T) ≤ CπL

q (S).

(b) For every Banach space E (or only E = `q′),∥∥∥T � idE : X �dp′ E → Y �dq′ E
∥∥∥ <∞
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