Using Tsirelson space as the frame for HI constructions

Spiros A. Argyros (joint work with Pavlos Motakis)

Department of Mathematics National Technical University of Athens Athens, Greece

2012 / Banff

The goal of this lecture is to present the construction of a new reflexive HI Banach space. This space is denoted as $\mathfrak{X}_{\text {ISP }}$ and its definition uses the method of saturation under constraints originated 20 years ago by E. Odell and Th. Schlumprecht. This method permits to use Tsirelson space as the unconditional frame and thus new features in HI spaces occur. The most significant property of the space $\mathfrak{X}_{\text {ISP }}$ is that it satisfies the hereditary Invariant Subspace Property, which means that every operator acting on every subspace of $\mathfrak{X}_{\text {ISP }}$ has a non trivial invariant subspace.

Saturated and saturated under constraints norms

> We will start explaining the fundamental concepts of saturated and saturated under constraints norms. At the beginning we will present the paradigms that led to the corresponding concepts.

Saturated and saturated under constraints norms

We will start explaining the fundamental concepts of saturated and saturated under constraints norms. At the beginning we will present the paradigms that led to the corresponding concepts.

Saturated norms, paradigms

Tsirelson's norm

(B.S. TsireIson 1972)

For $x \in c_{00}(\mathbb{N})$ we set

$$
\|x\|_{T}=\max \left\{\|x\|_{0}, \sup \left\{\frac{1}{2} \sum_{i=1}^{n}\left\|E_{i} x\right\|_{T}\right\}\right\}
$$

Where the supremum is taken over all $n \leqslant E_{1}<\cdots<E_{n}$.
Tsirelson space is

$$
T=\overline{\left(c_{00},\|\cdot\|_{T}\right)}
$$

- The implicit formula is due to T. Figiel and W. B. Johnson. The initial Tsirelson construction actually concerns the dual T^{*}.

Saturated norms, paradigms

Tsirelson's norm
(B.S. Tsirelson 1972)

For $x \in c_{00}(\mathbb{N})$ we set

$$
\|x\|_{T}=\max \left\{\|x\|_{0}, \sup \left\{\frac{1}{2} \sum_{i=1}^{n}\left\|E_{i} x\right\|_{T}\right\}\right\}
$$

Where the supremum is taken over all $n \leqslant E_{1}<\cdots<E_{n}$. Tsirelson space is

$$
T=\overline{\left(c_{00},\|\cdot\|_{T}\right)}
$$

- The implicit formula is due to T. Figiel and W. B. Johnson. The initial Tsirelson construction actually concerns the dual T^{*}

Saturated norms, paradigms

Tsirelson's norm
(B.S. Tsirelson 1972)

For $x \in c_{00}(\mathbb{N})$ we set

$$
\|x\|_{T}=\max \left\{\|x\|_{0}, \sup \left\{\frac{1}{2} \sum_{i=1}^{n}\left\|E_{i} x\right\|_{T}\right\}\right\}
$$

Where the supremum is taken over all $n \leqslant E_{1}<\cdots<E_{n}$. Tsirelson space is

$$
T=\overline{\left(c_{00},\|\cdot\|_{T}\right)}
$$

- The implicit formula is due to T. Figiel and W. B. Johnson. The initial Tsirelson construction actually concerns the dual T^{*}.

Saturated norms, paradigms

Schlumprecht's norm

(Th. Schlumprecht 1992)
For $x \in c_{00}(\mathbb{N}), f(n)=\log _{2}(n+1)$, we set

$$
\|x\|_{S}=\max \left\{\|x\|_{0}, \sup \left\{\frac{1}{f(n)} \sum_{i=1}^{n}\left\|E_{i} x\right\| s\right\}\right\}
$$

Where the supremum is taken over all $E_{1}<\cdots<E_{n}$. Schlumprecht's space is

$$
S=\overline{\left(c_{00},\|\cdot\|_{S}\right)}
$$

Saturated norms, paradigms

Schlumprecht's norm
(Th. Schlumprecht 1992)
For $x \in c_{00}(\mathbb{N}), f(n)=\log _{2}(n+1)$, we set

$$
\|x\|_{S}=\max \left\{\|x\|_{0}, \sup \left\{\frac{1}{f(n)} \sum_{i=1}^{n}\left\|E_{i} x\right\|_{S}\right\}\right\}
$$

Where the supremum is taken over all $E_{1}<\cdots<E_{n}$. Schlumprecht's space is

$$
S=\overline{\left(c_{00},\|\cdot\| s\right)}
$$

Saturated under constraints norms, paradigm

Odell and Schlumprecht's norm
(E. Odell and Th. Schlumprecht 1993)

For $x \in C_{00}(\mathbb{N}), f(n)=\log _{2}(n+1)$, we set

$$
\|x\|_{o s}=\max \left\{\|x\|_{0}, \sup \left\{\frac{1}{f(n)} \sum_{i=1}^{n}\left\|E_{i} x\right\|_{m_{i}}\right\}\right\}
$$

Where the supremum is taken over all $\left(m_{i}, E_{i}\right)_{i=1}^{n}$ admissible and for $m \geqslant 2,\|\cdot\|_{m}$ is a norm on c_{00} given by

$$
\|x\|_{m}=\sup \left\{\frac{1}{m} \sum_{i=1}^{m}\left\|F_{i} x\right\|_{o s}: F_{1}<\cdots<F_{m}\right\}
$$

Odell - Schlumprecht space is

$$
\left.S_{O S}=\overline{\left(c_{00}, \|\right.} \| O S\right)
$$

Saturated under constraints norms, paradigm

Odell and Schlumprecht's norm

(E. Odell and Th. Schlumprecht 1993)

For $x \in c_{00}(\mathbb{N}), f(n)=\log _{2}(n+1)$, we set

$$
\|x\|_{o s}=\max \left\{\|x\|_{0}, \sup \left\{\frac{1}{f(n)} \sum_{i=1}^{n}\left\|E_{i} x\right\|_{m_{i}}\right\}\right\}
$$

Where the supremum is taken over all $\left(m_{i}, E_{i}\right)_{i=1}^{n}$ admissible and for $m \geqslant 2,\|\cdot\|_{m}$ is a norm on c_{00} given by

$$
\|x\|_{m}=\sup \left\{\frac{1}{m} \sum_{i=1}^{m}\left\|F_{i} x\right\|_{o s}: F_{1}<\cdots<F_{m}\right\}
$$

Odell - Schlumprecht space is

$$
S_{O S}=\overline{\left(c_{00},\|\cdot\|_{O S}\right)}
$$

Saturated under constraints norms, paradigm

- The space $S_{O S}$ has the following remarkable property.
- Every Banach space with a 1-uncondilitional basis is $1+\varepsilon$ block finitely representable in every block subspace of Sos.
- Three years later (1996) Odell and Schlumprecht presented the conditional version of their space.
- This is a HI space such that every Banach space with a monotone basis is $1+\varepsilon$ block finitely representable in every block subspace.

Saturated under constraints norms, paradigm

- The space $S_{O S}$ has the following remarkable property.
- Every Banach space with a 1-unconditional basis is $1+\varepsilon$ block finitely representable in every block subspace of $S_{O S}$.
- Three years later (1990) Odell and Sch'lumprech: presented the conditional version of their space.
- This is a HI space such that every Banach space with a monotone basis is $1+\varepsilon$ block finitely representable in every block subspace.

Saturated under constraints norms, paradigm

- The space $S_{O S}$ has the following remarkable property.
- Every Banach space with a 1-unconditional basis is $1+\varepsilon$ block finitely representable in every block subspace of $S_{\text {OS }}$.
- Three years later (1996) Odell and Schlumprecht presented the conditional version of their space.
- This is a lil space such that every Banach space with a monotone basis is $1+\varepsilon$ block finitely representable in every block subspace.

Saturated under constraints norms, paradigm

- The space $S_{O S}$ has the following remarkable property.
- Every Banach space with a 1-unconditional basis is $1+\varepsilon$ block finitely representable in every block subspace of $S_{\text {OS }}$.
- Three years later (1996) Odell and Schlumprecht presented the conditional version of their space.
- This is a HI space such that every Banach space with a monotone basis is $1+\varepsilon$ block finitely representable in every block subspace.

Saturated under constraints norms, paradigm

- The space $S_{O S}$ has the following remarkable property.
- Every Banach space with a 1-unconditional basis is $1+\varepsilon$ block finitely representable in every block subspace of $S_{\text {Os }}$.
- Three years later (1996) Odell and Schlumprecht presented the conditional version of their space.
- This is a HI space such that every Banach space with a monotone basis is $1+\varepsilon$ block finitely representable in every block subspace.

Concepts, regular families

A family \mathcal{F} of finite subsets of the naturals is said to be regular if
(i) For every $n \in \mathbb{N},\{n\} \in \mathcal{F}$.
(ii) \mathcal{F} is hereditary, i.e. if $F \in \mathcal{F}$ and $E \subset F$, then $E \in \mathcal{F}$.
(iii) \mathcal{F} is spreading, i.e. if $E=\left\{m_{i}\right\}_{i=1}^{k} \in \mathcal{F}$ and $F=\left\{n_{i}\right\}_{i=1}^{k}$ such that $m_{i} \leqslant n_{i}$ for $i=1, \ldots, k$, then $F \in \mathcal{F}$.
(iv) \mathcal{F} is compact, i.e. \mathcal{F} does not contain an infinite strictly increasing sequence of its elements.

Concepts, regular families

A family \mathcal{F} of finite subsets of the naturals is said to be regular if
(i) For every $n \in \mathbb{N},\{n\} \in \mathcal{F}$.
(ii) \mathcal{F} is hereditary, i.e. if $F \in \mathcal{F}$ and $E \subset F$, then $E \in \mathcal{F}$.
(iii) \mathcal{F} is spreading, i.e. if $E=\left\{m_{i}\right\}^{k} \in \mathcal{F}$ and $F=\left\{n_{i}\right\}_{i=1}^{k}$ such that $m_{i} \leqslant n_{i}$ for $i=1, \ldots, k$, then $F \in \mathcal{F}$.
(iv) \mathcal{F} is compact, i.e. \mathcal{F} does not contain an infinite strictly increasing sequence of its elements.

Concepts, regular families

A family \mathcal{F} of finite subsets of the naturals is said to be regular if
(i) For every $n \in \mathbb{N},\{n\} \in \mathcal{F}$.
(ii) \mathcal{F} is hereditary, i.e. if $F \in \mathcal{F}$ and $E \subset F$, then $E \in \mathcal{F}$.
(iii) \mathcal{F} is spreading, i.e. if $E=\left\{m_{i}\right\}_{i=1}^{k} \in \mathcal{F}$ and $F=\left\{n_{i}\right\}_{i=1}^{k}$ such that $m_{i} \leqslant n_{i}$ for $i=1, \ldots, k$, then $F \in \mathcal{F}$.
(iv) \mathcal{F} is compact, i.e. \mathcal{F} does not contain an infinite strictly increasing sequence of its elements.

Concepts, regular families

A family \mathcal{F} of finite subsets of the naturals is said to be regular if
(i) For every $n \in \mathbb{N},\{n\} \in \mathcal{F}$.
(ii) \mathcal{F} is hereditary, i.e. if $F \in \mathcal{F}$ and $E \subset F$, then $E \in \mathcal{F}$.
(iii) \mathcal{F} is spreading, i.e. if $E=\left\{m_{i}\right\}_{i=1}^{k} \in \mathcal{F}$ and $F=\left\{n_{i}\right\}_{i=1}^{k}$ such that $m_{i} \leqslant n_{i}$ for $i=1, \ldots, k$, then $F \in \mathcal{F}$.
(iv) \mathcal{F} is compaci, i.e. \mathcal{F} does not contain an infinite strictly increasing sequence of its elements.

Concepts, regular families

A family \mathcal{F} of finite subsets of the naturals is said to be regular if
(i) For every $n \in \mathbb{N},\{n\} \in \mathcal{F}$.
(ii) \mathcal{F} is hereditary, i.e. if $F \in \mathcal{F}$ and $E \subset F$, then $E \in \mathcal{F}$.
(iii) \mathcal{F} is spreading, i.e. if $E=\left\{m_{i}\right\}_{i=1}^{k} \in \mathcal{F}$ and $F=\left\{n_{i}\right\}_{i=1}^{k}$ such that $m_{i} \leqslant n_{i}$ for $i=1, \ldots, k$, then $F \in \mathcal{F}$.
(iv) \mathcal{F} is compact, i.e. \mathcal{F} does not contain an infinite strictly increasing sequence of its elements.

Concepts, regular families

A family \mathcal{F} of finite subsets of the naturals is said to be regular if
(i) For every $n \in \mathbb{N},\{n\} \in \mathcal{F}$.
(ii) \mathcal{F} is hereditary, i.e. if $F \in \mathcal{F}$ and $E \subset F$, then $E \in \mathcal{F}$.
(iii) \mathcal{F} is spreading, i.e. if $E=\left\{m_{i}\right\}_{i=1}^{k} \in \mathcal{F}$ and $F=\left\{n_{i}\right\}_{i=1}^{k}$ such that $m_{i} \leqslant n_{i}$ for $i=1, \ldots, k$, then $F \in \mathcal{F}$.
(iv) \mathcal{F} is compact, i.e. \mathcal{F} does not contain an infinite strictly increasing sequence of its elements.

Concepts, regular families

The fundamental examples of regular families are
$A_{n}=\{F \subset \mathbb{N}: H F \leqslant n\}$
The Schreier family $\mathcal{S}=\{F \subset \mathbb{N}: \# F \leqslant \min F\}$.
For \mathcal{F} a regular family, the \mathcal{F}-admissibility is defined.
A sequence $E_{1}<\cdots<E_{n}$ of subsets of \mathbb{N} is said to be \mathcal{F}-admissible, if $\left\{\min E_{i}\right\}_{i=1}^{n} \in \mathcal{F}$.

A sequence $x_{1}<\cdots<x_{n}$ of vectors in c_{00} is \mathcal{F}-admissible,
if supp $x_{1}<\cdots<\operatorname{supp} x_{n}$ is \mathcal{F}-admissible.

Concepts, regular families

The fundamental examples of regular families areThe Schreier family $\mathcal{S}=\{F \subset \mathbb{N}: \# F \leqslant \min F\}$For \mathcal{F} a regular family, the \mathcal{F}-adimissibility is defined.A sequence $E_{1}<\cdots<E_{n}$ of subsets of \mathbb{N} is said to be\mathcal{F}-admissible, if $\left\{\min E_{i}\right\}_{i=1}^{n} \in \mathcal{F}$.
A sequence $x_{1}<\cdots<x_{n}$ of vectors in c_{00} is \mathcal{F}-admissible,
if supp $x_{1}<\cdots<\operatorname{supp} x_{n}$ is \mathcal{F}-admissible.

Concepts, regular families

The fundamental examples of regular families are
$\mathcal{A}_{n}=\{F \subset \mathbb{N}: \# F \leqslant n\}$
The Schreier family $\mathcal{S}=\{F \subset \mathbb{N}: \# F \leqslant \min F\}$.
For \mathcal{F} a regular family, the \mathcal{F}-admissibility is defined.
A sequence $E_{1}<\cdots<E_{n}$ of subsets of \mathbb{N} is said to be \mathcal{F}-admissible, if $\left\{\min E_{i}\right\}_{i=1}^{n} \in \mathcal{F}$.

A sequence $x_{1}<\cdots<x_{n}$ of vectors in c_{00} is \mathcal{F}-admissible,
if $\operatorname{supp} x_{1}<\cdots<\operatorname{supp} x_{n}$ is \mathcal{F}-admissible.

Concepts, regular families

The fundamental examples of regular families are

$$
\mathcal{A}_{n}=\{F \subset \mathbb{N}: \# F \leqslant n\}
$$

The Schreier family $\mathcal{S}=\{F \subset \mathbb{N}: \# F \leqslant \min F\}$.
For \mathcal{F} a regular family, the \mathcal{F}-admissibility is defined.
A sequence $E_{1}<\cdots<E_{n}$ of subsets of \mathbb{N} is said to be \mathcal{F}-admissible, if $\left\{\min E_{i}\right\}_{i=1}^{n} \in \mathcal{F}$.

A sequence $x_{1}<\cdots<x_{n}$ of vectors in c_{00} is \mathcal{F}-admissible,
if supp $x_{1}<\cdots<\operatorname{supp} x_{n}$ is \mathcal{F}-admissible.

Concepts, regular families

The fundamental examples of regular families are
$\mathcal{A}_{n}=\{F \subset \mathbb{N}: \# F \leqslant n\}$
The Schreier family $\mathcal{S}=\{F \subset \mathbb{N}: \# F \leqslant \min F\}$.
For \mathcal{F} a regular family, the \mathcal{F}-admissibility is defined.
A sequence $E_{1}<\cdots<E_{n}$ of subsets of \mathbb{N} is said to be \mathcal{F}-admissible, if $\left\{\min E_{i}\right\}_{i=1}^{n} \in \mathcal{F}$.

A sequence $x_{1}<\cdots<x_{n}$ of vectors in c_{00} is $\sqrt[F]{ }$-admissible,
if supp $x_{1}<\cdots<\operatorname{supp} x_{n}$ is \mathcal{F}-admissible.

Concepts, regular families

The fundamental examples of regular families are
$\mathcal{A}_{n}=\{F \subset \mathbb{N}: \# F \leqslant n\}$
The Schreier family $\mathcal{S}=\{F \subset \mathbb{N}: \# F \leqslant \min F\}$.
For \mathcal{F} a regular family, the \mathcal{F}-admissibility is defined.
A sequence $E_{1}<\cdots<E_{n}$ of subsets of \mathbb{N} is said to be \mathcal{F}-admissible, if $\left\{\min E_{i}\right\}_{i=1}^{n} \in \mathcal{F}$.

A sequence x_{1}
if supp $x_{1}<\cdots<\operatorname{supp} x_{n}$ is \mathcal{F}-admissible.

Concepts, regular families

The fundamental examples of regular families are
$\mathcal{A}_{n}=\{F \subset \mathbb{N}: \# F \leqslant n\}$
The Schreier family $\mathcal{S}=\{F \subset \mathbb{N}: \# F \leqslant \min F\}$.
For \mathcal{F} a regular family, the \mathcal{F}-admissibility is defined.
A sequence $E_{1}<\cdots<E_{n}$ of subsets of \mathbb{N} is said to be \mathcal{F}-admissible, if $\left\{\min E_{i}\right\}_{i=1}^{n} \in \mathcal{F}$.

A sequence $x_{1}<\cdots<x_{n}$ of vectors in c_{00} is \mathcal{F}-admissible, if supp $x_{1}<\cdots<\operatorname{supp} x_{n}$ is \mathcal{F}-admissible.

Concepts, regular families

For \mathcal{F}, \mathcal{G} regular families, the convolution $\mathcal{F} * \mathcal{G}$ is defined:

$$
\mathcal{F} * \mathcal{G}=\left\{E=\cup_{i=1}^{n} E_{i}: E_{i} \in \mathcal{F},\left\{E_{i}\right\}_{i=1}^{n} \mathcal{G} \text {-admissible }\right\}
$$

> Using the convolution and diagonalization, the Schreier hierarchy $\mathcal{S}_{\xi}, \xi<\omega_{1}$, is defined.
> (E. Odell, D. Alspach - S. A. 1986)

Concepts, regular families

For \mathcal{F}, \mathcal{G} regular families, the convolution $\mathcal{F} * \mathcal{G}$ is defined:

Concepts, regular families

For \mathcal{F}, \mathcal{G} regular families, the convolution $\mathcal{F} * \mathcal{G}$ is defined:

$$
\mathcal{F} * \mathcal{G}=\left\{E=\cup_{i=1}^{n} E_{i}: E_{i} \in \mathcal{F},\left\{E_{i}\right\}_{i=1}^{n} \mathcal{G} \text {-admissible }\right\}
$$

Using the convolution and diagonalization, the Schreier hierarchy $\mathcal{S}_{\xi}, \xi<\omega_{1}$, is defined. (E. Odell, D. Alspach - S. A. 1986)

Concepts, regular families

For \mathcal{F}, \mathcal{G} regular families, the convolution $\mathcal{F} * \mathcal{G}$ is defined:

$$
\mathcal{F} * \mathcal{G}=\left\{E=\cup_{i=1}^{n} E_{i}: E_{i} \in \mathcal{F},\left\{E_{i}\right\}_{i=1}^{n} \mathcal{G} \text {-admissible }\right\}
$$

Using the convolution and diagonalization, the Schreier hierarchy $\mathcal{S}_{\xi}, \xi<\omega_{1}$, is defined.
(E. Odell, D. Alspach - S. A. 1986)

Concept, norming sets

- A subset W of c_{00} is a norming set if
$\left(e_{n}^{*}\right)_{n} \subset W, f \in W \Rightarrow-f \in W$ and $\|f\|_{\infty} \leqslant 1$.
W is rationally convex
W is closed under projections on intervals of \mathbb{N}
- For W a norming set and $x \in c_{00}$

$$
\|x\|_{w}=\sup \{f(x): f \in W\}
$$

and $X_{w}=\overline{\left(c_{00},\|\cdot\| w\right)}$

- The sequence $\left(e_{n}\right)_{n}$ is a bimonotone Schauder basis for the space X_{W}.
- Conversely, every bimonotone Schauder basis is isometrically defined by a norming set W.

Concept, norming sets

- A subset W of c_{00} is a norming set if
$\left(e_{n}^{*}\right)_{n} \subset W, f \in W \Rightarrow-f \in W$ and $\|f\|_{\infty} \leqslant 1$. W is rationally convex W' is closed under projections on intervals of \mathbb{N}
- For W a norming set and $x \in c_{00}$

$$
\|x\|_{W}=\sup \{f(x): f \in \mathbb{W}\}
$$

and $X_{w}=\overline{\left(c_{00},\|\cdot\| w\right)}$

- The sequence $\left(e_{n}\right)_{n}$ is a bimonotone Schauder basis for the space X_{W}.
- Conversely, every bimonotone Schauder basis is isometrically defined by a norming set W.

Concept, norming sets

- A subset W of c_{00} is a norming set if
$\left(e_{n}^{*}\right)_{n} \subset W, f \in W \Rightarrow-f \in W$ and $\|f\|_{\infty} \leqslant 1$.
W is rationally convex
W is closed under projections on intervals of \mathbb{N}
- For 1 N/ a norming set and $x \in c_{0}$

$$
\|x\|_{W}=\sup \{f(x): f \in W\}
$$

and $X_{W}=\overline{\left(c_{00},\|\cdot\| W\right)}$

- The sequence $\left(e_{n}\right)_{n}$ is a bimonotone Schauder basis for the space X_{w}.
- Conversely, every bimonotone Schauder basis is isometrically defined by a norming set W.

Concept, norming sets

- A subset W of c_{00} is a norming set if
$\left(e_{n}^{*}\right)_{n} \subset W, f \in W \Rightarrow-f \in W$ and $\|f\|_{\infty} \leqslant 1$.
W is rationally convex
W is closed under projections on intervals of \mathbb{N}
- For W a norming set and $x \in c_{00}$
and $X_{w}=\overline{\left(c_{00},\|\cdot\| w\right)}$
- The sequence $\left(e_{n}\right)_{n}$ is a bimonotone Schauder basis for the space X_{w}.
- Conversely, every bimonotone Schauder basis is isometrically defined by a norming set W.

Concept, norming sets

- A subset W of c_{00} is a norming set if
$\left(e_{n}^{*}\right)_{n} \subset W, f \in W \Rightarrow-f \in W$ and $\|f\|_{\infty} \leqslant 1$.
W is rationally convex
W is closed under projections on intervals of \mathbb{N}
- For W a norming set and $x \in c_{00}$
and $X_{W}=\overline{\left(c_{00},\|\cdot\| w\right)}$
- The sequence $\left(e_{n}\right)_{n}$ is a bimonotone Schauder basis for the space X_{w}.
- Conversely, every bimonotone Schauder basis is isometrically defined by a norming set W.

Concept, norming sets

- A subset W of c_{00} is a norming set if
$\left(e_{n}^{*}\right)_{n} \subset W, f \in W \Rightarrow-f \in W$ and $\|f\|_{\infty} \leqslant 1$.
W is rationally convex
W is closed under projections on intervals of \mathbb{N}
- For W a norming set and $x \in c_{00}$

$$
\text { and } X_{W}=\frac{\|x\|_{w}}{\left(c_{00},\|\cdot\| w\right)}=\sup \{f(x): f \in W\}
$$

- The sequence $\left(e_{n}\right)_{n}$ is a bimonotone Schauder basis for the space X_{W}.
- Conversely, every bimonotone Schauder basis is isometrically defined by a norming set W.

Concept, norming sets

- A subset W of c_{00} is a norming set if
$\left(e_{n}^{*}\right)_{n} \subset W, f \in W \Rightarrow-f \in W$ and $\|f\|_{\infty} \leqslant 1$.
W is rationally convex
W is closed under projections on intervals of \mathbb{N}
- For W a norming set and $x \in c_{00}$

$$
\text { and } X_{W}=\frac{\|x\| w}{\left(c_{00},\|\cdot\| w\right)}=\sup \{f(x): f \in W\}
$$

- The sequence $\left(e_{n}\right)_{n}$ is a bimonotone Schauder basis for the space X_{W}.
- Conversely, every bimonotone Schauder basis is isometrically defined by a norming set W.

Concepts, (θ, \mathcal{F}) operation

For W a norming set, $0<\theta<1$ and \mathcal{F} a regular family we say that W is closed under the (θ, \mathcal{F}) operation
if for every $\left\{f_{i}\right\}_{i=1}^{n} \mathcal{F}$-admissible family in W, the functional

belongs to W.

Concepts, (θ, \mathcal{F}) operation

For W a norming set, $0<\theta<1$ and \mathcal{F} a regular family we say that W is closed under the (θ, \mathcal{F}) operation
if for every $\left\{f_{i}\right\}_{i=1}^{n} \mathcal{F}$-admissible family in W, the functional
belongs to W.

Concepts, (θ, \mathcal{F}) operation

For W a norming set, $0<\theta<1$ and \mathcal{F} a regular family we say that W is closed under the (θ, \mathcal{F}) operation
if for every $\left\{f_{i}\right\}_{i=1}^{n} \mathcal{F}$-admissible family in W, the functional
belongs to W.

Concepts, (θ, \mathcal{F}) operation

For W a norming set, $0<\theta<1$ and \mathcal{F} a regular family we say that W is closed under the (θ, \mathcal{F}) operation
if for every $\left\{f_{i}\right\}_{i=1}^{n} \mathcal{F}$-admissible family in W, the functional

$$
f=\theta \sum_{i=1}^{n} f_{i}
$$

belongs to W.

Concepts, Tsirelson type norms

A Tsirelson type norming set associated to a (θ, \mathcal{F}) operation is:

The minimal norming set $W_{(\theta, \mathcal{F})}$, closed in the (θ, \mathcal{F}) operation.

The minimality of $W_{(\theta, \mathcal{F})}$ yields that every $f \in W_{(\theta, \mathcal{F})}$ has one of the following forms

- $f=e_{n}^{*}$
- $f=\theta \sum_{k=1}^{n} f_{k},\left(f_{k}\right)_{k=1}^{n} \subset W_{(\theta, \mathcal{F})} \mathcal{F}$-admissible
- a rational convex combination of the above.

Concepts, Tsirelson type norms

A Tsirelson type norming set associated to a (θ, \mathcal{F}) operation is:

The minimal norming set $W_{(\theta, \mathcal{F})}$, closed in the (θ, \mathcal{F}) operation.

The minimality of $W_{(\theta, F)}$ yields that every $f \in W_{(\theta, F)}$ has one of the following forms

- $f=e_{n}^{*}$
- $f=A \sum_{k=1}^{n} f_{k},\left(f_{k}\right)_{k=1} \subset W_{(\theta, \mathcal{F})} \mathcal{F}^{\mathcal{F}}$-admissible
- a rational convex combination of the above.

Concepts, Tsirelson type norms

A Tsirelson type norming set associated to a (θ, \mathcal{F}) operation is:

The minimal norming set $W_{(\theta, \mathcal{F})}$, closed in the (θ, \mathcal{F}) operation.

The minimality of $W_{(\theta, \mathcal{F})}$ yields that every $f \in W_{(\theta, \mathcal{F})}$ has one of the following forms

- $f=\theta \sum_{k=1}^{n} f_{k},\left(f_{k}\right)_{k=1}^{n} \subset W_{(\theta, \mathcal{F})} \mathcal{F}$-admissible
- a rational convex combination of the above.

Concepts, Tsirelson type norms

A Tsirelson type norming set associated to a (θ, \mathcal{F}) operation is:

The minimal norming set $W_{(\theta, \mathcal{F})}$, closed in the (θ, \mathcal{F}) operation.

The minimality of $W_{(\theta, \mathcal{F})}$ yields that every $f \in W_{(\theta, \mathcal{F})}$ has one of the following forms

- $f=\theta \sum_{k=1}^{n} f_{k},\left(f_{k}\right)_{k=1}^{n} \subset W_{(\theta, \mathcal{F})} \mathcal{F}$-admissible
- a rational convex combination of the above.

Concepts, Tsirelson type norms

A Tsirelson type norming set associated to a (θ, \mathcal{F}) operation is:

The minimal norming set $W_{(\theta, \mathcal{F})}$, closed in the (θ, \mathcal{F}) operation.

The minimality of $W_{(\theta, \mathcal{F})}$ yields that every $f \in W_{(\theta, \mathcal{F})}$ has one of the following forms

- $f=e_{n}^{*}$
- $f=\theta \sum_{k=1}^{n} f_{k},\left(f_{k}\right)_{k=1}^{n} \subset W_{(\theta, \mathcal{F})} \mathcal{F}$-admissible
- a rational convex combination of the above.

Concepts, Tsirelson type norms

A Tsirelson type norming set associated to a (θ, \mathcal{F}) operation is:

The minimal norming set $W_{(\theta, \mathcal{F})}$, closed in the (θ, \mathcal{F}) operation.

The minimality of $W_{(\theta, \mathcal{F})}$ yields that every $f \in W_{(\theta, \mathcal{F})}$ has one of the following forms

- $f=e_{n}^{*}$
- $f=\theta \sum_{k=1}^{n} f_{k},\left(f_{k}\right)_{k=1}^{n} \subset W_{(\theta, \mathcal{F})} \mathcal{F}$-admissible
- a rational convex combination of the above.

Concepts, Tsirelson type norms

A Tsirelson type norming set associated to a (θ, \mathcal{F}) operation is:

The minimal norming set $W_{(\theta, \mathcal{F})}$, closed in the (θ, \mathcal{F}) operation.

The minimality of $W_{(\theta, \mathcal{F})}$ yields that every $f \in W_{(\theta, \mathcal{F})}$ has one of the following forms

- $f=e_{n}^{*}$
- $f=\theta \sum_{k=1}^{n} f_{k},\left(f_{k}\right)_{k=1}^{n} \subset W_{(\theta, \mathcal{F})} \mathcal{F}$-admissible
- a rational convex combination of the above.

Concepts, Tsirelson type norms

Examples

The set $W_{\left(\frac{1}{2}, S\right)}$ induces the Tsirelson norm.
For $n \geqslant 2$ and $1<q<\infty$ the set $W_{\left(n^{\left.-1 / a, \mathcal{A}_{n}\right)}\right.}$ induces a
Tsirelson type norm, equivalent to ℓ_{p}
(S. Bellenot 1986, S. A. - I. Deliyanni 1991)

- The generalized Tsirelson space with the norm induced by $W_{\left(\theta, \mathcal{S}_{\xi}\right)}, \xi<\omega_{1}$.
(S. A. 1987)

Concepts, Tsirelson type norms

Examples

The set $W_{\left(\frac{1}{2}, S\right)}$ induces the Tsirelson norm.
For $n \geqslant 2$ and $1<q<\infty$ the set $W_{\left(n^{\left.-1 / a, \mathcal{A}_{n}\right)}\right.}$ induces a
Tsirelson type norm, equivalent to ℓ_{p}
(S. Bellenot 1986, S. A. - I. Deliyanni 1991)

- The generalized Tsirelson space with the norm induced by $W_{\left(\theta, \mathcal{S}_{\varepsilon}\right)}, \xi<\omega_{1}$.
(S. A. 1987)

Concepts, Tsirelson type norms

Examples

The set $W_{\left(\frac{1}{2}, \mathcal{S}\right)}$ induces the Tsirelson norm.
For $n \geqslant 2$ and $1<q<\infty$ the set $W_{\left(n^{\left.-1 / q, \mathcal{A}_{n}\right)}\right.}$ induces a
Tsirelson type norm, equivalent to ℓ_{p}
(S. Bellenot 1986, S. A. - I. Deliyanni 1991)

- The generalized Tsirelson space with the norm induced by $W_{\left(\theta, \mathcal{S}_{\xi}\right)}, \xi<\omega_{1}$.
(S. A. 1987)

Concepts, Tsirelson type norms

Examples

The set $W_{\left(\frac{1}{2}, \mathcal{S}\right)}$ induces the Tsirelson norm.
For $n \geqslant 2$ and $1<q<\infty$ the set $W_{\left(n^{\left.-1 / q, \mathcal{A}_{n}\right)}\right.}$ induces a Tsirelson type norm, equivalent to ℓ_{p}
(S. Bellenot 1986, S. A. - I. Deliyanni 1991)

- The generalized Tsirelson space with the norm induced by $W_{\left(\theta, \mathcal{S}_{\xi}\right)}, \xi<\omega_{1}$. (S. A. 1987)

Concepts, Tsirelson type norms

Examples

The set $W_{\left(\frac{1}{2}, \mathcal{S}\right)}$ induces the Tsirelson norm.
For $n \geqslant 2$ and $1<q<\infty$ the set $W_{\left(n^{\left.-1 / q, \mathcal{A}_{n}\right)}\right.}$ induces a
Tsirelson type norm, equivalent to ℓ_{p}
(S. Bellenot 1986, S. A. - I. Deliyanni 1991)

- The generalized Tsirelson space with the norm induced by $W_{\left(\theta, \mathcal{S}_{\xi}\right)}, \xi<\omega_{1}$.
(S. A. 1987)

Concepts, mixed Tsirelson type norms

A mixed Tsirelson type norming set associated to a $\left(\theta_{j}, \mathcal{F}_{j}\right)_{j}$ sequence of operations is:

The minimal norming set $W_{\left(\theta_{j}, \mathcal{F}_{j}\right)_{j}}$, simultaneously closed in the operations $\left(\theta_{j}, \mathcal{F}_{j}\right), j \in \mathbb{N}$.

Examples

The set $W_{\left(\frac{1}{f(n)}, \mathcal{A}_{n}\right)_{n}}$ induces the Schlumprecht norm.
The set $W_{\left(\frac{1}{m_{j}}, \mathcal{S}_{n_{j}}\right)_{j}}$ induces the Argyros - Deliyanni norm (1994).

Concepts, mixed Tsirelson type norms

A mixed Tsirelson type norming set associated to a $\left(\theta_{j}, \mathcal{F}_{j}\right)_{j}$ sequence of operations is:

The minimal norming set $W_{\left(\theta_{j}, \mathcal{F}_{j}\right) j}$, simultaneously closed in the operations $\left(\theta_{j}, \mathcal{F}_{j}\right), j \in \mathbb{N}$. Examples

The set $W_{\left(\frac{1}{f(n)}, \mathcal{A}_{n}\right)_{n}}$ induces the Schlumprecht norm.
The set $W_{\left(\frac{1}{m}, S_{n}\right)_{j}}$ induces the Argyros - Deliyanni norm (1994).

Concepts, mixed Tsirelson type norms

A mixed Tsirelson type norming set associated to a $\left(\theta_{j}, \mathcal{F}_{j}\right)_{j}$ sequence of operations is:

The minimal norming set $W_{\left(\theta_{j}, \mathcal{F}_{j}\right) j}$, simultaneously closed in the operations $\left(\theta_{j}, \mathcal{F}_{j}\right), j \in \mathbb{N}$.

The set W
induces the Schlumprecht norm.

The set $W_{\left(\frac{1}{m}, S_{n_{j}}\right) j}$
induces the Argyros - Deliyanni norm
(1994).

Concepts, mixed Tsirelson type norms

A mixed Tsirelson type norming set associated to a $\left(\theta_{j}, \mathcal{F}_{j}\right)_{j}$ sequence of operations is:

The minimal norming set $W_{\left(\theta_{j}, \mathcal{F}_{j}\right) j}$, simultaneously closed in the operations $\left(\theta_{j}, \mathcal{F}_{j}\right), j \in \mathbb{N}$.

Examples

The set W
induces the Schlumprecht norm.

The set $W_{\left(\frac{1}{m}, S_{n j}\right) j}$
induces the Argyros - Deliyanni norm
(1994).

Concepts, mixed Tsirelson type norms

A mixed Tsirelson type norming set associated to a $\left(\theta_{j}, \mathcal{F}_{j}\right)_{j}$ sequence of operations is:

The minimal norming set $W_{\left(\theta_{j}, \mathcal{F}_{j}\right) j}$, simultaneously closed in the operations $\left(\theta_{j}, \mathcal{F}_{j}\right), j \in \mathbb{N}$.

Examples

The set $W_{\left(\frac{1}{f(n)}, \mathcal{A}_{n}\right)_{n}}$ induces the Schlumprecht norm.
The set W induces the Argyros - Deliyanni norm (1994).

Concepts, mixed Tsirelson type norms

A mixed Tsirelson type norming set associated to a $\left(\theta_{j}, \mathcal{F}_{j}\right)_{j}$ sequence of operations is:

The minimal norming set $W_{\left(\theta_{j}, \mathcal{F}_{j}\right) j}$, simultaneously closed in the operations $\left(\theta_{j}, \mathcal{F}_{j}\right), j \in \mathbb{N}$.

Examples

The set $W_{\left(\frac{1}{f(n)}, \mathcal{A}_{n}\right)_{n}}$ induces the Schlumprecht norm.
The set $W_{\left(\frac{1}{m_{j}}, \mathcal{S}_{n_{j}}\right)_{j}}$ induces the Argyros - Deliyanni norm (1994).

Concepts, $(\theta, \mathcal{F}, \alpha)$ operations

An α-average in a norming set W is an average

with $m \geqslant 2, f_{1}<\cdots<f_{m}$ in W
The size of α is $s^{\prime}(\alpha)=m$.
A sequence $\alpha_{1}<\alpha_{2}<\cdots<\alpha_{n}<\cdots$ is very fast growing
(v.f.g.), if for $n>1$

$$
s\left(\alpha_{n}\right)>\left(\max \operatorname{supp} \alpha_{n-1}\right)^{2}
$$

Concepts, $(\theta, \mathcal{F}, \alpha)$ operations

An α-average in a norming set W is an average

$s\left(\alpha_{n}\right)>\left(\max \operatorname{supp} \alpha_{n-1}\right)^{2}$

Concepts, $(\theta, \mathcal{F}, \alpha)$ operations

An α-average in a norming set W is an average

$$
\alpha=\frac{1}{m} \sum_{i=1}^{m} f_{i}
$$

with $m \geqslant 2, f_{1}<\cdots<f_{m}$ in W
The size of α is $s(a)=m$.
A sequence $\alpha_{1}<\alpha_{2}<\cdots<\alpha_{n}<\cdots$ is very fast growing
(v.f.g.), if for $n>1$
$s\left(\alpha_{n}\right)>\left(\max \operatorname{supp} \alpha_{n-1}\right)^{2}$

Concepts, $(\theta, \mathcal{F}, \alpha)$ operations

An α-average in a norming set W is an average

$$
\alpha=\frac{1}{m} \sum_{i=1}^{m} f_{i}
$$

with $m \geqslant 2, f_{1}<\cdots<f_{m}$ in W
The size of α is $s(\alpha)=m$.
A sequence $\alpha_{1}<\alpha_{2}<\cdots<\alpha_{n}<\cdots$ is very fast growing
(v.f.g.), if for $n>1$
$s\left(\alpha_{n}\right)>\left(\max \operatorname{supp} \alpha_{n-1}\right)^{2}$

Concepts, $(\theta, \mathcal{F}, \alpha)$ operations

An α-average in a norming set W is an average

$$
\alpha=\frac{1}{m} \sum_{i=1}^{m} f_{i}
$$

with $m \geqslant 2, f_{1}<\cdots<f_{m}$ in W
The size of α is $\quad s(\alpha)=m$.
A sequence $\alpha_{1}<\alpha_{2}<\cdots<\alpha_{n}<\cdots$ is very fast growing
(v.f.g.), if for $n>1$
$s\left(\alpha_{n}\right)>\left(\max \operatorname{supp} \alpha_{n-1}\right)^{2}$

Concepts, $(\theta, \mathcal{F}, \alpha)$ operations

An α-average in a norming set W is an average

$$
\alpha=\frac{1}{m} \sum_{i=1}^{m} f_{i}
$$

with $m \geqslant 2, f_{1}<\cdots<f_{m}$ in W
The size of α is $s(\alpha)=m$.
A sequence $\alpha_{1}<\alpha_{2}<\cdots<\alpha_{n}<\cdots$ is very fast growing (v.f.g.), if for $n>1$

Concepts, $(\theta, \mathcal{F}, \alpha)$ operations

An α-average in a norming set W is an average

$$
\alpha=\frac{1}{m} \sum_{i=1}^{m} f_{i}
$$

with $m \geqslant 2, f_{1}<\cdots<f_{m}$ in W
The size of α is $s(\alpha)=m$.
A sequence $\alpha_{1}<\alpha_{2}<\cdots<\alpha_{n}<\cdots$ is very fast growing (v.f.g.), if for $n>1$

$$
s\left(\alpha_{n}\right)>\left(\max \operatorname{supp} \alpha_{n-1}\right)^{2}
$$

Concepts, $(\theta, \mathcal{F}, \alpha)$ operations

For W a norming set, $0<\theta \leqslant 1$ and \mathcal{F} a regular family we say that W is closed under the $(\theta, \mathcal{F}, \alpha)$ operation
if for every $\left\{\alpha_{i}\right\}_{i=1}^{n} \mathcal{F}$-admissible and very fast growing family of α-averages in W, the functional

belongs to W.

Concepts, $(\theta, \mathcal{F}, \alpha)$ operations

For W a norming set, $0<\theta \leqslant 1$ and \mathcal{F} a regular family we say that W is closed under the $(\theta, \mathcal{F}, \alpha)$ operation

if for every $\left\{\alpha_{i}\right\}_{i=1}^{n} \mathcal{F}$-admissible and very fast growing family of α-averages in W, the functional

belongs to W.

Concepts, $(\theta, \mathcal{F}, \alpha)$ operations

For W a norming set, $0<\theta \leqslant 1$ and \mathcal{F} a regular family we say that W is closed under the $(\theta, \mathcal{F}, \alpha)$ operation
if for every $\left\{\alpha_{i}\right\}_{i=1}^{n} \mathcal{F}$-admissible and very fast growing family of α-averages in W, the functional

Concepts, $(\theta, \mathcal{F}, \alpha)$ operations

For W a norming set, $0<\theta \leqslant 1$ and \mathcal{F} a regular family we say that W is closed under the $(\theta, \mathcal{F}, \alpha)$ operation
if for every $\left\{\alpha_{i}\right\}_{i=1}^{n} \mathcal{F}$-admissible and very fast growing family of α-averages in W, the functional

$$
f=\theta \sum_{i=1}^{n} \alpha_{i}
$$

belongs to W.

Concepts, Tsirelson type norms under constraints

A Tsirelson type norming set under constraints associated to a $(\theta, \mathcal{F}, \alpha)$ operation is:

The minimal norming set $W_{(\theta, \mathcal{F}, \alpha)}$, closed in the $(\theta, \mathcal{F}, \alpha)$ operation.

Example
The set $W_{(1, S, \alpha)}$ induces an under constraints norm.
This is a reflexive space with some interesting properties.

Concepts, Tsirelson type norms under constraints

A Tsirelson type norming set under constraints associated to a $(\theta, \mathcal{F}, \alpha)$ operation is:

The minimal norming set $W_{(\theta, \mathcal{F}, \alpha)}$, closed in the $(\theta, \mathcal{F}, \alpha)$ operation.

Example
The set $W_{(1, S, a)}$ induces an under constraints norm.
This is a reflexive space with some interesting properties.

Concepts, Tsirelson type norms under constraints

A Tsirelson type norming set under constraints associated to a $(\theta, \mathcal{F}, \alpha)$ operation is:

The minimal norming set $W_{(\theta, \mathcal{F}, \alpha)}$, closed in the $(\theta, \mathcal{F}, \alpha)$ operation.

The set $W_{(1, \mathcal{S}, \alpha)}$ induces an under constraints norm.
This is a reflexive space with some interesting properties.

Concepts, Tsirelson type norms under constraints

A Tsirelson type norming set under constraints associated to a $(\theta, \mathcal{F}, \alpha)$ operation is:

The minimal norming set $W_{(\theta, \mathcal{F}, \alpha)}$, closed in the $(\theta, \mathcal{F}, \alpha)$ operation.

Example

The set $W_{(1, \mathcal{S}, \alpha)}$ induces an under constraints norm.
This is a reflexive space with some interesting properties.

Concepts, Tsirelson type norms under constraints

A Tsirelson type norming set under constraints associated to a $(\theta, \mathcal{F}, \alpha)$ operation is:

The minimal norming set $W_{(\theta, \mathcal{F}, \alpha)}$, closed in the $(\theta, \mathcal{F}, \alpha)$ operation.

Example

The set $W_{(1, \mathcal{S}, \alpha)}$ induces an under constraints norm.
This is a reflexive space with some interesting properties.

Concepts, Tsirelson type norms under constraints

A Tsirelson type norming set under constraints associated to a $(\theta, \mathcal{F}, \alpha)$ operation is:

The minimal norming set $W_{(\theta, \mathcal{F}, \alpha)}$, closed in the $(\theta, \mathcal{F}, \alpha)$ operation.

Example

The set $W_{(1, \mathcal{S}, \alpha)}$ induces an under constraints norm.
This is a reflexive space with some interesting properties.

Concepts, mixed Tsirelson type norms under constraints

A mixed Tsirelson type norming set under constraints associated to a sequence $\left(\theta_{j}, \mathcal{F}_{j}, \alpha\right)_{j}$ of operation is:

The minimal norming set $W_{\left(\theta_{i}, \mathcal{F}_{i}, \alpha\right)}$, simultaneously closed in the operations $\left(\theta_{j}, \mathcal{F}_{j}, \alpha\right), j \in \mathbb{N}$.

Example
The set $W_{\left(\frac{1}{f(n)}, \mathcal{A}_{n}, \alpha\right)_{n}}$ induces a variant of the Odell -
Schlumprecht norm.

Concepts, mixed Tsirelson type norms under constraints

A mixed Tsirelson type norming set under constraints associated to a sequence $\left(\theta_{j}, \mathcal{F}_{j}, \alpha\right)_{j}$ of operation is:

The minimal norming set $W_{\left(\theta_{j}, \mathcal{F}_{j}, \alpha\right)_{j}}$, simultaneously closed
in the operations $\left(\theta_{j}, \mathcal{F}_{j}, \alpha\right), j \in \mathbb{N}$.
Example
The set $\left.W_{(1, ~}^{1}, \mathcal{A}_{n, a}\right)_{n}$ induces a variant of the Odell Schlumprecht norm.

Concepts, mixed Tsirelson type norms under constraints

A mixed Tsirelson type norming set under constraints associated to a sequence $\left(\theta_{j}, \mathcal{F}_{j}, \alpha\right)_{j}$ of operation is:

The minimal norming set $W_{\left(\theta_{j}, \mathcal{F}_{j}, \alpha\right)_{j}}$, simultaneously closed in the operations $\left(\theta_{j}, \mathcal{F}_{j}, \alpha\right), j \in \mathbb{N}$.

The set W induces a variant of the Odell Schlumprecht norm

Concepts, mixed Tsirelson type norms under constraints

A mixed Tsirelson type norming set under constraints associated to a sequence $\left(\theta_{j}, \mathcal{F}_{j}, \alpha\right)_{j}$ of operation is:

The minimal norming set $W_{\left(\theta_{j}, \mathcal{F}_{j}, \alpha\right)_{j}}$, simultaneously closed in the operations $\left(\theta_{j}, \mathcal{F}_{j}, \alpha\right), j \in \mathbb{N}$.

Example

Concepts, mixed Tsirelson type norms under constraints

A mixed Tsirelson type norming set under constraints associated to a sequence $\left(\theta_{j}, \mathcal{F}_{j}, \alpha\right)_{j}$ of operation is:

The minimal norming set $W_{\left(\theta_{j}, \mathcal{F}_{j}, \alpha\right)_{j}}$, simultaneously closed in the operations $\left(\theta_{j}, \mathcal{F}_{j}, \alpha\right), j \in \mathbb{N}$.

> Example

The set $W_{\left(\frac{1}{f(n)}, \mathcal{A}_{n}, \alpha\right)_{n}}$ induces a variant of the Odell Schlumprecht norm.

Concepts

The new objects

- In the case of saturated under constraints norming sets, a new class appears which lies strictly between the corresponding Tsirelson and mixed Tsirelson ones.
- It is not difficult to see that for any (θ, \mathcal{F}) operation we have that

$$
W_{(\theta, \mathcal{F})}=W_{\left(\theta^{j}, \mathcal{F}^{j}\right)_{j}}
$$

Where \mathcal{F}^{j} is the j-times convolution of the family \mathcal{F}.

- In the case of Tsirelson space we have that $S^{i}=S_{j}$, hence $W_{\left(\frac{1}{2^{n}}, \mathcal{S}_{n}\right)}$, is Tsirelson's norming set.
- In the case of saturated under constraints norming sets, the set

$$
W_{(\theta, \mathcal{F}, \alpha)} \neq W_{\left(\theta^{j}, \mathcal{F}^{j}, \alpha\right)_{j}}
$$

This yields the new class $W_{\left(\theta^{j}, \mathcal{F}, \alpha\right)}$, which lies strictly between the Tsirelson and mixed Tsirelson anes.

The new objects

- In the case of saturated under constraints norming sets, a new class appears which lies strictly between the corresponding Tsirelson and mixed Tsirelson ones.
- It is not difficult to see that for any (θ, \mathcal{F}) operation we have that

$$
W_{(\theta, \mathcal{F})}=W_{\left(\theta^{j}, \mathcal{F}^{j}\right)_{j}}
$$

Where \mathcal{F}^{j} is the j-times convolution of the family \mathcal{F}

- In the case of Tsirelson space we have that $S^{i}=S_{j}$, hence $W_{\left(\frac{1}{2^{n}}, \mathcal{S}_{n}\right)}$, is Tsirelson's norming set.
- In the case of saturated under constraints norming sets, the set

This yields the new class $W_{\left(\theta^{j}, \mathcal{F j}, \alpha\right)}$, which lies strictly
between the Tsirelson and mixed Tsirelson ones.

The new objects

- In the case of saturated under constraints norming sets, a new class appears which lies strictly between the corresponding Tsirelson and mixed Tsirelson ones.
- It is not difficult to see that for any (θ, \mathcal{F}) operation we have that

$$
W_{(\theta, \mathcal{F})}=W_{(\theta j, \mathcal{F})_{j}}
$$

Where \mathcal{F}^{j} is the j-times convolution of the family \mathcal{F}.

- In the case of Tsirelson space we have that $\mathcal{S}^{j}=\mathcal{S}_{j}$, hence $W_{\left(\frac{1}{2 n}, \mathcal{S}_{n}\right)}$, is Tsirelson's norming set.
- In the case of saturated under constraints norming sets, the set

This yields the new class $W_{(\theta), \mathcal{F}, \alpha)}$, which lies strictly between the Tsirelson and mixed Tsirelson ones,

The new objects

- In the case of saturated under constraints norming sets, a new class appears which lies strictly between the corresponding Tsirelson and mixed Tsirelson ones.
- It is not difficult to see that for any (θ, \mathcal{F}) operation we have that

$$
W_{(\theta, \mathcal{F})}=W_{(\theta j, \mathcal{F})_{j}}
$$

Where \mathcal{F}^{j} is the j-times convolution of the family \mathcal{F}.

- In the case of Tsirelson space we have that $\mathcal{S}^{j}=\mathcal{S}_{j}$, hence $W_{\left(\frac{1}{2^{n}}, \mathcal{S}_{n}\right)}$, is Tsirelson's norming set.
- In the case of saturated under constraints norming sets, the set

This yields the new class $W_{\left(\theta^{j}, \mathcal{F}, \alpha\right) ;}$, which lies strictly between the Tsirelson and mixed Tsirelson ones.

The new objects

- In the case of saturated under constraints norming sets, a new class appears which lies strictly between the corresponding Tsirelson and mixed Tsirelson ones.
- It is not difficult to see that for any (θ, \mathcal{F}) operation we have that

$$
W_{(\theta, \mathcal{F})}=W_{\left(\theta^{j}, \mathcal{F}\right)_{j}}
$$

Where \mathcal{F}^{j} is the j-times convolution of the family \mathcal{F}.

- In the case of Tsirelson space we have that $\mathcal{S}^{j}=\mathcal{S}_{j}$, hence $W_{\left(\frac{1}{2^{n}}, \mathcal{S}_{n}\right)}$, is Tsirelson's norming set.
- In the case of saturated under constraints norming sets, the set

$$
W_{(\theta, \mathcal{F}, \alpha)} \neq W_{\left(\theta^{j}, \mathcal{F}, \alpha, \alpha\right) j}
$$

This yields the new class $W_{\left(\theta^{j}, \mathcal{F}^{j}, \alpha\right)_{j}}$, which lies strictly between the Tsirelson and mixed Tsirelson ones.

Concepts

Saturated under constraints

Minimal and closed under
$(\theta, \mathfrak{F}, \alpha)$ operation

Minimal and closed under
$\left(\theta_{j}, \mathfrak{F}_{j}, \alpha\right)_{j}$ operations

The new objects
Minimal and closed under

$$
\left(\theta^{j}, \mathfrak{F}^{j}, \alpha\right)_{j}
$$

The space $T_{0,1}$

We will discuss the Tsirelson space under constraints with its norm induced by $W_{(1, \mathcal{S}, \alpha)}$ which is also described by the following implicit formula.
For $x \in c_{00}(\mathbb{N})$ we set

$$
\|x\|_{T_{0,1}}=\max \left\{\|x\|_{0}, \sup \left\{\sum_{i=1}^{n}\left\|E_{i} x\right\|_{k_{i}}\right\}\right\}
$$

Where the supremum is taken over all $n \leqslant E_{1}<\cdots<E_{n}$.
Also $k_{1} \geqslant 2$ and for $i>1, k_{i}>\left(\max E_{i-1}\right)^{2} .\|\cdot\|_{m}$ is a norm on c_{00} given by

$$
\|x\|_{m}=\sup \left\{\frac{1}{m} \sum_{i=1}^{m}\left\|F_{i} x\right\|_{T_{0,1}}: F_{1}<\cdots<F_{m}\right\}
$$

The space $T_{0,1}$

We will discuss the Tsirelson space under constraints with its norm induced by $W_{(1, \mathcal{S}, \alpha)}$ which is also described by the following implicit formula.
For $x \in c_{00}(\mathbb{N})$ we set

Where the supremum is taken over all $n \leqslant E_{1}<\cdots<E_{n}$.
Also $k_{1} \geqslant 2$ and for $i>1, k_{i}>\left(\max E_{i-1}\right)^{2} .\|\cdot\| m$ is a norm
on coo given by

The space $T_{0,1}$

We will discuss the Tsirelson space under constraints with its norm induced by $W_{(1, \mathcal{S}, \alpha)}$ which is also described by the following implicit formula.
For $x \in c_{00}(\mathbb{N})$ we set

$$
\|x\|_{T_{0,1}}=\max \left\{\|x\|_{0}, \sup \left\{\sum_{i=1}^{n}\left\|E_{i} x\right\|_{k_{i}}\right\}\right\}
$$

Where the supremum is taken over all $n \leqslant E_{1}<\cdots<E_{n}$. Also $k_{i} \geqslant 2$ and for $i>1, k_{i}>\left(\max E_{i-1}\right)^{2} .\|\cdot\|_{m}$ is a norm on c_{00} given by

The space $T_{0,1}$

We will discuss the Tsirelson space under constraints with its norm induced by $W_{(1, \mathcal{S}, \alpha)}$ which is also described by the following implicit formula.
For $x \in c_{00}(\mathbb{N})$ we set

$$
\|x\|_{T_{0,1}}=\max \left\{\|x\|_{0}, \sup \left\{\sum_{i=1}^{n}\left\|E_{i} x\right\|_{k_{i}}\right\}\right\}
$$

Where the supremum is taken over all $n \leqslant E_{1}<\cdots<E_{n}$.
Also $k_{1} \geqslant 2$ and for $i>1, k_{i}>\left(\max E_{i-1}\right)^{2} .\|\cdot\|_{m}$ is a norm on c_{00} given by

We will discuss the Tsirelson space under constraints with its norm induced by $W_{(1, \mathcal{S}, \alpha)}$ which is also described by the following implicit formula.
For $x \in c_{00}(\mathbb{N})$ we set

$$
\|x\|_{T_{0,1}}=\max \left\{\|x\|_{0}, \sup \left\{\sum_{i=1}^{n}\left\|E_{i} x\right\|_{k_{i}}\right\}\right\}
$$

Where the supremum is taken over all $n \leqslant E_{1}<\cdots<E_{n}$.
Also $k_{1} \geqslant 2$ and for $i>1, k_{i}>\left(\max E_{i-1}\right)^{2} .\|\cdot\|_{m}$ is a norm on c_{00} given by

We will discuss the Tsirelson space under constraints with its norm induced by $W_{(1, \mathcal{S}, \alpha)}$ which is also described by the following implicit formula.
For $x \in c_{00}(\mathbb{N})$ we set

$$
\|x\|_{T_{0,1}}=\max \left\{\|x\|_{0}, \sup \left\{\sum_{i=1}^{n}\left\|E_{i} x\right\|_{k_{i}}\right\}\right\}
$$

Where the supremum is taken over all $n \leqslant E_{1}<\cdots<E_{n}$.
Also $k_{1} \geqslant 2$ and for $i>1, k_{i}>\left(\max E_{i-1}\right)^{2} .\|\cdot\|_{m}$ is a norm on c_{00} given by

$$
\|x\|_{m}=\sup \left\{\frac{1}{m} \sum_{i=1}^{m}\left\|F_{i} x\right\|_{T_{0,1}}: F_{1}<\cdots<F_{m}\right\}
$$

The spreading models of $T_{0,1}$

- The space $T_{0,1}$ is reflexive with an unconditional basis.
- Every spreading model of $T_{0,1}$ generated by a weakly null sequence is either ℓ_{1} or c_{0}.
- Every subspace Y of $T_{0,1}$ admits both ℓ_{1} and c_{0} as spreading models.
- The space $T_{0,1}$ does not admit ℓ_{1}^{2} and c_{0}^{2} spreading models.

The spreading models of $T_{0,1}$

- The space $T_{0,1}$ is reflexive with an unconditional basis.
- Every spreading model of $T_{0,1}$ generated by a weakly null sequence is either ℓ_{1} or c_{0}.
- Every subspace Y of $T_{0.1}$ admits both ℓ_{1} and c_{0} as spreading models.
- The space $T_{0,1}$ does not admit ℓ_{1}^{2} and c_{0}^{2} spreading models.

The spreading models of $T_{0,1}$

- The space $T_{0,1}$ is reflexive with an unconditional basis.
- Every spreading model of $T_{0,1}$ generated by a weakly null sequence is either ℓ_{1} or c_{0}.
- Every subspace Y of $T_{0,1}$ admits both ℓ_{1} and c_{0} as spreading models.
- The space $T_{0,1}$ does not admit ℓ_{1}^{2} and c_{0}^{2} spreading models.

The spreading models of $T_{0,1}$

- The space $T_{0,1}$ is reflexive with an unconditional basis.
- Every spreading model of $T_{0,1}$ generated by a weakly null sequence is either ℓ_{1} or c_{0}.
- Every subspace Y of $T_{0,1}$ admits both ℓ_{1} and c_{0} as spreading models.
- The space $T_{0,1}$ does not admit ℓ_{1}^{2} and c_{0}^{2} spreading models.

The spreading models of $T_{0,1}$

- The space $T_{0,1}$ is reflexive with an unconditional basis.
- Every spreading model of $T_{0,1}$ generated by a weakly null sequence is either ℓ_{1} or c_{0}.
- Every subspace Y of $T_{0,1}$ admits both ℓ_{1} and c_{0} as spreading models.
- The space $T_{0,1}$ does not admit ℓ_{1}^{2} and c_{0}^{2} spreading models.

The α-index

The α-index of a block sequence $\left(x_{n}\right)_{n}$ in $T_{0,1}$ is equal to zero $\left(\alpha\left(\left\{x_{n}\right\}_{n}\right)=0\right)$, if for every v.f.g. sequence $\left(\alpha_{k}\right)_{k}$ of α-averages and every $\left(x_{n_{k}}\right)_{k}$

$$
\lim _{k} \alpha_{k}\left(x_{n_{k}}\right)=0
$$

- The α-index determines completely the spreading models generated by block sequences in $T_{0,1}$, in the following manner.
- Proposition: Let $\left(x_{n}\right)_{n}$ be a seminormalized block sequence in $T_{0,1}$. Then

If $\alpha\left(\left\{x_{n}\right\}_{n}\right) \neq 0$, then $\left(x_{n}\right)_{n}$ admits ℓ_{1} as a spreading model.
If $\alpha\left(\left\{x_{n}\right\}_{n}\right)=0$, then $\left(x_{n}\right)_{n}$ admits only c_{0} spreading models.

The α-index

The α-index of a block sequence $\left(x_{n}\right)_{n}$ in $T_{0,1}$ is equal to zero $\left(\alpha\left(\left\{x_{n}\right\}_{n}\right)=0\right)$, if for every v.f.g. sequence $\left(\alpha_{k}\right)_{k}$ of α-averages and every $\left(x_{n_{k}}\right)_{k}$

$$
\lim _{k} \alpha_{k}\left(x_{n_{k}}\right)=0
$$

- The α-index determines completely the spreading models generated by block sequences in $T_{0,1}$, in the following manner.
- Proposition: Let $\left(x_{n}\right)_{n}$ be a seminormalized block sequence in $T_{0,1}$. Then

If $\alpha\left(\left\{x_{n}\right\}_{n}\right) \neq 0$, then $\left(x_{n}\right)_{n}$ admits ℓ_{1} as a spreading model.
If $\alpha\left(\left\{x_{n}\right\}_{n}\right)=0$, then $\left(x_{n}\right)_{n}$ admits only c_{0} spreading
models.

The α-index

The α-index of a block sequence $\left(x_{n}\right)_{n}$ in $T_{0,1}$ is equal to zero $\left(\alpha\left(\left\{x_{n}\right\}_{n}\right)=0\right)$, if for every v.f.g. sequence $\left(\alpha_{k}\right)_{k}$ of α-averages and every $\left(x_{n_{k}}\right)_{k}$

$$
\lim _{k} \alpha_{k}\left(x_{n_{k}}\right)=0
$$

- The α-index determines completely the spreading models generated by block sequences in $T_{0,1}$, in the following manner.
- Proposition: Let $\left(x_{n}\right)_{n}$ be a seminormalized block sequence in $T_{0,1}$. Then If $a\left(\left\{x_{n}\right\} n\right) \neq 0$, then $\left(x_{n}\right)_{n}$ admits l_{1} as a spreading model If $\alpha\left(\left\{x_{n}\right\}_{n}\right)=0$, then $\left(x_{n}\right)_{n}$ admits only c_{0} spreading models.

The α-index

The α-index of a block sequence $\left(x_{n}\right)_{n}$ in $T_{0,1}$ is equal to zero $\left(\alpha\left(\left\{x_{n}\right\}_{n}\right)=0\right)$, if for every v.f.g. sequence $\left(\alpha_{k}\right)_{k}$ of α-averages and every $\left(x_{n_{k}}\right)_{k}$

$$
\lim _{k} \alpha_{k}\left(x_{n_{k}}\right)=0
$$

- The α-index determines completely the spreading models generated by block sequences in $T_{0,1}$, in the following manner.
- Proposition: Let $\left(x_{n}\right)_{n}$ be a seminormalized block sequence in $T_{0,1}$. Then

If $\alpha\left(\left\{x_{n}\right\}_{n}\right) \neq 0$, then $\left(x_{n}\right)_{n}$ admits ℓ_{1} as a spreading model
If $\alpha\left(\left\{x_{n}\right\}_{n}\right)=0$, then $\left(x_{n}\right)_{n}$ admits only c_{0} spreading
models.

The α-index

The α-index of a block sequence $\left(x_{n}\right)_{n}$ in $T_{0,1}$ is equal to zero $\left(\alpha\left(\left\{x_{n}\right\}_{n}\right)=0\right)$, if for every v.f.g. sequence $\left(\alpha_{k}\right)_{k}$ of α-averages and every $\left(x_{n_{k}}\right)_{k}$

$$
\lim _{k} \alpha_{k}\left(x_{n_{k}}\right)=0
$$

- The α-index determines completely the spreading models generated by block sequences in $T_{0,1}$, in the following manner.
- Proposition: Let $\left(x_{n}\right)_{n}$ be a seminormalized block sequence in $T_{0,1}$. Then

If $\alpha\left(\left\{x_{n}\right\}_{n}\right) \neq 0$, then $\left(x_{n}\right)_{n}$ admits ℓ_{1} as a spreading model.
If $\alpha\left(\left\{x_{n}\right\}_{n}\right)=0$, then $\left(x_{n}\right)_{n}$ admits only c_{0} spreading
models.

The α-index

The α-index of a block sequence $\left(x_{n}\right)_{n}$ in $T_{0,1}$ is equal to zero $\left(\alpha\left(\left\{x_{n}\right\}_{n}\right)=0\right)$, if for every v.f.g. sequence $\left(\alpha_{k}\right)_{k}$ of α-averages and every $\left(x_{n_{k}}\right)_{k}$

$$
\lim _{k} \alpha_{k}\left(x_{n_{k}}\right)=0
$$

- The α-index determines completely the spreading models generated by block sequences in $T_{0,1}$, in the following manner.
- Proposition: Let $\left(x_{n}\right)_{n}$ be a seminormalized block sequence in $T_{0,1}$. Then

If $\alpha\left(\left\{x_{n}\right\}_{n}\right) \neq 0$, then $\left(x_{n}\right)_{n}$ admits ℓ_{1} as a spreading model.
If $\alpha\left(\left\{x_{n}\right\}_{n}\right)=0$, then $\left(x_{n}\right)_{n}$ admits only c_{0} spreading models.

The α-index

Assume that $\alpha\left(\left\{x_{n}\right\}_{n}\right) \neq 0$.
Then there exists $\varepsilon>0,\left(x_{\ell}\right)_{e \in L}$ a subsequence of $\left(x_{n}\right)_{n}$ and $\left(\alpha_{\ell}\right)_{\ell \in L}$ a sequence of very fast growing α-averages with $\alpha_{\ell}\left(x_{\ell}\right)>\varepsilon$.

Then for $k \leqslant \ell_{1}<\cdots<\ell_{k}, f=\sum_{i=1}^{k} a_{\ell_{i}} \in W_{(1, s, a)}$, hence

$$
\left\|\sum_{i=1}^{k} x_{\ell_{i}}\right\|_{T_{0,1}}>\varepsilon k
$$

If $\alpha\left(\left\{x_{n}\right\}_{n}\right)=0$, then using induction on the tree complexity of the $f \in W_{(1, \mathcal{S}, \alpha)}$, we prove that $\left(x_{n}\right)_{n}$ admits c_{0} as a spreading model.

The α-index

Assume that $\alpha\left(\left\{x_{n}\right\}_{n}\right) \neq 0$.
Then there exists $\varepsilon>0,\left(x_{\ell}\right)_{\ell \in L}$ a subsequence of $\left(x_{n}\right)_{n}$ and $\left(\alpha_{\ell}\right)_{\ell \in L}$ a sequence of very fast growing α-averages with $\alpha_{\ell}\left(x_{\ell}\right)>\varepsilon$.

Then for $k \leqslant \ell_{1}<\cdots<\ell_{k}, f=\sum_{i=1}^{k} \alpha_{\ell_{i}} \in W_{(1, \mathcal{S}, \alpha)}$, hence

$$
\left\|\sum_{i=1}^{k} x_{\ell_{i}}\right\|_{T_{0,1}}>\varepsilon k
$$

If $\alpha\left(\left\{x_{n}\right\}_{n}\right)=0$, then using induction on the tree complexity of the $f \in W_{(1, \mathcal{S}, \alpha)}$, we prove that $\left(x_{n}\right)_{n}$ admits c_{0} as a spreading model.

Assume that $\alpha\left(\left\{x_{n}\right\}_{n}\right) \neq 0$.
Then there exists $\varepsilon>0,\left(x_{\ell}\right)_{\ell \in L}$ a subsequence of $\left(x_{n}\right)_{n}$ and $\left(\alpha_{\ell}\right)_{\ell \in L}$ a sequence of very fast growing α-averages with $\alpha_{\ell}\left(x_{\ell}\right)>\varepsilon$.

Then for $k \leqslant \ell_{1}<\cdots<\ell_{k}, f=\sum_{i=1}^{k} \alpha_{\ell_{i}} \in W_{(1, S, \alpha)}$, hence

If $\alpha\left(\left\{x_{n}\right\}_{n}\right)=0$, then using induction on the tree
complexity of the $f \in W_{(1, \mathcal{S}, \alpha)}$, we prove that $\left(x_{n}\right)_{n}$ admits c_{0} as a spreading model.

Assume that $\alpha\left(\left\{x_{n}\right\}_{n}\right) \neq 0$.
Then there exists $\varepsilon>0,\left(x_{\ell}\right)_{\ell \in L}$ a subsequence of $\left(x_{n}\right)_{n}$ and $\left(\alpha_{\ell}\right)_{\ell \in L}$ a sequence of very fast growing α-averages with $\alpha_{\ell}\left(x_{\ell}\right)>\varepsilon$.

Then for $k \leqslant \ell_{1}<\cdots<\ell_{k}, f=\sum_{i=1}^{k} \alpha_{\ell_{i}} \in W_{(1, \mathcal{S}, \alpha)}$, hence

Assume that $\alpha\left(\left\{x_{n}\right\}_{n}\right) \neq 0$.
Then there exists $\varepsilon>0,\left(x_{\ell}\right)_{\ell \in L}$ a subsequence of $\left(x_{n}\right)_{n}$ and $\left(\alpha_{\ell}\right)_{\ell \in L}$ a sequence of very fast growing α-averages with $\alpha_{\ell}\left(x_{\ell}\right)>\varepsilon$.

Then for $k \leqslant \ell_{1}<\cdots<\ell_{k}, f=\sum_{i=1}^{k} \alpha_{\ell_{i}} \in W_{(1, \mathcal{S}, \alpha)}$, hence

$$
\left\|\sum_{i=1}^{k} x_{\ell_{i}}\right\|_{T_{0,1}}>\varepsilon k
$$

If $\alpha\left(\left\{x_{n}\right\}_{n}\right)=0$, then using induction on the tree
complexity of the $f \in W_{(1, \mathcal{S}, \alpha)}$, we prove that $\left(x_{n}\right)_{n}$ admits c_{0} as a spreading model.

Assume that $\alpha\left(\left\{x_{n}\right\}_{n}\right) \neq 0$.
Then there exists $\varepsilon>0,\left(x_{\ell}\right)_{\ell \in L}$ a subsequence of $\left(x_{n}\right)_{n}$ and $\left(\alpha_{\ell}\right)_{\ell \in L}$ a sequence of very fast growing α-averages with $\alpha_{\ell}\left(x_{\ell}\right)>\varepsilon$.

Then for $k \leqslant \ell_{1}<\cdots<\ell_{k}, f=\sum_{i=1}^{k} \alpha_{\ell_{i}} \in W_{(1, \mathcal{S}, \alpha)}$, hence

$$
\left\|\sum_{i=1}^{k} x_{\ell_{i}}\right\|_{T_{0,1}}>\varepsilon k
$$

If $\alpha\left(\left\{x_{n}\right\}_{n}\right)=0$, then using induction on the tree complexity of the $f \in W_{(1, \mathcal{S}, \alpha)}$, we prove that $\left(x_{n}\right)_{n}$ admits c_{0} as a spreading model.

Strictly Singular Operators on $T_{0,1}$

- Since the space $T_{0,1}$ admits c_{0} and ℓ_{1} spreading models, the strictly singular operators on every subspace of it, form a non separable ideal.
- The following describes the structure of the strictly singular operators in T_{0}
- Theorem: If $S: T_{0,1} \rightarrow T_{0,1}$ is strictly singular, then for every weakly null sequence $\left(x_{n}\right)_{n}$, the sequences $\left(x_{n}\right)_{n}$, $\left(T x_{n}\right)_{n}$, do not generate the same spreading model.
- The space $T_{0,1}$ is quasi minimal.

Strictly Singular Operators on $T_{0,1}$

- Since the space $T_{0,1}$ admits c_{0} and ℓ_{1} spreading models, the strictly singular operators on every subspace of it, form a non separable ideal.
- The following describes the structure of the strictly singular operators in T_{0}
- Theorem: If $S: T_{0,1} \rightarrow T_{0,1}$ is strictly singular, then for every weakly null sequence $\left(x_{n}\right)_{n}$, the sequences $\left(x_{n}\right)_{n}$, $\left(T x_{n}\right)_{n}$, do not generate the same spreading model.
- The space $T_{0.1}$ is quasi minimal.

Strictly Singular Operators on $T_{0,1}$

- Since the space $T_{0,1}$ admits c_{0} and ℓ_{1} spreading models, the strictly singular operators on every subspace of it, form a non separable ideal.
- The following describes the structure of the strictly singular operators in $T_{0,1}$.
- Theorem: If $S: T_{0.1} \rightarrow T_{0.1}$ is strictly singular, then for
every weakly null sequence $\left(x_{n}\right)_{n}$, the sequences $\left(x_{n}\right)_{n}$, $\left(T x_{n}\right)_{n}$, do not generate the same spreading model.
- The space $T_{0,1}$ is quasi minimal.

Strictly Singular Operators on $T_{0,1}$

- Since the space $T_{0,1}$ admits c_{0} and ℓ_{1} spreading models, the strictly singular operators on every subspace of it, form a non separable ideal.
- The following describes the structure of the strictly singular operators in $T_{0,1}$.
- Theorem: If S : $T_{0,1} \rightarrow T_{0,1}$ is strictly singular, then for every weakly null sequence $\left(x_{n}\right)_{n}$, the sequences $\left(x_{n}\right)_{n}$, $\left(T x_{n}\right)_{n}$, do not generate the same spreading model.
- The space $T_{0,1}$ is quasi minimal.

Strictly Singular Operators on $T_{0,1}$

- If S is a strictly singular operator and $\left(x_{n}\right)_{n}$ generates a c_{0} spreading model, the above yields that $\left(S x_{n}\right)_{n}$ is a norm null sequence. Also if $\left(x_{n}\right)_{n}$ generates an ℓ_{1} spreading model, then $\left(S x_{n}\right)_{n}$ is either norm null, or admits only c_{0} spreading models.
- As consequence, for every S, T strictly singular operators, ST is compact.

Strictly Singular Operators on $T_{0,1}$

- If S is a strictly singular operator and $\left(x_{n}\right)_{n}$ generates a c_{0} spreading model, the above yields that $\left(S x_{n}\right)_{n}$ is a norm null sequence. Also if $\left(x_{n}\right)_{n}$ generates an ℓ_{1} spreading model, then $\left(S x_{n}\right)_{n}$ is either norm null, or admits only c_{0} spreading models.
- As consequence, for every S, T strictly singular operators, $S T$ is compact.

Strictly Singular Operators on $T_{0,1}$

- If S is a strictly singular operator and $\left(x_{n}\right)_{n}$ generates a c_{0} spreading model, the above yields that $\left(S x_{n}\right)_{n}$ is a norm null sequence. Also if $\left(x_{n}\right)_{n}$ generates an ℓ_{1} spreading model, then $\left(S x_{n}\right)_{n}$ is either norm null, or admits only c_{0} spreading models.
- As consequence, for every S, T strictly singular operators, $S T$ is compact.

The spaces $T_{0,1}^{n}$

The space $T_{0,1}$ belongs to a sequence of spaces sharing similar properties described by the following.

Theorem (S. A., K. Beanland, P. Motakis)

For every $n \in \mathbb{N}$ there exists a reflexive Banach space $T_{0,1}^{n}$ with a 1-unconditional basis, such that every Y subspace of $T_{0,1}^{n}$ satisfies the following properties.
(i) For every S_{1}, \ldots, S_{n+1} strictly singular operators on Y, the composition $S_{1} \ldots S_{n+1}$ is a compact operator.
(ii) There exist $S_{1}, \ldots S_{n}$ strictly singular operators, such that $S_{1} \cdots S_{n}$ is not compact.

- The norm on $T_{0,1}^{n}$ is induced by the norming set $W_{\left(1, \mathcal{S}_{n}, \alpha\right)}$

The spaces $T_{0,1}^{n}$

The space $T_{0,1}$ belongs to a sequence of spaces sharing similar properties described by the following.

Theorem (S. A., K. Beanland, P. Motakis)

For every $n \in \mathbb{N}$ there exists a reflexive Banach space $T_{0,1}^{n}$ with a 1-unconditional basis, such that every Y subspace of $T_{0,1}^{n}$ satisfies the following properties.
(i) For every S_{1}, \ldots, S_{n+1} strictly singular operators on Y, the composition $S_{1} \ldots S_{n+1}$ is a compact operator.
(ii) There exist $S_{1}, \ldots S_{n}$ strictly singular operators, such that $S_{1} \cdots S_{n}$ is not compact.

- The norm on $T_{0,1}^{n}$ is induced by the norming set $W_{\left(1, \mathcal{S}_{n}, \alpha\right)}$

A problem

- Since every subspace of $T_{0,1}^{n}$ admits c_{0} and ℓ_{1} as spreading models, the space $T_{0,1}^{n}$ does not contain an asymptotic ℓ_{p} subspace. Hence, by a theorem of N . Tomczak-Jaegermann and V. Milman, it does not contain a boundedly distortable subspace.
- Problem: Is every $T_{0.1}^{n}$ arbitrarily distortable? If yes, does there exist an asymptotic biorthogonal system determining the distortion?

A problem

- Since every subspace of $T_{0,1}^{n}$ admits c_{0} and ℓ_{1} as spreading models, the space $T_{0,1}^{n}$ does not contain an asymptotic ℓ_{p} subspace. Hence, by a theorem of N . Tomczak-Jaegermann and V. Milman, it does not contain a boundedly distortable subspace.
- Problem: Is every $T_{0.1}^{n}$ arbitrarily distortable? If yes, does there exist an asymptotic biorthogonal system determining the distortion?

A problem

- Since every subspace of $T_{0,1}^{n}$ admits c_{0} and ℓ_{1} as spreading models, the space $T_{0,1}^{n}$ does not contain an asymptotic ℓ_{p} subspace. Hence, by a theorem of N . Tomczak-Jaegermann and V. Milman, it does not contain a boundedly distortable subspace.
- Problem: Is every $T_{0,1}^{n}$ arbitrarily distortable? If yes, does there exist an asymptotic biorthogonal system determining the distortion?

The space $\mathfrak{x}_{\mathrm{isp}}$

Theorem (S. A., P. Motakis) There exists a reflexive space $\mathfrak{X}_{\text {ISP }}$ with a Schauder basis $\left\{e_{n}\right\}_{n}$ satisfying the following properties.
(i) The space $\mathfrak{X}_{\text {ISP }}$ is hereditarily indecomposable.
(ii) Every seminormalized weakly null sequence $\left\{x_{n}\right\}_{n}$ has a subsequence generating either ℓ_{1} or c_{0} as a spreading model. Moreover every infinite dimensional subspace Y of $\mathfrak{X}_{\text {ISP }}$ admits both ℓ_{1} and c_{0} as spreading models.
(iii) For every Y infinite dimensional closed subspace of $\mathscr{X}_{\text {ISP }}$ and every $T \in \mathcal{L}\left(Y, \mathfrak{X}_{\text {ISP }}\right), T=\lambda I_{Y, x_{\text {ISP }}}+S$ with S strictly singular.

The space $\mathfrak{X}_{\text {isp }}$

Theorem (S. A., P. Motakis) There exists a reflexive space $\mathfrak{X}_{\text {ISP }}$ with a Schauder basis $\left\{e_{n}\right\}_{n}$ satisfying the following properties.
> (i) The space $\mathfrak{X}_{\text {ISP }}$ is hereditarily indecomposable.
> (ii) Every seminormalized weakly null sequence $\left\{x_{n}\right\}_{n}$ has a subsequence generating either ℓ_{1} or c_{0} as a spreading model. Moreover every infinite dimensional subspace Y of $\mathfrak{X}_{\text {ISP }}$ admits both ℓ_{1} and c_{0} as spreading models.

> For every Y infinite dimensional closed subspace of $\mathfrak{X}_{\text {ISp }}$ and every $T \in \mathcal{L}\left(Y, \mathfrak{X}_{\mathrm{ISP}}\right), T=\lambda I_{Y, x_{\mathrm{ICD}}}+S$ with S strictly singular.

The space $\mathfrak{x}_{\mathrm{isp}}$

Theorem (S. A., P. Motakis) There exists a reflexive space $\mathfrak{X}_{\text {ISP }}$ with a Schauder basis $\left\{e_{n}\right\}_{n}$ satisfying the following properties.
(i) The space $\mathfrak{X}_{\text {ISP }}$ is hereditarily indecomposable.
(ii) Every seminormalized weakly null sequence $\left\{x_{n}\right\}_{n}$ has a subsequence generating either ℓ_{1} or c_{0} as a spreading model. Moreover every infinite dimensional subspace Y of $\mathfrak{X}_{\text {ISP }}$ admits both ℓ_{1} and c_{0} as spreading models.
(iii) For every Y infinite dimensional closed subspace of $\mathfrak{X}_{\text {ISP }}$ and every $T \in \mathcal{L}\left(Y, \mathfrak{X}_{\text {ISP }}\right), T=\lambda I_{Y, x_{i c D}}+S$ with S strictly singular.

The space $\mathfrak{X}_{\mathrm{isp}}$

Theorem (S. A., P. Motakis) There exists a reflexive space $\mathfrak{X}_{\text {ISP }}$ with a Schauder basis $\left\{e_{n}\right\}_{n}$ satisfying the following properties.
(i) The space $\mathfrak{X}_{\text {ISP }}$ is hereditarily indecomposable.
(ii) Every seminormalized weakly null sequence $\left\{x_{n}\right\}_{n}$ has a subsequence generating either ℓ_{1} or c_{0} as a spreading model. Moreover every infinite dimensional subspace Y of $\mathfrak{X}_{\text {ISP }}$ admits both ℓ_{1} and c_{0} as spreading models.

The space $\mathfrak{x}_{\mathrm{isp}}$

Theorem (S. A., P. Motakis) There exists a reflexive space $\mathfrak{X}_{\text {ISP }}$ with a Schauder basis $\left\{e_{n}\right\}_{n}$ satisfying the following properties.
(i) The space $\mathfrak{X}_{\text {ISP }}$ is hereditarily indecomposable.
(ii) Every seminormalized weakly null sequence $\left\{x_{n}\right\}_{n}$ has a subsequence generating either ℓ_{1} or c_{0} as a spreading model. Moreover every infinite dimensional subspace Y of $\mathfrak{X}_{\text {ISP }}$ admits both ℓ_{1} and c_{0} as spreading models.
(iii) For every Y infinite dimensional closed subspace of $\mathfrak{X}_{\text {ISP }}$ and every $T \in \mathcal{L}\left(Y, \mathfrak{X}_{\text {ISP }}\right), T=\lambda I_{Y, x_{\text {ISP }}}+S$ with S strictly singular.

The space $\mathfrak{X}_{\text {isp }}$

(iv) For every Y infinite dimensional subspace of $\mathfrak{X}_{\text {ISP }}$ the ideal $\mathcal{S}(Y)$ of the strictly singular operators is non separable.
(v) For every Y subspace of $\mathfrak{X}_{\text {ISP }}$ and every Q, S, T in $\mathcal{S}(Y)$ the operator QST is compact. Hence for every $T \in \mathcal{S}(Y)$ either $T^{3}=0$ or T commutes with a non zero compact operator.
(vi) For every Y infinite dimensional closed subspace of X and every $T \in \mathcal{L}(Y), T$ admits a non-trivial closed invariant subspace. In particular every $T \neq \lambda / Y$, for $\lambda \in \mathbb{R}$ admits a non-trivial hyperinvariant subspace.

The space $\mathfrak{X}_{\text {isp }}$

(iv) For every Y infinite dimensional subspace of $\mathfrak{X}_{\text {ISP }}$ the ideal $\mathcal{S}(Y)$ of the strictly singular operators is non separable.
(v) For every Y subspace of $\mathfrak{X}_{\text {ISP }}$ and every Q, S, T in $\mathcal{S}(Y)$ the operator QST is compact. Hence for every $T \in \mathcal{S}(Y)$ either $T^{3}=0$ or T commutes with a non zero compact operator.
(vi) For every Y infinite dimensional closed subspace of X and every $T \in \mathcal{L}(Y), T$ admits a non-trivial closed invariant subspace. In particular every $T \neq \lambda / Y$, for $\lambda \in \mathbb{R}$ admits a non-trivial hyperinvariant subspace.
(iv) For every Y infinite dimensional subspace of $\mathfrak{X}_{\text {ISP }}$ the ideal $\mathcal{S}(Y)$ of the strictly singular operators is non separable.
(v) For every Y subspace of $\mathfrak{X}_{\text {ISP }}$ and every Q, S, T in $\mathcal{S}(Y)$ the operator QST is compact. Hence for every $T \in \mathcal{S}(Y)$ either $T^{3}=0$ or T commutes with a non zero compact operator.
(vi) For every Y infinite dimensional closed subspace of X and every $T \in \mathcal{L}(Y)$, T admits a non-trivial closed invariant subspace. In particular every $T \neq \lambda / y$, for $\lambda \in \mathbb{R}$ admits a non-trivial hyperinvariant subspace.
(iv) For every Y infinite dimensional subspace of $\mathfrak{X}_{\text {ISP }}$ the ideal $\mathcal{S}(Y)$ of the strictly singular operators is non separable.
(v) For every Y subspace of $\mathfrak{X}_{\text {ISP }}$ and every Q, S, T in $\mathcal{S}(Y)$ the operator QST is compact. Hence for every $T \in \mathcal{S}(Y)$ either $T^{3}=0$ or T commutes with a non zero compact operator.
(vi) For every Y infinite dimensional closed subspace of X and every $T \in \mathcal{L}(Y), T$ admits a non-trivial closed invariant subspace. In particular every $T \neq \lambda / Y$, for $\lambda \in \mathbb{R}$ admits a non-trivial hyperinvariant subspace.

The norming set $W_{\text {Isp }}$

The norm on the space $\mathfrak{X}_{\text {ISP }}$ is induced by a norming set $W_{\text {ISP }}$ which is the minimal set satisfying the following properties.
(Type I_{α} functionals) The set $W_{\text {ISP }}$ is closed in the $\left(\frac{1}{2^{n}}, \mathcal{S}_{n}, \alpha\right)$ operations. If f is of type I_{α} and is the result of $\left(\frac{1}{2^{n}}, \mathcal{S}_{n}, \alpha\right)$ operation, then the weight of f is $w(f)=n$.
(Type II functionals) The set $W_{\text {ISP }}$ includes all $E \phi$, with E an interval of the naturals and $\phi=\frac{1}{2} \sum_{k=1}^{n} f_{k}$, where $f_{1}<\cdots<f_{n}$ is an \mathcal{S}-admissible special family of type $\left.\right|_{\alpha}$ special functionals.
(A special family satisfies the property, that for $k>1, w\left(f_{k}\right)$ determines uniquely the sequence $\left\{f_{i}\right\}_{i=1}^{k-1}$.)

For $E \phi$ type II functional, the weights of $E \phi$ are $\hat{w}(\phi)=\left\{w\left(f_{k}\right): E \cap \operatorname{supp} f_{k} \neq \varnothing\right\}$.

The norming set $W_{\text {Isp }}$

The norm on the space $\mathfrak{X}_{\text {ISP }}$ is induced by a norming set $W_{\text {ISP }}$ which is the minimal set satisfying the following properties.
(Type I_{α} functionals) The set $W_{\text {ISP }}$ is closed in the $\left(\frac{1}{2^{n}}, \mathcal{S}_{n}, \alpha\right)$ operations. If f is of type I_{α} and is the result of $\left(\frac{1}{2^{n}}, \mathcal{S}_{n}, \alpha\right)$ operation, then the weight of f is $w(f)=n$. (Type II functionals) The set $W_{\text {ISP }}$ includes all $E \phi$, with E an interval of the naturals and $\phi=\frac{1}{2} \sum_{k=1}^{n} f_{k}$, where $f_{1}<\cdots<f_{n}$ is an \mathcal{S}-admissible special family of type I special functionals. (A special family satisfies the property, that for $k>1, w\left(f_{k}\right)$ determines uniquely the sequence $\left\{f_{i}\right\}_{i=1}^{k-1}$.)

For $E \phi$ type II functional, the weights of $E \phi$ are

The norming set $W_{\text {Isp }}$

The norm on the space $\mathfrak{X}_{\text {ISP }}$ is induced by a norming set $W_{\text {ISP }}$ which is the minimal set satisfying the following properties.
(Type I_{α} functionals) The set $W_{\text {ISP }}$ is closed in the $\left(\frac{1}{2^{n}}, \mathcal{S}_{n}, \alpha\right)$ operations. If f is of type I_{α} and is the result of $\left(\frac{1}{2^{n}}, \mathcal{S}_{n}, \alpha\right)$ operation, then the weight of f is $w(f)=n$.
(Type II functionals) The set $W_{\text {ISP }}$ includes all $E \phi$, with E an interval of the naturals and $\phi=\frac{1}{2} \sum_{k=1}^{n} f_{k}$, where $f_{1}<\cdots<f_{n}$ is an \mathcal{S}-admissible special family of type I special functionals.
(A special family satisfies the property, that for $k>1, w\left(f_{k}\right)$ determines uniquely the sequence $\left\{f_{i}\right\}_{i=1}^{k-1}$.

For $E \phi$ type II functional, the weights of $E \phi$ are

The norming set $W_{\text {Isp }}$

The norm on the space $\mathfrak{X}_{\text {ISP }}$ is induced by a norming set $W_{\text {ISP }}$ which is the minimal set satisfying the following properties.
(Type I_{α} functionals) The set $W_{\text {ISP }}$ is closed in the $\left(\frac{1}{2^{n}}, \mathcal{S}_{n}, \alpha\right)$ operations. If f is of type I_{α} and is the result of $\left(\frac{1}{2^{n}}, \mathcal{S}_{n}, \alpha\right)$ operation, then the weight of f is $w(f)=n$.
(Type II functionals) The set $W_{\text {ISP }}$ includes all $E \phi$, with E an interval of the naturals and $\phi=\frac{1}{2} \sum_{k=1}^{n} f_{k}$, where $f_{1}<\cdots<f_{n}$ is an \mathcal{S}-admissible special family of type I_{α} special functionals.
(A special family satisfies the property, that for $k>1, w\left(f_{k}\right)$ determines uniquely the sequence $\left\{f_{i}\right\}_{i=1}^{k-1}$.)

For E ϕ type II functional, the weights of $E \phi$ are

The norming set $W_{\text {Isp }}$

The norm on the space $\mathfrak{X}_{\text {ISP }}$ is induced by a norming set $W_{\text {ISP }}$ which is the minimal set satisfying the following properties.
(Type I_{α} functionals) The set $W_{\text {ISP }}$ is closed in the $\left(\frac{1}{2^{n}}, \mathcal{S}_{n}, \alpha\right)$ operations. If f is of type I_{α} and is the result of
$\left(\frac{1}{2^{n}}, \mathcal{S}_{n}, \alpha\right)$ operation, then the weight of f is $w(f)=n$.
(Type II functionals) The set $W_{\text {ISP }}$ includes all $E \phi$, with E an interval of the naturals and $\phi=\frac{1}{2} \sum_{k=1}^{n} f_{k}$, where $f_{1}<\cdots<f_{n}$ is an \mathcal{S}-admissible special family of type I_{α} special functionals.
(A special family satisfies the property, that for $k>1, w\left(f_{k}\right)$ determines uniquely the sequence $\left\{f_{i}\right\}_{i=1}^{k-1}$.)

For $E \phi$ type II functional, the weights of $E \phi$ are $\hat{w}(\phi)=\left\{w\left(f_{k}\right): E \cap \operatorname{supp} f_{k} \neq \varnothing\right\}$.

The norming set $W_{\text {Isp }}$

(β-averages) $\mathrm{A} \beta$-average is an average $\beta=\frac{1}{n} \sum_{k=1}^{n} E_{k} \phi_{k}$, where $E_{k} \phi_{k}$ are of type II with pairwise disjoint weights.
The size $s(\beta)$ and very fast growing sequences $\left(\beta_{k}\right)_{k}$ are defined in the same manner as for α averages.
(Type I_{β} functionals) The set $W_{\text {ISP }}$ is closed in the $\left(\frac{1}{2^{n}}, \mathcal{S}_{n}, \beta\right)$ operations. If f is of type I_{β} and is the result of $\left(\frac{1}{2^{n}}, \mathcal{S}_{n}, \beta\right)$ operation, then the weight of f is $w(f)=n$. Since $W_{\left(\frac{1}{2}, S\right)}$ is the same with $W_{\left(\frac{1}{2 n}, S_{n}\right)_{n}}$, we have that $W_{\text {ISP }}$ is a subset of $W_{\left(\frac{1}{2}, \mathcal{S}\right)}$.

The norming set $W_{\text {sp }}$

(β-averages) $\mathrm{A} \beta$-average is an average $\beta=\frac{1}{n} \sum_{k=1}^{n} E_{k} \phi_{k}$, where $E_{k} \phi_{k}$ are of type II with pairwise disjoint weights. The size $\boldsymbol{s}(\beta)$ and very fast growing sequences $\left(\beta_{k}\right)_{k}$ are defined in the same manner as for α averages.

Since $W_{\left(\frac{1}{2}, \mathcal{S}\right)}$ is the same with $W_{(}$

The norming set $W_{\text {sp }}$

(β-averages) $\mathrm{A} \beta$-average is an average $\beta=\frac{1}{n} \sum_{k=1}^{n} E_{k} \phi_{k}$, where $E_{k} \phi_{k}$ are of type II with pairwise disjoint weights. The size $s(\beta)$ and very fast growing sequences $\left(\beta_{k}\right)_{k}$ are defined in the same manner as for α averages.
(Type I_{β} functionals) The set $W_{\text {ISP }}$ is closed in the $\left(\frac{1}{2^{n}}, \mathcal{S}_{n}, \beta\right)$ operations. If f is of type I_{β} and is the result of $\left(\frac{1}{2^{n}}, \mathcal{S}_{n}, \beta\right)$ operation, then the weight of f is $w(f)=n$.

The norming set $W_{\text {isp }}$

(β-averages) $\mathrm{A} \beta$-average is an average $\beta=\frac{1}{n} \sum_{k=1}^{n} E_{k} \phi_{k}$, where $E_{k} \phi_{k}$ are of type II with pairwise disjoint weights. The size $s(\beta)$ and very fast growing sequences $\left(\beta_{k}\right)_{k}$ are defined in the same manner as for α averages.
(Type I_{β} functionals) The set $W_{\text {ISP }}$ is closed in the $\left(\frac{1}{2^{n}}, \mathcal{S}_{n}, \beta\right)$ operations. If f is of type I_{β} and is the result of $\left(\frac{1}{2^{n}}, \mathcal{S}_{n}, \beta\right)$ operation, then the weight of f is $w(f)=n$.

Since $W_{\left(\frac{1}{2}, \mathcal{S}\right)}$ is the same with $W_{\left(\frac{1}{2^{n}}, \mathcal{S}_{n}\right)_{n}}$, we have that $W_{\text {ISP }}$ is a subset of $W_{\left(\frac{1}{2}, \mathcal{S}\right)}$.

c_{0} spreading models in $\mathfrak{X}_{\mathrm{sp}}$

In every HI construction one could find seminormalized weakly null sequences $\left(x_{n}\right)_{n}$ with the property, for every strictly singular operator $S,\left(S x_{n}\right)_{n}$ is a norm null sequence.
In the case of $\mathfrak{X}_{\text {ISP }}$ space, the sequences $\left(x_{n}\right)_{n}$ generating c_{0} spreading models have the aforementioned property, thus it is critical to determine sequences generating c_{0} spreading models. There exists a criterion which is based on α and β indices.

c_{0} spreading models in $\mathfrak{X}_{1 \mathrm{SP}}$

In every HI construction one could find seminormalized weakly null sequences $\left(x_{n}\right)_{n}$ with the property, for every strictly singular operator $S,\left(S x_{n}\right)_{n}$ is a norm null sequence. In the case of $\mathfrak{X}_{\text {ISP }}$ space, the sequences $\left(x_{n}\right)_{n}$ generating c_{0} spreading models have the aforementioned property, thus it is critical to determine sequences generating c_{0} spreading models. There exists a criterion which is based on α and β indices.

c_{0} spreading models in $\mathfrak{X}_{\text {ISP }}$

- (α index) Let $\left\{x_{k}\right\}_{k}$ be a block sequence in $\mathfrak{X}_{\text {ISP }}$ that satisfies the following.

For any n, for any very fast growing sequence $\left\{\alpha_{q}\right\}_{q}$ of α-averages in $W_{\text {ISP }}$ and for any $\left\{F_{k}\right\}_{k}$ increasing sequence of subsets of the naturals, such that $\left\{\alpha_{q}\right\}_{q \in F_{k}}$ is
S_{n}-admissible, the following holds.
For any $\left\{x_{n_{k}}\right\}_{k}$ subsequence of $\left\{x_{k}\right\}_{k}$, we have that

$$
\lim _{k} \sum_{q \in F_{k}}\left|\alpha_{q}\left(x_{n_{k}}\right)\right|=0
$$

Then we say that the α-index of $\left\{x_{k}\right\}_{k}$ is zero and write $\alpha\left(\left\{x_{k}\right\}_{k}\right)=0$.

- The β index is similarly defined.

c_{0} spreading models in $\mathfrak{X}_{1 \text { SP }}$

- (α index) Let $\left\{x_{k}\right\}_{k}$ be a block sequence in $\mathfrak{X}_{\text {ISP }}$ that satisfies the following.

For any n, for any very fast growing sequence $\left\{\alpha_{q}\right\}_{q}$ of α-averages in $W_{\text {ISP }}$ and for any $\left\{F_{k}\right\}_{k}$ increasing sequence of subsets of the naturals, such that $\left\{\alpha_{a}\right\}_{a \in F_{k}}$ is \mathcal{S}_{n}-admissible, the following holds.

For any $\left\{x_{n_{k}}\right\}_{k}$ subsequence of $\left\{x_{k}\right\}_{k}$, we have that $\lim _{k} \sum_{q \in F_{k}}\left|\alpha_{q}\left(x_{n_{k}}\right)\right|=0$.

Then we say that the α-index of $\left\{x_{k}\right\}_{k}$ is zero and write

c_{0} spreading models in $\mathfrak{X}_{\text {ISP }}$

- (α index) Let $\left\{x_{k}\right\}_{k}$ be a block sequence in $\mathfrak{X}_{\text {ISP }}$ that satisfies the following.

For any n, for any very fast growing sequence $\left\{\alpha_{q}\right\}_{q}$ of α-averages in $W_{\text {ISP }}$ and for any $\left\{F_{k}\right\}_{k}$ increasing sequence of subsets of the naturals, such that $\left\{\alpha_{q}\right\}_{q \in F_{k}}$ is \mathcal{S}_{n}-admissible, the following holds.

For any $\left\{x_{n_{k}}\right\}_{k}$ subsequence of $\left\{x_{k}\right\}_{k}$, we have that

Then we say that the α-index of $\left\{x_{k}\right\}_{k}$ is zero and write

c_{0} spreading models in $\mathfrak{X}_{\text {ISP }}$

- (α index) Let $\left\{x_{k}\right\}_{k}$ be a block sequence in $\mathfrak{X}_{\text {ISP }}$ that satisfies the following.

For any n, for any very fast growing sequence $\left\{\alpha_{q}\right\}_{q}$ of α-averages in $W_{\text {ISP }}$ and for any $\left\{F_{k}\right\}_{k}$ increasing sequence of subsets of the naturals, such that $\left\{\alpha_{q}\right\}_{q \in F_{k}}$ is \mathcal{S}_{n}-admissible, the following holds.

For any $\left\{x_{n_{k}}\right\}_{k}$ subsequence of $\left\{x_{k}\right\}_{k}$, we have that

$$
\lim _{k} \sum_{q \in F_{k}}\left|\alpha_{q}\left(x_{n_{k}}\right)\right|=0
$$

Then we say that the α-index of $\left\{x_{k}\right\}_{k}$ is zero and write

- The β index is similarly defined.

c_{0} spreading models in $\mathfrak{X}_{\text {ISP }}$

- (α index) Let $\left\{x_{k}\right\}_{k}$ be a block sequence in $\mathfrak{X}_{\text {ISP }}$ that satisfies the following.

For any n, for any very fast growing sequence $\left\{\alpha_{q}\right\}_{q}$ of α-averages in $W_{\text {ISP }}$ and for any $\left\{F_{k}\right\}_{k}$ increasing sequence of subsets of the naturals, such that $\left\{\alpha_{q}\right\}_{q \in F_{k}}$ is \mathcal{S}_{n}-admissible, the following holds.

For any $\left\{x_{n_{k}}\right\}_{k}$ subsequence of $\left\{x_{k}\right\}_{k}$, we have that

$$
\lim _{k} \sum_{q \in F_{k}}\left|\alpha_{q}\left(x_{n_{k}}\right)\right|=0
$$

Then we say that the α-index of $\left\{x_{k}\right\}_{k}$ is zero and write

$$
\alpha\left(\left\{x_{k}\right\}_{k}\right)=0 .
$$

c_{0} spreading models in $\mathfrak{X}_{\text {ISP }}$

- (α index) Let $\left\{x_{k}\right\}_{k}$ be a block sequence in $\mathfrak{X}_{\text {ISP }}$ that satisfies the following.

For any n, for any very fast growing sequence $\left\{\alpha_{q}\right\}_{q}$ of α-averages in $W_{\text {ISP }}$ and for any $\left\{F_{k}\right\}_{k}$ increasing sequence of subsets of the naturals, such that $\left\{\alpha_{q}\right\}_{q \in F_{k}}$ is \mathcal{S}_{n}-admissible, the following holds.

For any $\left\{x_{n_{k}}\right\}_{k}$ subsequence of $\left\{x_{k}\right\}_{k}$, we have that

$$
\lim _{k} \sum_{q \in F_{k}}\left|\alpha_{q}\left(x_{n_{k}}\right)\right|=0
$$

Then we say that the α-index of $\left\{x_{k}\right\}_{k}$ is zero and write

$$
\alpha\left(\left\{x_{k}\right\}_{k}\right)=0 .
$$

- The β index is similarly defined.

c_{0} spreading models in $\mathfrak{X}_{1 \mathrm{SP}}$

The α, β indices provide the following criterion for sequences generating c_{0} spreading models.

If $\left(x_{n}\right)_{n}$ is a seminormalized block sequence in $\mathfrak{X}_{\text {ISP }}$, then the following are equivalent.

- ($\left.x_{n}\right)_{n}$ admits on'ly c_{0} as a spreading model.
- The indices α and β on $\left(x_{n}\right)_{n}$ are equal to zero.

It is not difficult to see that if either or or β index is not equal to zero, then $\left(x_{n}\right)_{n}$ contains a subsequence generating ℓ_{1} as a spreading model.

c_{0} spreading models in $\mathfrak{X}_{\mathrm{sp}}$

The α, β indices provide the following criterion for sequences generating c_{0} spreading models.

If $\left(x_{n}\right)_{n}$ is a seminormalized block sequence in $\mathfrak{X}_{1 \mathrm{SP}}$, then
the following are equivalent.

- $\left(x_{n}\right)_{n}$ admits only c_{0} as a spreading model.
- The indices α and β on $\left(x_{n}\right)_{n}$ are equal to zero.

It is not difficult to see that if either α or β index is not equal
to zero, then $\left(x_{n}\right)_{n}$ contains a subsequence generating ℓ_{1}
as a spreading model.

c_{0} spreading models in $\mathfrak{X}_{\mathrm{lsP}}$

The α, β indices provide the following criterion for sequences generating c_{0} spreading models.

If $\left(x_{n}\right)_{n}$ is a seminormalized block sequence in $\mathfrak{X}_{\text {ISP }}$, then the following are equivalent.

- $\left(x_{n}\right)_{n}$ admits only c_{0} as a spreading model.
- The indices α and β on $\left(x_{n}\right)_{n}$ are equal to zero.

It is not difficult to see that if either α or β index is not equal
to zero, then $\left(x_{n}\right)_{n}$ contains a subsequence generating ℓ_{1}
as a spreading model.

c_{0} spreading models in $\mathfrak{X}_{\mathrm{lsP}}$

The α, β indices provide the following criterion for sequences generating c_{0} spreading models.

If $\left(x_{n}\right)_{n}$ is a seminormalized block sequence in $\mathfrak{X}_{\text {ISP }}$, then the following are equivalent.

- $\left(x_{n}\right)_{n}$ admits only c_{0} as a spreading model.
- The indices α and β on $\left(x_{n}\right)_{n}$ are equal to zero.

It is not difficult to see that if either α or β index is not equal
to zero, then $\left(x_{n}\right)_{n}$ contains a subsequence generating ℓ_{1}
as a spreading model.

c_{0} spreading models in $\mathfrak{X}_{1 \text { SP }}$

The α, β indices provide the following criterion for sequences generating c_{0} spreading models.

If $\left(x_{n}\right)_{n}$ is a seminormalized block sequence in $\mathfrak{X}_{\text {ISP }}$, then the following are equivalent.

- $\left(x_{n}\right)_{n}$ admits only c_{0} as a spreading model.
- The indices α and β on $\left(x_{n}\right)_{n}$ are equal to zero.

It is not difficult to see that if either α or β index is not equal
to zero, then $\left(x_{n}\right)_{n}$ contains a subsequence generating ℓ_{1}
as a spreading model.

c_{0} spreading models in $\mathfrak{X}_{1 \mathrm{SP}}$

The α, β indices provide the following criterion for sequences generating c_{0} spreading models.

If $\left(x_{n}\right)_{n}$ is a seminormalized block sequence in $\mathfrak{X}_{\text {ISP }}$, then the following are equivalent.

- $\left(x_{n}\right)_{n}$ admits only c_{0} as a spreading model.
- The indices α and β on $\left(x_{n}\right)_{n}$ are equal to zero.

It is not difficult to see that if either α or β index is not equal to zero, then $\left(x_{n}\right)_{n}$ contains a subsequence generating ℓ_{1} as a spreading model.

Special convex combinations

- ((n, ε) basic special convex combinations) A convex combination $\sum_{k \in F} c_{k} e_{k}$ is a (n, ε) b.s.c.c. if
(i) the set F belongs to \mathcal{S}_{n}
(ii) for any $G \in \mathcal{S}_{n-1}, G \subset F$, we have that $\sum_{k \in G} c_{k}<\varepsilon$.
- ((n, ε) special convex combinations) Let $x_{1}<\cdots<x_{m}$ be vectors in c_{00} and $\psi(k)=$ min supp x_{k}, for $k=1, \ldots, m$. Then $x=\sum_{k=1}^{m} c_{k} x_{k}$ is said to be a (n, ε) s.c.c., if $\sum_{k=1}^{m} c_{k} e_{\psi(k)}$ is a (n, ε) b.s.c.c.

Special convex combinations

- ((n, ε) basic special convex combinations) A convex combination $\sum_{k \in F} c_{k} e_{k}$ is a (n, ε) b.s.c.c. if
(i) the set F belongs to \mathcal{S}_{n}
(ii) for any $G \in \mathcal{S}_{n-1}, G \subset F$, we have that $\sum_{k \in G} c_{k}$
- (($n,-$) special convex combinations) Let $x_{1}<\cdots<x_{m}$ be vectors in c_{00} and $\psi(k)=$ min supp x_{k}, for $k=1, \ldots, m$. Then $x=\sum_{k=1}^{m} c_{k} x_{k}$ is said to be a (n, ε) s.c.c., if $\sum_{k=1}^{m} c_{k} e_{\psi(k)}$ is a (n, ε) b.s.c.c.

Special convex combinations

- ((n, ε) basic special convex combinations) A convex combination $\sum_{k \in F} c_{k} e_{k}$ is a (n, ε) b.s.c.c. if
(i) the set F belongs to \mathcal{S}_{n}
(ii) for any $G \in S_{n-1}, G \subset F$, we have that $\sum_{k \in G} C_{k}$
- (($n, \varepsilon)$ special convex combinations) Let $x_{1}<\cdots<x_{m}$ be vectors in c_{00} and $\psi(k)=m i n \operatorname{supp} x_{k}$, for $k=1, \ldots, m$. Then $x=\sum_{k=1}^{m} c_{k} x_{k}$ is said to
$\sum_{k=1}^{m} c_{k} e_{\psi(k)}$ is a (n, ε) b.s.c.c.

Special convex combinations

- ((n, ε) basic special convex combinations) A convex combination $\sum_{k \in F} c_{k} e_{k}$ is a (n, ε) b.s.c.c. if
(i) the set F belongs to \mathcal{S}_{n}
(ii) for any $G \in \mathcal{S}_{n-1}, G \subset F$, we have that $\sum_{k \in G} c_{k}<\varepsilon$.

Special convex combinations

- ((n, ε) basic special convex combinations) A convex combination $\sum_{k \in F} c_{k} e_{k}$ is a (n, ε) b.s.c.c. if
(i) the set F belongs to \mathcal{S}_{n}
(ii) for any $G \in \mathcal{S}_{n-1}, G \subset F$, we have that $\sum_{k \in G} c_{k}<\varepsilon$.
- (($n, \varepsilon)$ special convex combinations) Let $x_{1}<\cdots<x_{m}$ be vectors in c_{00} and $\psi(k)=\min \operatorname{supp} x_{k}$, for $k=1, \ldots, m$. Then $x=\sum_{k=1}^{m} c_{k} x_{k}$ is said to be a (n, ε) s.c.c., if $\sum_{k=1}^{m} c_{k} e_{\psi(k)}$ is a (n, ε) b.s.c.c.

The basic inequality

The great advantage of using Tsirelson space as the unconditional frame for the space $\mathfrak{X}_{\text {ISP }}$ is the following inequality.
For a (n, ε) special convex combination $\sum_{i \in F} c_{i} x_{i}$, with $\left\{x_{i}\right\}_{i \in F}$ a finite normalized block sequence, we have that

$$
\sum_{i \in F} c_{i} x_{i} \|_{\text {ISP }} \leqslant \frac{6}{2^{n}}+12 \varepsilon
$$

The above yields the following. For every $\left(x_{k}\right)_{k}$ normalized block sequence such that either α or β index is not zero, there exists $\delta>0$ such that

- For every n and for every $\frac{1}{2^{2 n}}>\varepsilon>0$ there exist (n, ε) s.c.c. $\sum_{k \in F} c_{k} x_{k}$ with

$$
\delta<\left\|2^{n} \sum_{k \in F} c_{k} x_{k}\right\|_{\text {ISP }} \leqslant 7
$$

The basic inequality

The great advantage of using Tsirelson space as the unconditional frame for the space $\mathfrak{X}_{\text {ISP }}$ is the following inequality.

> For a (n, ε) special convex combination $\sum_{i \in F} C_{i} x_{i}$, with $\left\{x_{i}\right\}_{i \in F}$ a finite normalized block sequence, we have that

The above yields the following. For every $\left(x_{k}\right)_{k}$ normalized block sequence such that either α or β index is not zero, there exists $\delta>0$ such that

- For every n and for every $\frac{1}{2^{2 n}}>\varepsilon>0$ there exist (n, ε) s.c.c. $\sum_{k \in F} c_{k} x_{k}$ with

The basic inequality

The great advantage of using Tsirelson space as the unconditional frame for the space $\mathfrak{X}_{\text {ISP }}$ is the following inequality.
For a (n, ε) special convex combination $\sum_{i \in F} c_{i} x_{i}$, with $\left\{x_{i}\right\}_{i \in F}$ a finite normalized block sequence, we have that

> The above yields the following. For every $\left(x_{k}\right)_{k}$ normalized
> block sequence such that either α or β index is not zero, there exists $\delta>0$ such that

- For every n and for every $\frac{1}{2^{2 n}}$

0 there exist (n, ε)

The basic inequality

The great advantage of using Tsirelson space as the unconditional frame for the space $\mathfrak{X}_{\text {ISP }}$ is the following inequality.
For a (n, ε) special convex combination $\sum_{i \in F} c_{i} x_{i}$, with $\left\{x_{i}\right\}_{i \in F}$ a finite normalized block sequence, we have that

$$
\left\|\sum_{i \in F} c_{i} x_{i}\right\|_{\text {ISP }} \leqslant \frac{6}{2^{n}}+12 \varepsilon
$$

The above yields the following. For every $\left(x_{k}\right)_{k}$ normalized
block sequence such that either α or β index is not zero, there exists $\delta>0$ such that

- For every n and for every $\frac{1}{2^{2 n}}$ s.c.c. $\sum_{k \in F} c_{k} x_{k}$ with

The basic inequality

The great advantage of using Tsirelson space as the unconditional frame for the space $\mathfrak{X}_{\text {ISP }}$ is the following inequality.
For a (n, ε) special convex combination $\sum_{i \in F} c_{i} x_{i}$, with $\left\{x_{i}\right\}_{i \in F}$ a finite normalized block sequence, we have that

$$
\left\|\sum_{i \in F} c_{i} x_{i}\right\|_{\text {ISP }} \leqslant \frac{6}{2^{n}}+12 \varepsilon
$$

The above yields the following. For every $\left(x_{k}\right)_{k}$ normalized block sequence such that either α or β index is not zero, there exists $\delta>0$ such that

- For every n and for every $\frac{1}{2^{2 n}}$ 0 there exist (n, ε) s.c.c. $\sum_{k \in F} C_{k} x_{k}$ with

The basic inequality

The great advantage of using Tsirelson space as the unconditional frame for the space $\mathfrak{X}_{\text {ISP }}$ is the following inequality.
For a (n, ε) special convex combination $\sum_{i \in F} c_{i} x_{i}$, with $\left\{x_{i}\right\}_{i \in F}$ a finite normalized block sequence, we have that

$$
\left\|\sum_{i \in F} c_{i} x_{i}\right\|_{\text {ISP }} \leqslant \frac{6}{2^{n}}+12 \varepsilon
$$

The above yields the following. For every $\left(x_{k}\right)_{k}$ normalized block sequence such that either α or β index is not zero, there exists $\delta>0$ such that

- For every n and for every $\frac{1}{2^{2 n}}>\varepsilon>0$ there exist (n, ε) s.c.c. $\sum_{k \in F} c_{k} x_{k}$ with

$$
\delta<\left\|2^{n} \sum_{k \in F} c_{k} x_{k}\right\|_{\text {ISP }} \leqslant 7
$$

Determining c_{0} spreading models

We are ready to see how starting with an arbitrary normalized block sequence $\left(x_{n}\right)_{n}$, in at most two steps, a further block sequence can be chosen, generating a c_{0} spreading model.

- If α and β indices of $\left(x_{n}\right)_{n}$ are zero, we are done. Otherwise, there exists a further block sequence $\left(y_{k}\right)_{k}$ with each y_{k} a $\left(k, \frac{1}{2^{2 k}}\right)$ s.c.c. such that $z_{k}=2^{k} y_{k}$ is a seminormalized block sequence.
- It is shown the α index of $\left(z_{k}\right)$ is equal to zero. If the β index of $\left(z_{k}\right)$ is equal to zero, then we are done.
- Otherwise repeating the previous procedure to the sequence $\left(z_{k}\right)_{k}$, we arrive at a sequence $\left(w_{k}\right)_{k}$, for which both α and β indices are zero.

Determining c_{0} spreading models

We are ready to see how starting with an arbitrary normalized block sequence $\left(x_{n}\right)_{n}$, in at most two steps, a further block sequence can be chosen, generating a c_{0} spreading model.

- If α and β indices of $\left(x_{n}\right)_{n}$ are zero, we are done. Otherwise, there exists a further block sequence $\left(y_{k}\right)_{k}$ with each $y_{k} \mathrm{a}\left(k, \frac{1}{2^{2 k}}\right)$ s.c.c. such that $z_{k}=2^{k} y_{k}$ is a seminormalized block sequence.
- It is shown the α index of $\left(z_{k}\right)$ is equal to zero. If the β index of $\left(z_{k}\right)$ is equal to zero, then we are done.
- Otherwise repeating the previous procedure to the sequence $\left(z_{k}\right)_{k}$, we arrive at a sequence $\left(w_{k}\right)_{k}$, for which both α and β indices are zero.

Determining c_{0} spreading models

We are ready to see how starting with an arbitrary normalized block sequence $\left(x_{n}\right)_{n}$, in at most two steps, a further block sequence can be chosen, generating a c_{0} spreading model.

- If α and β indices of $\left(x_{n}\right)_{n}$ are zero, we are done. Otherwise, there exists a further block sequence $\left(y_{k}\right)_{k}$ with each $y_{k} \mathrm{a}\left(k, \frac{1}{2^{2 k}}\right)$ s.c.c. such that $z_{k}=2^{k} y_{k}$ is a seminormalized block sequence.

Determining c_{0} spreading models

We are ready to see how starting with an arbitrary normalized block sequence $\left(x_{n}\right)_{n}$, in at most two steps, a further block sequence can be chosen, generating a c_{0} spreading model.

- If α and β indices of $\left(x_{n}\right)_{n}$ are zero, we are done. Otherwise, there exists a further block sequence $\left(y_{k}\right)_{k}$ with each $y_{k} \mathrm{a}\left(k, \frac{1}{2^{2 k}}\right)$ s.c.c. such that $z_{k}=2^{k} y_{k}$ is a seminormalized block sequence.
- It is shown the α index of $\left(z_{k}\right)$ is equal to zero. If the β index of $\left(z_{k}\right)$ is equal to zero, then we are done.
- Otherwise repeating the previous procedure to the sequence $\left(z_{k}\right)_{k}$, we arrive at a sequence $\left(w_{k}\right)_{k}$, for which both α and β indices are zero.

Determining c_{0} spreading models

We are ready to see how starting with an arbitrary normalized block sequence $\left(x_{n}\right)_{n}$, in at most two steps, a further block sequence can be chosen, generating a c_{0} spreading model.

- If α and β indices of $\left(x_{n}\right)_{n}$ are zero, we are done. Otherwise, there exists a further block sequence $\left(y_{k}\right)_{k}$ with each $y_{k} \mathrm{a}\left(k, \frac{1}{2^{2 k}}\right)$ s.c.c. such that $z_{k}=2^{k} y_{k}$ is a seminormalized block sequence.
- It is shown the α index of $\left(z_{k}\right)$ is equal to zero. If the β index of $\left(z_{k}\right)$ is equal to zero, then we are done.
- Otherwise repeating the previous procedure to the sequence $\left(z_{k}\right)_{k}$, we arrive at a sequence $\left(w_{k}\right)_{k}$, for which both α and β indices are zero.

Strictly singular operators

- The structure of the space $\mathscr{X}_{\text {ISp }}$, permits the easy construction of strictly singular and non-compact operators. More precisely, the following holds.
- Proposition: Let $\left(x_{n}\right)_{n}$ and $\left(y_{n}\right)_{n}$ be seminormalized block sequences in $\mathfrak{X}_{\mathrm{cod}}$, such that $\left(x_{n}\right)_{n}$ generates an ℓ_{1} spreading model and $\left(y_{n}\right)_{n}$ generates a c_{0} spreading model. Then there exists $L \subset \mathbb{N}$ and S a strictly singular operator in $\mathcal{L}\left(\mathfrak{X}_{\mathrm{ICD}}\right)$, such that $S x_{n}=y_{n}$, for all $n \in L$.
- On the other hand, the composition of every three strictly singular operators is a compact one.
- The previous two steps which we need to arrive to a c_{0} spreading model is the reason for the necessity of the composition of three strictly singular operators in order obtain a compact one.

Strictly singular operators

- The structure of the space $\mathfrak{X}_{\text {ISP }}$, permits the easy construction of strictly singular and non-compact operators. More precisely, the following holds.
- Proposition: Let $\left(x_{n}\right)_{n}$ and $\left(y_{n}\right)_{n}$ be seminormalized block sequences in $\mathfrak{X}_{1 \infty}$, such that $\left(x_{n}\right)_{n}$ generates an ℓ_{1} spreading model and $\left(y_{n}\right)_{n}$ generates a c_{0} spreading model. Then there exists $L \subset \mathbb{N}$ and S a strictly singular operator in $\mathcal{L}\left(\mathfrak{X}_{\mathrm{ICP}}\right)$, such that $S x_{n}=y_{n}$, for all $n \in L$.
- On the other hand, the composition of every three strictly singular operators is a compact one.
- The previous two steps which we need to arrive to a c_{0} spreading model is the reason for the necessity of the composition of three strictly singular operators in order obtain a compact one.

Strictly singular operators

- The structure of the space $\mathfrak{X}_{\text {ISP }}$, permits the easy construction of strictly singular and non-compact operators. More precisely, the following holds.
- Proposition: Let $\left(x_{n}\right)_{n}$ and $\left(y_{n}\right)_{n}$ be seminormalized block sequences in $\mathfrak{X}_{\text {ISP }}$, such that $\left(x_{n}\right)_{n}$ generates an ℓ_{1} spreading model and $\left(y_{n}\right)_{n}$ generates a c_{0} spreading model. Then there exists $L \subset \mathbb{N}$ and S a strictly singular operator in $\mathcal{L}\left(\mathfrak{X}_{\mathrm{ISP}}\right)$, such that $S x_{n}=y_{n}$, for all $n \in L$.
- On the other hand, the composition of every three strictly singular operators is a compact one.

The previous two steps which we need to arrive to a co spreading model is the reason for the necessity of the composition of three strictly singular operators in order obtain a compact one.

Strictly singular operators

- The structure of the space $\mathfrak{X}_{\text {ISP }}$, permits the easy construction of strictly singular and non-compact operators. More precisely, the following holds.
- Proposition: Let $\left(x_{n}\right)_{n}$ and $\left(y_{n}\right)_{n}$ be seminormalized block sequences in $\mathfrak{X}_{\text {ISP }}$, such that $\left(x_{n}\right)_{n}$ generates an ℓ_{1} spreading model and $\left(y_{n}\right)_{n}$ generates a c_{0} spreading model. Then there exists $L \subset \mathbb{N}$ and S a strictly singular operator in $\mathcal{L}\left(\mathfrak{X}_{\mathrm{ISP}}\right)$, such that $S x_{n}=y_{n}$, for all $n \in L$.
- On the other hand, the composition of every three strictly singular operators is a compact one.
- The previous two steps which we need to arrive to a c_{0} spreading model is the reason for the necessity of the composition of three strictly singular operators in order obtain a compact one.

Strictly singular operators

- The structure of the space $\mathfrak{X}_{\text {ISP }}$, permits the easy construction of strictly singular and non-compact operators. More precisely, the following holds.
- Proposition: Let $\left(x_{n}\right)_{n}$ and $\left(y_{n}\right)_{n}$ be seminormalized block sequences in $\mathfrak{X}_{\text {ISP }}$, such that $\left(x_{n}\right)_{n}$ generates an ℓ_{1} spreading model and $\left(y_{n}\right)_{n}$ generates a c_{0} spreading model. Then there exists $L \subset \mathbb{N}$ and S a strictly singular operator in $\mathcal{L}\left(\mathfrak{X}_{\mathrm{ISP}}\right)$, such that $S x_{n}=y_{n}$, for all $n \in L$.
- On the other hand, the composition of every three strictly singular operators is a compact one.
- The previous two steps which we need to arrive to a c_{0} spreading model is the reason for the necessity of the composition of three strictly singular operators in order obtain a compact one.

Thank you!

