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Introduction

The goal of this lecture is to present the construction of a new
reflexive HI Banach space. This space is denoted as XISP and
its definition uses the method of saturation under constraints
originated 20 years ago by E. Odell and Th. Schlumprecht.
This method permits to use Tsirelson space as the
unconditional frame and thus new features in HI spaces occur.
The most significant property of the space XISP is that it
satisfies the hereditary Invariant Subspace Property, which
means that every operator acting on every subspace of XISP

has a non trivial invariant subspace.
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Saturated norms, paradigms

Tsirelson’s norm

(B.S. Tsirelson 1972)

For x ∈ c00(N) we set

‖x‖T = max
{
‖x‖0, sup{1

2

n∑
i=1

‖Eix‖T}
}

Where the supremum is taken over all n 6 E1 < · · · < En.
Tsirelson space is

T = (c00, ‖ · ‖T )
The implicit formula is due to T. Figiel and W. B. Johnson.
The initial Tsirelson construction actually concerns the
dual T ∗.
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Odell and Schlumprecht’s norm

(E. Odell and Th. Schlumprecht 1993)

For x ∈ c00(N), f (n) = log2(n + 1), we set

‖x‖OS = max
{
‖x‖0, sup{ 1

f (n)

n∑
i=1

‖Eix‖mi}
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Where the supremum is taken over all (mi ,Ei)
n
i=1

admissible and for m > 2, ‖ · ‖m is a norm on c00 given by

‖x‖m = sup{ 1
m

m∑
i=1

‖Fix‖OS : F1 < · · · < Fm}

Odell - Schlumprecht space is
SOS = (c00, ‖ · ‖OS)
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The space SOS has the following remarkable property.

Every Banach space with a 1-unconditional basis is 1 + ε
block finitely representable in every block subspace of SOS.

Three years later (1996) Odell and Schlumprecht
presented the conditional version of their space.

This is a HI space such that every Banach space with a
monotone basis is 1 + ε block finitely representable in
every block subspace.
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Concepts, regular families

A family F of finite subsets of the naturals is said to be
regular if

(i) For every n ∈ N, {n} ∈ F .

(ii) F is hereditary, i.e. if F ∈ F and E ⊂ F , then E ∈ F .

(iii) F is spreading, i.e. if E = {mi}ki=1 ∈ F and F = {ni}ki=1
such that mi 6 ni for i = 1, . . . , k , then F ∈ F .

(iv) F is compact, i.e. F does not contain an infinite strictly
increasing sequence of its elements.
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The fundamental examples of regular families are

An = {F ⊂ N : #F 6 n}

The Schreier family S = {F ⊂ N : #F 6 min F}.

For F a regular family, the F-admissibility is defined.
A sequence E1 < · · · < En of subsets of N is said to be
F-admissible, if {min Ei}ni=1 ∈ F .

A sequence x1 < · · · < xn of vectors in c00 is F-admissible,
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F ∗ G = {E = ∪n
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(E. Odell, D. Alspach - S. A. 1986)



Concepts, regular families

For F ,G regular families, the convolution F ∗ G is defined:

F ∗ G = {E = ∪n
i=1Ei : Ei ∈ F , {Ei}ni=1G-admissible}

Using the convolution and diagonalization, the Schreier
hierarchy Sξ, ξ < ω1, is defined.
(E. Odell, D. Alspach - S. A. 1986)



Concepts, regular families

For F ,G regular families, the convolution F ∗ G is defined:

F ∗ G = {E = ∪n
i=1Ei : Ei ∈ F , {Ei}ni=1G-admissible}

Using the convolution and diagonalization, the Schreier
hierarchy Sξ, ξ < ω1, is defined.
(E. Odell, D. Alspach - S. A. 1986)



Concepts, regular families

For F ,G regular families, the convolution F ∗ G is defined:

F ∗ G = {E = ∪n
i=1Ei : Ei ∈ F , {Ei}ni=1G-admissible}

Using the convolution and diagonalization, the Schreier
hierarchy Sξ, ξ < ω1, is defined.
(E. Odell, D. Alspach - S. A. 1986)



Concept, norming sets

A subset W of c00 is a norming set if
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Conversely, every bimonotone Schauder basis is
isometrically defined by a norming set W .
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A Tsirelson type norming set associated to a (θ,F)
operation is:

The minimal norming set W(θ,F), closed in the (θ,F)
operation.

The minimality of W(θ,F) yields that every f ∈W(θ,F) has
one of the following forms

f = e∗n

f = θ
∑n

k=1 fk , (fk )n
k=1 ⊂W(θ,F)F-admissible

a rational convex combination of the above.
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2 ,S)

induces the Tsirelson norm.

For n > 2 and 1 < q <∞ the set W(n−1/q ,An)
induces a
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The generalized Tsirelson space with the norm induced by
W(θ,Sξ), ξ < ω1.
(S. A. 1987)
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Concepts, (θ,F , α) operations

An α-average in a norming set W is an average

α =
1
m

m∑
i=1

fi

with m > 2, f1 < · · · < fm in W

The size of α is s(α) = m.

A sequence α1 < α2 < · · · < αn < · · · is very fast growing
(v.f.g.), if for n > 1

s(αn) > (max suppαn−1)
2
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Concepts, (θ,F , α) operations

For W a norming set, 0 < θ 6 1 and F a regular family we
say that W is closed under the (θ,F , α) operation

if for every {αi}ni=1 F-admissible and very fast growing
family of α-averages in W , the functional

f = θ

n∑
i=1

αi

belongs to W .
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Concepts, Tsirelson type norms under constraints

A Tsirelson type norming set under constraints associated
to a (θ,F , α) operation is:

The minimal norming set W(θ,F ,α), closed in the (θ,F , α)
operation.

Example

The set W(1,S,α) induces an under constraints norm.

This is a reflexive space with some interesting properties.
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Concepts, mixed Tsirelson type norms under
constraints

A mixed Tsirelson type norming set under constraints
associated to a sequence (θj ,Fj , α)j of operation is:

The minimal norming set W(θj ,Fj ,α)j
, simultaneously closed

in the operations (θj ,Fj , α), j ∈ N.

Example

The set W( 1
f (n) ,An,α)n

induces a variant of the Odell -

Schlumprecht norm.
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The new objects

In the case of saturated under constraints norming sets, a
new class appears which lies strictly between the
corresponding Tsirelson and mixed Tsirelson ones.

It is not difficult to see that for any (θ,F) operation we have
that

W(θ,F) = W(θj ,F j )j

Where F j is the j-times convolution of the family F .

In the case of Tsirelson space we have that S j = Sj , hence
W( 1

2n ,Sn)
, is Tsirelson’s norming set.

In the case of saturated under constraints norming sets,
the set

W(θ,F ,α) 6= W(θj ,F j ,α)j

This yields the new class W(θj ,F j ,α)j
, which lies strictly

between the Tsirelson and mixed Tsirelson ones.
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The space T0,1

We will discuss the Tsirelson space under constraints with
its norm induced by W(1,S,α) which is also described by the
following implicit formula.
For x ∈ c00(N) we set

‖x‖T0,1
= max

{
‖x‖0, sup{

n∑
i=1

‖Eix‖ki}
}

Where the supremum is taken over all n 6 E1 < · · · < En.

Also k1 > 2 and for i > 1, ki > (max Ei−1)
2. ‖ · ‖m is a norm

on c00 given by

‖x‖m = sup{ 1
m

m∑
i=1

‖Fix‖T0,1
: F1 < · · · < Fm}
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The spreading models of T0,1

The space T0,1 is reflexive with an unconditional basis.

Every spreading model of T0,1 generated by a weakly null
sequence is either `1 or c0.

Every subspace Y of T0,1 admits both `1 and c0 as
spreading models.

The space T0,1 does not admit `21 and c2
0 spreading models.
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The α-index

The α-index of a block sequence (xn)n in T0,1 is equal to
zero (α

(
{xn}n

)
= 0), if for every v.f.g. sequence (αk )k of

α-averages and every (xnk )k

lim
k
αk (xnk ) = 0

The α-index determines completely the spreading models
generated by block sequences in T0,1, in the following
manner.

Proposition: Let (xn)n be a seminormalized block
sequence in T0,1. Then

If α
(
{xn}n

)
6= 0, then (xn)n admits `1 as a spreading model.

If α
(
{xn}n

)
= 0, then (xn)n admits only c0 spreading

models.
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The α-index

Assume that α
(
{xn}n

)
6= 0.

Then there exists ε > 0, (x`)`∈L a subsequence of (xn)n
and (α`)`∈L a sequence of very fast growing α-averages
with α`(x`) > ε.

Then for k 6 `1 < · · · < `k , f =
∑k

i=1 α`i ∈W(1,S,α), hence

‖
∑k

i=1 x`i‖T0,1
> εk

If α
(
{xn}n

)
= 0, then using induction on the tree

complexity of the f ∈W(1,S,α), we prove that (xn)n admits
c0 as a spreading model.
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Strictly Singular Operators on T0,1

Since the space T0,1 admits c0 and `1 spreading models,
the strictly singular operators on every subspace of it, form
a non separable ideal.
The following describes the structure of the strictly singular
operators in T0,1 .
Theorem: If S : T0,1 → T0,1 is strictly singular, then for
every weakly null sequence (xn)n, the sequences (xn)n,
(Txn)n, do not generate the same spreading model.

The space T0,1 is quasi minimal.
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Strictly Singular Operators on T0,1

If S is a strictly singular operator and (xn)n generates a c0
spreading model, the above yields that (Sxn)n is a norm
null sequence. Also if (xn)n generates an `1 spreading
model, then (Sxn)n is either norm null, or admits only c0
spreading models.
As consequence, for every S,T strictly singular operators,
ST is compact.
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The spaces T n
0,1

The space T0,1 belongs to a sequence of spaces sharing similar
properties described by the following.

Theorem (S. A., K. Beanland, P. Motakis)

For every n ∈ N there exists a reflexive Banach space T n
0,1

with
a 1-unconditional basis, such that every Y subspace of T n

0,1

satisfies the following properties.
(i) For every S1, . . . ,Sn+1 strictly singular operators on Y , the

composition S1 · · ·Sn+1 is a compact operator.
(ii) There exist S1, . . .Sn strictly singular operators, such that

S1 · · ·Sn is not compact.

The norm on T n
0,1

is induced by the norming set W(1,Sn,α)
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A problem

Since every subspace of T n
0,1

admits c0 and `1 as
spreading models, the space T n

0,1
does not contain an

asymptotic `p subspace. Hence, by a theorem of N.
Tomczak-Jaegermann and V. Milman, it does not contain a
boundedly distortable subspace.
Problem: Is every T n

0,1
arbitrarily distortable? If yes, does

there exist an asymptotic biorthogonal system determining
the distortion?
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The space XISP

Theorem (S. A., P. Motakis) There exists a reflexive space
XISP with a Schauder basis {en}n satisfying the following
properties.

(i) The space XISP is hereditarily indecomposable.

(ii) Every seminormalized weakly null sequence {xn}n has a
subsequence generating either `1 or c0 as a spreading
model. Moreover every infinite dimensional subspace Y of
XISP admits both `1 and c0 as spreading models.

(iii) For every Y infinite dimensional closed subspace of XISP

and every T ∈ L(Y ,XISP), T = λIY ,XISP
+ S with S strictly

singular.
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(iv) For every Y infinite dimensional subspace of XISP the ideal
S(Y ) of the strictly singular operators is non separable.

(v) For every Y subspace of XISP and every Q,S,T in S(Y ) the
operator QST is compact. Hence for every T ∈ S(Y ) either
T 3 = 0 or T commutes with a non zero compact operator.

(vi) For every Y infinite dimensional closed subspace of X and
every T ∈ L(Y ), T admits a non-trivial closed invariant
subspace. In particular every T 6= λIY , for λ ∈ R admits a
non-trivial hyperinvariant subspace.
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The norming set WISP

The norm on the space XISP is induced by a norming set
WISP which is the minimal set satisfying the following
properties.

(Type Iα functionals) The set WISP is closed in the
( 1

2n ,Sn, α) operations. If f is of type Iα and is the result of
( 1

2n ,Sn, α) operation, then the weight of f is w(f ) = n.

(Type II functionals) The set WISP includes all Eφ, with E an
interval of the naturals and φ = 1

2
∑n

k=1 fk , where
f1 < · · · < fn is an S-admissible special family of type Iα
special functionals.
(A special family satisfies the property, that for k > 1,w(fk )
determines uniquely the sequence {fi}k−1

i=1 .)

For Eφ type II functional, the weights of Eφ are
ŵ(φ) = {w(fk ) : E ∩ supp fk 6= ∅}.
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(β-averages) A β-average is an average β = 1
n
∑n

k=1 Ekφk ,
where Ekφk are of type II with pairwise disjoint weights.
The size s(β) and very fast growing sequences (βk )k are
defined in the same manner as for α averages.

(Type Iβ functionals) The set WISP is closed in the
( 1

2n ,Sn, β) operations. If f is of type Iβ and is the result of
( 1

2n ,Sn, β) operation, then the weight of f is w(f ) = n.

Since W( 1
2 ,S)

is the same with W( 1
2n ,Sn)n

, we have that WISP

is a subset of W( 1
2 ,S)
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c0 spreading models in XISP

In every HI construction one could find seminormalized
weakly null sequences (xn)n with the property, for every
strictly singular operator S, (Sxn)n is a norm null sequence.
In the case of XISP space, the sequences (xn)n generating
c0 spreading models have the aforementioned property,
thus it is critical to determine sequences generating c0
spreading models. There exists a criterion which is based
on α and β indices.
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c0 spreading models in XISP

(α index) Let {xk}k be a block sequence in XISP that
satisfies the following.

For any n, for any very fast growing sequence {αq}q of
α-averages in WISP and for any {Fk}k increasing sequence
of subsets of the naturals, such that {αq}q∈Fk is
Sn-admissible, the following holds.

For any {xnk}k subsequence of {xk}k , we have that
limk

∑
q∈Fk
|αq(xnk )| = 0.

Then we say that the α-index of {xk}k is zero and write
α
(
{xk}k

)
= 0.

The β index is similarly defined.
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c0 spreading models in XISP

The α, β indices provide the following criterion for
sequences generating c0 spreading models.

If (xn)n is a seminormalized block sequence in XISP , then
the following are equivalent.

(xn)n admits only c0 as a spreading model.

The indices α and β on (xn)n are equal to zero.

It is not difficult to see that if either α or β index is not equal
to zero, then (xn)n contains a subsequence generating `1
as a spreading model.
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Special convex combinations

((n, ε) basic special convex combinations) A convex
combination

∑
k∈F ckek is a (n, ε) b.s.c.c. if

(i) the set F belongs to Sn

(ii) for any G ∈ Sn−1,G ⊂ F , we have that
∑

k∈G ck < ε.

((n, ε) special convex combinations) Let x1 < · · · < xm be
vectors in c00 and ψ(k) = min supp xk , for k = 1, . . . ,m.
Then x =

∑m
k=1 ckxk is said to be a (n, ε) s.c.c., if∑m

k=1 ckeψ(k) is a (n, ε) b.s.c.c.
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The basic inequality

The great advantage of using Tsirelson space as the
unconditional frame for the space XISP is the following
inequality.
For a (n, ε) special convex combination

∑
i∈F cixi , with

{xi}i∈F a finite normalized block sequence, we have that

‖
∑

i∈F cixi‖ISP 6 6
2n + 12ε

The above yields the following. For every (xk )k normalized
block sequence such that either α or β index is not zero,
there exists δ > 0 such that

For every n and for every 1
22n > ε > 0 there exist (n, ε)

s.c.c.
∑

k∈F ckxk with
δ < ‖2n∑

k∈F ckxk‖ISP 6 7
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Determining c0 spreading models

We are ready to see how starting with an arbitrary
normalized block sequence (xn)n, in at most two steps, a
further block sequence can be chosen, generating a c0
spreading model.
If α and β indices of (xn)n are zero, we are done.
Otherwise, there exists a further block sequence (yk )k with
each yk a (k , 1

22k ) s.c.c. such that zk = 2kyk is a
seminormalized block sequence.

It is shown the α index of (zk ) is equal to zero. If the β
index of (zk ) is equal to zero, then we are done.

Otherwise repeating the previous procedure to the
sequence (zk )k , we arrive at a sequence (wk )k , for which
both α and β indices are zero.
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Strictly singular operators

The structure of the space XISP , permits the easy
construction of strictly singular and non-compact
operators. More precisely, the following holds.

Proposition: Let (xn)n and (yn)n be seminormalized block
sequences in XISP , such that (xn)n generates an `1
spreading model and (yn)n generates a c0 spreading
model. Then there exists L ⊂ N and S a strictly singular
operator in L(XISP), such that Sxn = yn, for all n ∈ L.

On the other hand, the composition of every three strictly
singular operators is a compact one.

The previous two steps which we need to arrive to a c0
spreading model is the reason for the necessity of the
composition of three strictly singular operators in order
obtain a compact one.
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Thank you!


