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Algebraic tensor products

Tensor products are normally used to linearize bilinear maps.
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What sense could there possibly be in thinking about tensor
products of a metric space with a Banach space?



Tensor products and Banach spaces

In Banach space theory, tensor products are used for more
than linearizing bilinear maps.

There are many different choices for a “reasonable” norm on
EQF.

Most importantly, there are deep connections between tensor
norms and operator ideals.



Duality relations

It often happens that
(E®qF)" = A(E,F")
for some tensor norm a and some operator ideal A.
Examples:
(E®y F)* = L(E,F*).

(E ®q, F)* = Ly (E, F").
(E ®y, F)* =T (E, F).

All of these examples have nonlinear counterparts.



Tensoring with the identity

Another type of result takes the form
Tc€AEF) & |T®Rids:E®,G—F®zG| <oo VG.

with A an operator ideal and «, /5 tensor norms.
Examples:

T € IL,(E,F) & HT@idG LE®y, G = F @, GH < 0o¥G.

T € My, (E,F) & HT@ idg : E®q, G = F ®y, GH < 5oVG.

Again, these and other examples have nonlinear counterparts.



Duality results



A baby example for duality

Suppose we want to find a nonlinear version of
(E®yr F)* = L(E, F").

In the nonlinear setting, Lipschitz maps play the role
corresponding to that of linear bounded maps.

That means we want to find some sort of tensor product so that
(X X, F)* = Lip,y(X, F*).

The easiest instance of this would be when F = R.



The Arens-Eells space

The Arens-Eells space of a metric space X (denoted /E (X)),
also known as the free Lipschitz space of X (denoted .# (X))
satisfies

F(X)* = X7 := Lipy(X,R) = {f : X = R : Lip(f) < oo, f(0) = 0}.

It was introduced in [Arens/Eells 1956], and has been used in
Banach space theory [Godefroy/Kalton 2003], [Kalton 2004].



Molecules and the Arens-Eells space

m A molecule on a metric space X is a finitely supported
m : X — R such that
Z m(x) = 0.

xeX
Note that the space of molecules is a vector space.
m Those of the form am, where
Myy' 7= X{x} — X{¥'}

with a € R and x,x’ € X are called atoms.
m The Arens-Eells space of X is the space of molecules with
the norm

n n
Il g = int { S s ) = m = amy .
=1 =1



Properties of the Arens-Eells space

@) Il #x) is @ norm.

(b) 0: X — F(X) given by §(x) = my is an isometric
embedding.

(c) Z(X)* = Lipy(X,R) = X via the duality pairing

(f,m) = f(x)m(x)
xeX
(d) Whenever T : X — E is a Lipschitz map, there is a linear
map T : .Z(X) — E such that ||T|| = Lip(T) and T o § = T.
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Duality for L(E, F)

(E @y F)* = L(E, F*).

Whereforw c EQ F

n
I, mf{zu, v,:wzu,@v,}
j=1

and the identification is given via trace duality, considering an
elementin E® F asamap F* — E. That is, for
w:Z;’:luj®vj€E®FandT:E—>F*,

n

(T,w) =tr(woT) = (T, ).

j=1



Vector valued molecules

Definition (C, 2011)

Let X be a metric space and E a Banach space.
An E-valued molecule on X is a function m : X — E such that

Z m(x) = 0.

xeX

m An E-valued atom is a function of the form vm,,» with
x,X € XandvinE.

m Every E-valued molecule on X can be expressed as a sum
of E-valued atoms.



Projective norm for vector valued molecules

For an E-valued molecule m, let

n n
Il = ot {3 ol = m = 3w .
J=1 1

j=

We will denote by X X, E the space of E-valued molecules on X
with the projective norm. It is not hard to show that

(XX, E)* = Lipy(X,E")

with the duality given by the pointwise pairing
(T,m) = (T(x),m(x)).
xeX

It was known that Lip,(X, E*) is a dual space [J. Johnson,
1970], but as far as | know the approach via molecules is new.



“Products” of operators

Proposition (C, 2012)

LetS: X — Z be a Lipschitz map mapping 0 to 0, andT : E — F
a bounded linear map. Then there is a unique operator
SKXT: XX, E— ZX, F such that

(S T)(vimyy) = (Tv)mgy)(sy)s forallv € E,x,y € X.

Furthermore, ||S X, T|| = Lip(S) ||T||.



Justifying the “projective” name

Recall that a linear operator T : E — F is a linear quotient if it is
surjective and

|w|| =inf{|v|| : ve€E, Tv=w} forevery w € F.

On the other hand, amap S : X — Z is called a C-co-Lipschitz if
foreveryx € X and r > 0,

f(B(x,r)) 2 B(f(x),r/C).
A map that is Lipschitz, co-Lipschitz and surjective is a
Lipschitz quotient.

Theorem (C, 2012)

LetS : X — Z be a Lipschitz quotient with Lipschitz and
co-Lipschitz constants equal to 1, and mapping 0 to 0, and let
T : E — F be a linear quotient map. Then

SX,T: (XX, E)— (ZK, F) is also a linear quotient map.




Example: X = a graph-theoretic tree

Recall

I, mf{ZHvJde,,, Zv] }

Note we can consider only representations where the pairs
(x;, x}) are endpoints of edges. Since X is a tree, every
molecule has only one such representation so

XX, E = (Y(E)

where N = # of edges of X.
| suspect a similar result should work for more general metric
trees as in [Godard 2010].



Reasonable tensor norms

A tensor norm « is called reasonable if it satisfies
(@) a(u®v) <|u| -|v| foreveryu c E,v € F.
(b) a*(u* @v*) < |u*| ||v*|| for every u* € E*, v* € F*.

Reasonable tensor norms are characterized by being between
the projective and injective tensor norms: a tensor norm « is
reasonable if and only if ¢ < o < 7, where

n n
lwl]|, = sup Z(u*,uj><v*,v]~> Cw= Zuj®v]~, u* € Bp«, v* € By
=1 j=1



Reasonable molecular norms

A norm ||-|| on the space of E-valued molecules on a metric
space X is called reasonable if

(i) lvmy |l < ||v]|d(x,x") forall x,x’ € X, v € E.

(il) [(v* om,f)| < |v*| Lip(f) ||m]| for all v € E*, m € M(X,E)
and f € X*.

Reasonable molecular norms are also characterized by being
between the projective and injective norms: a molecular norm «
is reasonable if and only if ¢ < o < 7, where

n

], = sup { S ) —F)]v ()

J=1

n
tm= Zvjmxjx;, f € By#, V¥ EBE*}.
j=1



The injective norm

The injective norm is also deserving of its name: it behaves
well under injections.

However, it is not so interesting for us because it “forgets” about
the metric space and only takes into account the structure of
Z(X). In fact,

XK. E=.7(X)®:E.



p-summing operators

E, F Banach spaces, T : E — F alinear map, 1 < p < oc.

T is called p-summing if there exists C > 0 such that for any
vi,...v, In E we have

" 1/p u 1/p
{Z ij”] < C sup {Z |6(v;) ”]
=1 S
The p-summing norm of T is
mp(T) = inf C.
The space of p-summing operators from E to F is denoted

IL,(E, F).



Chevet-Saphar norms

Theorem (Saphar 1970)

(E®q, F)" =1L, (E, F*).

Where
Definition (Chevet 1969, Saphar 1965,1970)

Forl1<p<ocandwe E®F, definep’ by 1/p+1/p’=1and

Il mf{ sup [Zm rp} -[éuwupr/

GEBEx* —

n
W= Zuj®v]~}.
j=1



p-summing operators

Definition (Pietsch, 1966)

E, F Banach spaces, T:E — Falinearmap, 1 <p < occ.

T is called p-summing if there exists C > 0 such that for any
Vi,...v, iIn E we have

" 1/p ; 1/p
DmvlP| < ¢ osup | Dol
le d)EBE* ]:1
The p-summing norm of T is

mp(T) = inf C.



Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

E, F Banach spaces, T:E — Falinearmap, 1 <p < occ.

T is called p-summing if there exists C > 0 such that for any
Vi,...v, iIn E we have

" 1/p ; 1/p
DmvlP| < ¢ osup | Dol
le d)EBE* ]:1
The p-summing norm of T is

mp(T) = inf C.



Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

E, F Banach spaces, T: E — Falinearmap, 1 <p < oo.

T is called p-summing if there exists C > 0 such that for any
Vi,...v, iIn E we have

" 1/p ; 1/p
DmvlP| < ¢ osup | Dol
le d)EBE* ]:1
The p-summing norm of T is

mp(T) = inf C.



Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

X, Y metric spaces, T: E — Falinearmap, 1 < p < oc.

T is called p-summing if there exists C > 0 such that for any
Vi,...v, in E we have

" 1/p ; 1/p
DmvlP| < Cosup | Do)l
le d)EBE* ]:1
The p-summing norm of T is

mp(T) := inf C.



Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

X, Y metricspaces, T:E — Falinearmap, 1 <p < cc.

T is called p-summing if there exists C > 0 such that for any
Vi,...v, in E we have

" 1/p ; 1/p
DmvlP| < ¢ osup | Dol
le d)EBE* ]:1
The p-summing norm of T is

mp(T) :=inf C.



Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

X, Y metric spaces, 7 :X — Y alLipschitzmap, 1 <p < oo.

T is called p-summing if there exists C > 0 such that for any
Vi,...v, in E we have

" 1/p ; 1/p
DmvlP| < ¢ osup | Do)l
le d)EBE* ]:1
The p-summing norm of T is

mp(T) :=inf C.



Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)

X, Y metric spaces, T:X — Y a Lipschitzmap, 1 < p < oco.

T is called p-summing if there exists C > 0 such that for any
Vi,...v, in E we have

" 1/p ; 1/p
DmvlP| < Cosup | Do)l
le d)EBE* ]:1
The p-summing norm of T is

mp(T) := inf C.



Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)
X, Y metric spaces, T:X — Y a Lipschitzmap, 1 <p < oc.

T is called Lipschitz p-summing if there exists C > 0 such that
forany vy,...v,in E we have

1/p

1/p Y
Tv:|IP <C (P
LZ; vl ] <C sw LZ;MVJ)I ]

The p-summing norm of T is

mp(T) :=inf C.



Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)
X, Y metric spaces, T:X — Y a Lipschitzmap, 1 <p < oc.

T is called Lipschitz p-summing if there exists C > 0 such that
forany vy,...v,in E we have

1/p

1/p Y
Tv:|IP <C (P
LZ; vl ] <C sw LZ;MVJ)I ]

The p-summing norm of T is

mp(T) :=inf C.



Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)
X, Y metric spaces, T:X — Y a Lipschitzmap, 1 < p < oco.

T is called Lipschitz p-summing if there exists C > 0 such that
forany xi,...x,,x|,...x,in X we have

" 1/p 1/p
Somt] <.y [0
j=1 $E€BEs

The p-summing norm of T is

mp(T) := inf C.



Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)
X, Y metric spaces, T:X — Y a Lipschitzmap, 1 < p < oco.

T is called Lipschitz p-summing if there exists C > 0 such that
forany xi,...x,,x},...x,inX we have

B 1/p 1/p
S| sy [
=1

PEBEx

The p-summing norm of T is

mp(T) := inf C.



Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)
X, Y metric spaces, T:X — Y a Lipschitzmap, 1 < p < oco.

T is called Lipschitz p-summing if there exists C > 0 such that
forany xi,...x,,x},...x,inX we have

; 1/p " 1/p
> d(Tx, )| < C sup | Y |b(v)P
o oeBpe | i

The p-summing norm of T is

mp(T) := inf C.



Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)
X, Y metric spaces, T:X — Y a Lipschitzmap, 1 < p < oco.

T is called Lipschitz p-summing if there exists C > 0 such that
forany xi,...x,,x},...x,inX we have

j=1 PEBEx | iy

1/p 1/p
|:Zd(ij,Tx]()p] < C sup {Zﬁb("j)p}

The p-summing norm of T is

mp(T) := inf C.



Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)
X, Y metric spaces, T:X — Y a Lipschitzmap, 1 < p < oco.

T is called Lipschitz p-summing if there exists C > 0 such that
forany xi,...x,,x},...x,inX we have

fEBx#

" 1/p 1/p
|:Z d(Tx;, Tx})p] < C sup {Z If (x) fx) }
=1

The p-summing norm of T is

mp(T) := inf C.



Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)
X, Y metric spaces, T:X — Y a Lipschitzmap, 1 < p < oco.

T is called Lipschitz p-summing if there exists C > 0 such that
forany xi,...x,,x},...x,inX we have

fEBy#

" 1/p 1/p
|:Z d(Txj, Tx})p] < C sup {Z |F () — f(x) ]
=1

The p-summing norm of T is

mp(T) :=inf C.



Lipschitz p-summing operators

Definition (Farmer/Johnson, 2009)
X, Y metric spaces, T:X — Y a Lipschitzmap, 1 < p < oco.

T is called Lipschitz p-summing if there exists C > 0 such that
forany xi,...x,,x},...x,inX we have

fEBy#

" 1/p 1/p
|:Z d(Txj, Tx})p] < C sup {Z |F () — f(x) ]
=1

The Lipschitz p-summing norm of T is

m5(T) == inf C.



Duality for Lipschitz p-summing operators

Theorem (C 2011)

(X Ry, F)" =115 (X, F*).

Where H[L, denotes the Lipschitz p-summing operators of
[Farmer/Johnson 2009] and

Definition (C 2011)

For an E-valued molecule m on a metric space X,

/ —p! / / / g
Iy, =int { (2 1) s (377 ) i)
J

up
By

tm= Zvijij"/\f > 0}.
J



Linear factorization through Hilbert space

Define foralinearmap 7 : E — F

%(T) == inf {|R]| - [|S]| }

7N

E——F

where

and H is a Hilbert space.

Iy (E, F) will denote the space of all operators admitting such a
factorization.



Duality for I';(E, F)

(E ®w, F)* =T (E, F¥)

Whereforw e EQ F

n s 1/2 n ) 1/2
e, = int { (il ) (o)
J=1 i=1
U= Zaijuj@vi, H(al]) :6’3 _>£g|| < 1}
ij

and the identification is given again via trace duality.



Lipschitz factorization through subsets of Hilbert space

Define for a Lipschitzmap 7 : X — Y

~5®(T) := inf { Lip(R) - Lip(S) }

where

and Z is a subset of a Hilbert space.



Lip

Duality for I';

The norm on molecules that gives the duality for Flz“ip is

fmll, =inf{(lznj||v,-u2)1/2(§mjd<x,x;>2)” "

J=1

n
m n
m:Zv,myy/,m '_§ :al} UEE alJ 4y _>£2||§1}
i=1



Tensoring with the identity



Representation theorems

Operator ideals satisfying certain technical properties can be
characterized by theorems of the following form:

Representation theorem

A linear operator T : E — F belongs to the operator ideal 2 if
and only if for every Banach space G, the map

T®idG:E®aG — FR5G

is continuous.

Here, o and 3 are certain tensor norms.



Example

A linear operator T : E — F is p-summing if and only if for every
Banach space G the map

T®idG:E®dp,G—>F®7rG

is continuous.

Moreover, in this case

7, (T) = inf||T @ idg|



A nonlinear version

Theorem (C, 2011)

TFAE:

(@) T:X — Y is Lipschitz p-summing.

(b) For every Banach space E (or only E = Y#),

HT&idE X Ry E - Y&TEH < 00



(¢, p)-mixing operators

Theorem
LetT : E — F be alinearmap, 1 < p < g < co. TFAE:
(a) 3C > 0 such that for every S : F — G,

mp(SoT) < Cmy(S).

(b) For every Banach space G (oronly G = (),

HT@idG .E®q, G — F 84, GH < 63



Similarly

Theorem (C, 2011)

LetT : X — Y be a Lipschitzmap, 1 <p < g < co. TFAE:
(a) 3 C > 0 such that forevery S : Y — Z,

(S0 T) < Crmy(S).

(b) For every Banach space E (oronly E = (),

HT&idE X Ry, E— YRy, EH < o0
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