Schubert calculus for equivariant algebraic cobordism

Valentina Kiritchenko*
*Faculty of Mathematics and Laboratory of Algebraic Geometry,
National Research University Higher School of Economics and
Kharkevich Insitute for Information Transmission Problems RAS

BIRS workshop on Lie algebras, torsors and cohomological invariants, October 4, 2012

Content

- Equivariant algebraic cobordism
- Borel presentation for equivariant cobordism of flag varieties
- Classical Schubert calculus
- Schubert calculus in cobordisn

Content

- Equivariant algebraic cobordism
- Borel presentation for equivariant cobordism of flag varieties
- Classical Schubert calculus
- Schubert calculus in cobordism

Content

- Equivariant algebraic cobordism
- Borel presentation for equivariant cobordism of flag varieties
- Classical Schubert calculus
- Schubert calculus in cobordism

Content

- Equivariant algebraic cobordism
- Borel presentation for equivariant cobordism of flag varieties
- Classical Schubert calculus
- Schubert calculus in cobordism

Equivariant cohomology theories

Notation
k - field of characteristic zero,
G - linear algebraic group over k.
Motivation
Extend to the algebraic setting equivariant cohomology theories defined using the classifying space $B G$.

Classical equivariant cohomology

Remark
Note that $X \times{ }^{G} E G$ is a fiber bundle over $B G$ with the fiber X.

Equivariant cohomology theories

Notation
k - field of characteristic zero,
G - linear algebraic group over k.
Motivation
Extend to the algebraic setting equivariant cohomology theories defined using the classifying space $B G$.

Classical equivariant cohomology

$$
H_{G}^{*}(X):=H^{*}\left(X \times{ }^{G} E G\right)
$$

Remark
Note that $X \times{ }^{G} E G$ is a fiber bundle over $B G$ with the fiber X.

Equivariant cohomology theories

Notation
k - field of characteristic zero,
G - linear algebraic group over k.
Motivation
Extend to the algebraic setting equivariant cohomology theories defined using the classifying space $B G$.

Classical equivariant cohomology

$$
H_{G}^{*}(X):=H^{*}\left(X \times{ }^{G} E G\right)
$$

Remark
Note that $X \times{ }^{G} E G$ is a fiber bundle over $B G$ with the fiber X.

Equivariant cohomology theories

Notation
k - field of characteristic zero,
G - linear algebraic group over k.
Motivation
Extend to the algebraic setting equivariant cohomology theories defined using the classifying space $B G$.

Classical equivariant cohomology

$$
H_{G}^{*}(X):=H^{*}\left(X \times{ }^{G} E G\right)
$$

Remark
Note that $X \times{ }^{G} E G$ is a fiber bundle over $B G$ with the fiber X.

Equivariant Chow groups

(Totaro, Edidin-Graham)
Define $\mathrm{CH}_{G}^{*}(X)$ using approximations of the universal G-bundle $E G \rightarrow B G$ by algebraic fiber bundles $E G_{i} \rightarrow B G_{i}$:

$$
C H_{G}^{i}(X):=C H^{i}\left(X \times^{G} E G_{i}\right)
$$

[^0]
Equivariant Chow groups

(Totaro, Edidin-Graham)
Define $\mathrm{CH}_{G}^{*}(X)$ using approximations of the universal G-bundle $E G \rightarrow B G$ by algebraic fiber bundles $E G_{i} \rightarrow B G_{i}$:

$$
C H_{G}^{i}(X):=C H^{i}\left(X \times{ }^{G} E G_{i}\right) .
$$

Construction
Let V be a representation of G such that G acts freely on an open subvariety $U \subset V$, the quotient U / G is quasiprojective and $\operatorname{codim}(V \backslash U)>i$. Take $U \rightarrow U / G$ as $E G_{i} \rightarrow B G_{i}$.
Remark
Under the above assumptions, $C H^{i}\left(X \times{ }^{G} U\right)$ does not depend on the choice of V.

Equivariant Chow groups

(Totaro, Edidin-Graham)
Define $\mathrm{CH}_{G}^{*}(X)$ using approximations of the universal G-bundle $E G \rightarrow B G$ by algebraic fiber bundles $E G_{i} \rightarrow B G_{i}$:

$$
C H_{G}^{i}(X):=C H^{i}\left(X \times{ }^{G} E G_{i}\right) .
$$

Construction
Let V be a representation of G such that G acts freely on an open subvariety $U \subset V$, the quotient U / G is quasiprojective and $\operatorname{codim}(V \backslash U)>i$. Take $U \rightarrow U / G$ as $E G_{i} \rightarrow B G_{i}$.
Remark
Under the above assumptions, $C H^{i}\left(X \times{ }^{G} U\right)$ does not depend on the choice of V.

Algebraic cobordism

Notation
X / k - algebraic variety,
$\Omega^{*}(X)$ - algebraic cobordism ring of X.

- (Levine-Morel) Construction of the universal oriented cohomology theory $\Omega^{*}(-)$;
- (Levine-Pandharipande) Presentation of $\Omega^{n}(X)$ by generators (=projective morphisms [$Y \rightarrow X]$ of relative codimension n) and relations ($=$ double point relations).

Example
$\Omega^{*}(p t)=\mathbb{L}-$ Lazard ring;

$$
\mathbb{L} \simeq \mathbb{Z}\left[a_{1}, a_{2}, \ldots\right],
$$

where $\operatorname{deg}\left(a_{i}\right)=-i$.

Algebraic cobordism

Notation
X / k - algebraic variety,
$\Omega^{*}(X)$ - algebraic cobordism ring of X.

- (Levine-Morel) Construction of the universal oriented cohomology theory $\Omega^{*}(-)$;
- (Levine-Pandharipande) Presentation of $\Omega^{n}(X)$ by generators (=projective morphisms $[Y \rightarrow X]$ of relative codimension n) and relations ($=$ double point relations).

Example
$\Omega^{*}(p t)=\mathbb{L}-$ Lazard ring;

$$
\mathbb{L} \simeq \mathbb{Z}\left[a_{1}, a_{2}, \ldots\right],
$$

where $\operatorname{deg}\left(a_{i}\right)=-i$.

Algebraic cobordism

Notation
X / k - algebraic variety,
$\Omega^{*}(X)$ - algebraic cobordism ring of X.

- (Levine-Morel) Construction of the universal oriented cohomology theory $\Omega^{*}(-)$;
- (Levine-Pandharipande) Presentation of $\Omega^{n}(X)$ by generators (=projective morphisms $[Y \rightarrow X]$ of relative codimension n) and relations ($=$ double point relations).

Example
$\Omega^{*}(p t)=\mathbb{L}$ - Lazard ring;
where $\operatorname{deg}\left(a_{i}\right)=-i$.

Algebraic cobordism

Notation
X / k - algebraic variety,
$\Omega^{*}(X)$ - algebraic cobordism ring of X.

- (Levine-Morel) Construction of the universal oriented cohomology theory $\Omega^{*}(-)$;
- (Levine-Pandharipande) Presentation of $\Omega^{n}(X)$ by generators (=projective morphisms $[Y \rightarrow X]$ of relative codimension n) and relations ($=$ double point relations).

Example
$\Omega^{*}(p t)=\mathbb{L}$ - Lazard ring;

$$
\mathbb{L} \simeq \mathbb{Z}\left[a_{1}, a_{2}, \ldots\right]
$$

where $\operatorname{deg}\left(a_{i}\right)=-i$.

Equivariant algebraic cobordism

Construction
Let V be a representation of G such that G acts freely on an open subvariety $U \subset V$, the quotient U / G is quasiprojective and $\operatorname{codim}(V \backslash U)>i$. Take $U \rightarrow U / G$ as $E G_{i} \rightarrow B G_{i}$.

Remark
In contrast with Chow groups, $\Omega^{i}\left(X \times^{G} U\right)$ might depend on the

Solution
Use the filtration $\Omega^{i}(X)=F^{0} \Omega^{i}(X) \supset F^{1} \Omega^{i}(X) \supset \ldots$, where
$F^{j} \Omega^{i}(X)$ is spanned by the classes $[\pi: Y \rightarrow X]$ such that
$\operatorname{codim}(\pi(Y)) \geq j$.

- (Deshpande) $\Omega_{G}^{*}(X)$ for smooth X
- (Krishna, Heller-Malagón-López) $\Omega_{G}^{*}(X)$ for all X

Equivariant algebraic cobordism

Construction
Let V be a representation of G such that G acts freely on an open subvariety $U \subset V$, the quotient U / G is quasiprojective and $\operatorname{codim}(V \backslash U)>i$. Take $U \rightarrow U / G$ as $E G_{i} \rightarrow B G_{i}$.

Remark
In contrast with Chow groups, $\Omega^{i}\left(X \times{ }^{G} U\right)$ might depend on the choice of V.

Solution
Use the filtration $\Omega^{i}(X)=F^{0} \Omega^{i}(X) \supset F^{1} \Omega^{i}(X) \supset \ldots$, where
$F^{j} \Omega^{i}(X)$ is spanned by the classes $[\pi: Y \rightarrow X]$ such that $\operatorname{codim}(\pi(Y)) \geq j$.

- (Deshpande) $\Omega_{G}^{*}(X)$ for smooth X
- (Krishna, Heller-Malagón-López) $\Omega_{G}^{*}(X)$ for all X

Equivariant algebraic cobordism

Construction
Let V be a representation of G such that G acts freely on an open subvariety $U \subset V$, the quotient U / G is quasiprojective and $\operatorname{codim}(V \backslash U)>i$. Take $U \rightarrow U / G$ as $E G_{i} \rightarrow B G_{i}$.

Remark

In contrast with Chow groups, $\Omega^{i}\left(X \times{ }^{G} U\right)$ might depend on the choice of V.

Solution
Use the filtration $\Omega^{i}(X)=F^{0} \Omega^{i}(X) \supset F^{1} \Omega^{i}(X) \supset \ldots$, where $F^{j} \Omega^{i}(X)$ is spanned by the classes $[\pi: Y \rightarrow X]$ such that $\operatorname{codim}(\pi(Y)) \geq j$.

- (Deshpande) $\Omega_{G}^{*}(X)$ for smooth X
- (Krishna, Heller-Malagón-López) $\Omega_{G}^{*}(X)$ for all X

Equivariant algebraic cobordism

Construction

Let V be a representation of G such that G acts freely on an open subvariety $U \subset V$, the quotient U / G is quasiprojective and $\operatorname{codim}(V \backslash U)>i$. Take $U \rightarrow U / G$ as $E G_{i} \rightarrow B G_{i}$.

Remark

In contrast with Chow groups, $\Omega^{i}\left(X \times{ }^{G} U\right)$ might depend on the choice of V.

Solution

Use the filtration $\Omega^{i}(X)=F^{0} \Omega^{i}(X) \supset F^{1} \Omega^{i}(X) \supset \ldots$, where $F^{j} \Omega^{i}(X)$ is spanned by the classes $[\pi: Y \rightarrow X]$ such that $\operatorname{codim}(\pi(Y)) \geq j$.

- (Deshpande) $\Omega_{G}^{*}(X)$ for smooth X

Equivariant algebraic cobordism

Construction

Let V be a representation of G such that G acts freely on an open subvariety $U \subset V$, the quotient U / G is quasiprojective and $\operatorname{codim}(V \backslash U)>i$. Take $U \rightarrow U / G$ as $E G_{i} \rightarrow B G_{i}$.

Remark

In contrast with Chow groups, $\Omega^{i}\left(X \times{ }^{G} U\right)$ might depend on the choice of V.

Solution

Use the filtration $\Omega^{i}(X)=F^{0} \Omega^{i}(X) \supset F^{1} \Omega^{i}(X) \supset \ldots$, where $F^{j} \Omega^{i}(X)$ is spanned by the classes $[\pi: Y \rightarrow X]$ such that $\operatorname{codim}(\pi(Y)) \geq j$.

- (Deshpande) $\Omega_{G}^{*}(X)$ for smooth X
- (Krishna, Heller-Malagón-López) $\Omega_{G}^{*}(X)$ for all X

Equivariant algebraic cobordism

Observation

$$
\Omega_{G}^{i}(X)_{j}:=\frac{\Omega^{i}\left(x \stackrel{G}{\times} E G_{j}\right)}{F^{j} \Omega^{i}\left(x \stackrel{G}{\times} E G_{j}\right)}
$$

does not depend on the choice of $E G_{j} \rightarrow B G_{j}$.
Definition

Equivariant algebraic cobordism

Observation

$$
\Omega_{G}^{i}(X)_{j}:=\frac{\Omega^{i}\left(X \times \stackrel{G}{\times} E G_{j}\right)}{F^{j} \Omega^{i}\left(X{ }^{G} E G_{j}\right)}
$$

does not depend on the choice of $E G_{j} \rightarrow B G_{j}$.
Definition

$$
\Omega_{G}^{i}(X)=\lim _{\underset{j}{ }} \Omega_{G}^{i}(X)_{j}
$$

Equivariant algebraic cobordism

Example
$G=T-$ split torus, $\Lambda_{T}-$ the character lattice of T

$$
\Omega_{T}^{i}(p t):={\underset{\overleftarrow{j}}{ }}_{\lim _{j}}\left(\operatorname{Sym}^{<j}\left(\Lambda_{T}\right) \otimes \mathbb{L}\right)^{i}
$$

Remark
If we fix a basis $\chi_{1}, \ldots, \chi_{n}$ in Λ_{T} and put $x_{i}:=c_{1}^{\top}\left(L_{\chi_{i}}\right)$ then

$$
\Omega_{T}^{*}(p t) \simeq \mathbb{L}^{g r}\left[\left[x_{1}, \ldots, x_{n}\right]\right],
$$

where $\mathbb{L}^{g r}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ is the graded power series ring.
Relation with BT

Equivariant algebraic cobordism

Example

$G=T$ - split torus, $\Lambda_{T}-$ the character lattice of T

$$
\Omega_{T}^{i}(p t):={\underset{j}{j}}_{\lim _{j}}\left(\operatorname{Sym}^{<j}\left(\Lambda_{T}\right) \otimes \mathbb{L}\right)^{i} .
$$

Remark
If we fix a basis $\chi_{1}, \ldots, \chi_{n}$ in Λ_{T} and put $x_{i}:=c_{1}^{T}\left(L_{\chi_{i}}\right)$ then

$$
\Omega_{T}^{*}(p t) \simeq \mathbb{L}^{g r}\left[\left[x_{1}, \ldots, x_{n}\right]\right],
$$

where $\mathbb{L}^{g r}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ is the graded power series ring.

Equivariant algebraic cobordism

Example

$G=T-$ split torus, Λ_{T} - the character lattice of T

$$
\Omega_{T}^{i}(p t):={\underset{j}{j}}_{\lim _{j}}\left(\operatorname{Sym}^{<j}\left(\Lambda_{T}\right) \otimes \mathbb{L}\right)^{i} .
$$

Remark
If we fix a basis $\chi_{1}, \ldots, \chi_{n}$ in Λ_{T} and put $x_{i}:=c_{1}^{T}\left(L_{\chi_{i}}\right)$ then

$$
\Omega_{T}^{*}(p t) \simeq \mathbb{L}^{g r}\left[\left[x_{1}, \ldots, x_{n}\right]\right],
$$

where $\mathbb{L}^{g r}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ is the graded power series ring.
Relation with $B T$

$$
\Omega_{T}^{*}(p t) \simeq M U^{*}(B T)
$$

Flag varieties

Notation
G - connected reductive group with a maximal torus T split over k
$B \subset G$ - Borel subgroup containing T
Definition
$X=G / B$ is the variety of complete flags
Example $G=G L_{n}(k)$
X is the variety of complete flags in k^{n} :

Flag varieties

Notation
G - connected reductive group with a maximal torus T split over k $B \subset G$ - Borel subgroup containing T

Definition
$X=G / B$ is the variety of complete flags
Example $G=G L_{n}(k)$
X is the variety of complete flags in k^{n} :

Flag varieties

Notation
G - connected reductive group with a maximal torus T split over k $B \subset G$ - Borel subgroup containing T

Definition
$X=G / B$ is the variety of complete flags
Example $G=G L_{n}(k)$
X is the variety of complete flags in k^{n} :

$$
X=\left\{\{0\}=V^{0} \subset V^{1} \subset \ldots \subset V^{n-1} \subset V^{n}=k^{n} \mid \operatorname{dim} V^{i}=i\right\}
$$

Borel presentation

Picard group of X
Each character χ of T gives rise to the G-equivariant line bundle $\mathcal{L}_{\chi}:=G \stackrel{B}{\times} L_{\chi}$ on X. This gives the isomorphism

$$
\operatorname{Pic}(X) \simeq \Lambda_{T}
$$

Fact
$C H^{*}(X) \otimes \mathbb{Q}$ (but not always $\left.C H^{*}(X)\right)$ is generated multiplicatively by $\operatorname{Pic}(X)$.

Torsion index
The torsion index of G is defined as the smallest positive integer t_{G} such that $t_{G}[p t]$ belongs to the subring of $C H^{*}(X)$ generated by $\operatorname{Pic}(X)$. For instance, $t_{G L_{n}}=1$.

Borel presentation

Picard group of X
Each character χ of T gives rise to the G-equivariant line bundle $\mathcal{L}_{\chi}:=G \stackrel{B}{\times} L_{\chi}$ on X. This gives the isomorphism

$$
\operatorname{Pic}(X) \simeq \Lambda_{T}
$$

Fact
$C H^{*}(X) \otimes \mathbb{Q}$ (but not always $C H^{*}(X)$) is generated multiplicatively by $\operatorname{Pic}(X)$.

Torsion index
The torsion index of G is defined as the smallest positive integer t_{G} such that $t_{G}[p t]$ belongs to the subring of $\mathrm{CH}^{*}(X)$ generated by $\operatorname{Pic}(X)$. For instance, $t_{G L_{n}}=1$.

Borel presentation

Picard group of X
Each character χ of T gives rise to the G-equivariant line bundle $\mathcal{L}_{\chi}:=G \stackrel{B}{\times} L_{\chi}$ on X. This gives the isomorphism

$$
\operatorname{Pic}(X) \simeq \Lambda_{T}
$$

Fact

$C H^{*}(X) \otimes \mathbb{Q}$ (but not always $C H^{*}(X)$) is generated multiplicatively by $\operatorname{Pic}(X)$.

Torsion index
The torsion index of G is defined as the smallest positive integer t_{G} such that $t_{G}[p t]$ belongs to the subring of $\mathrm{CH}^{*}(X)$ generated by $\operatorname{Pic}(X)$. For instance, $t_{G L_{n}}=1$.

Borel presentation for equivariant cobordism

Theorem (K.-Kishna, 2011)
Put $S:=\Omega_{T}^{*}(p t)$. After inverting t_{G}

$$
\Omega_{T}^{*}(G / B) \simeq S \otimes_{S^{w}} S
$$

where $S^{W} \subset S$ is the subring of the Weyl group invariants.

Borel presentation for equivariant cobordism

Theorem (K.-Kishna, 2011)
Put $S:=\Omega_{T}^{*}(p t)$. After inverting t_{G}

$$
\Omega_{T}^{*}(G / B) \simeq S \otimes_{S^{w}} S
$$

where $S^{W} \subset S$ is the subring of the Weyl group invariants.
Remark
The isomorphism $S \otimes_{S^{w}} S \rightarrow \Omega_{T}^{*}(G / B)$ is given by

$$
c_{1}^{T}\left(L_{\chi}\right) \otimes c_{1}^{T}\left(L_{\chi^{\prime}}\right) \rightarrow c_{1}^{T}\left(L_{\chi}\right) \cdot c_{1}^{T}\left(\mathcal{L}_{\chi}\right) .
$$

Borel presentation for equivariant cobordism

Theorem (K.-Kishna, 2011)
Put $S:=\Omega_{T}^{*}(p t)$. After inverting t_{G}

$$
\Omega_{T}^{*}(G / B) \simeq S \otimes_{S^{w}} S
$$

where $S^{W} \subset S$ is the subring of the Weyl group invariants.
Remark
The isomorphism $S \otimes_{S^{w}} S \rightarrow \Omega_{T}^{*}(G / B)$ is given by

$$
c_{1}^{T}\left(L_{\chi}\right) \otimes c_{1}^{T}\left(L_{\chi^{\prime}}\right) \rightarrow c_{1}^{T}\left(L_{\chi}\right) \cdot c_{1}^{T}\left(\mathcal{L}_{\chi}\right) .
$$

Example $G=G L_{n}(k)$
$\Omega_{T}^{*}(G / B) \simeq \mathbb{L}^{g r}\left[\left[x_{1}, \ldots, x_{n} ; t_{1}, \ldots, t_{n}\right]\right] /\left(s_{i}\left(x_{1}, \ldots, x_{n}\right)-\right.$
$\left.s_{i}\left(t_{1}, \ldots, t_{n}\right), i=1, \ldots, n\right)$.

Borel presentation for usual cobordism

Corollary
After inverting t_{G}

$$
\Omega^{*}(G / B) \simeq S \otimes_{S w} \mathbb{L}
$$

> Remark
> This corollary is similar to the result of Calmés-Petrov-Zainoulline (2009), who described $\Omega^{*}(G / B)$ in terms of the completion of S with respect to its augmentation ideal.

Borel presentation for usual cobordism

Corollary
After inverting t_{G}

$$
\Omega^{*}(G / B) \simeq S \otimes_{S w} \mathbb{L} .
$$

Remark
This corollary is similar to the result of Calmés-Petrov-Zainoulline (2009), who described $\Omega^{*}(G / B)$ in terms of the completion of S with respect to its augmentation ideal.

Schubert calculus

Definition

Let $W=N(T) / T$ denote the Weyl group of G. For each element $w \in W$, the Schubert variety $X_{w} \subset X$ is

$$
X_{w}=\overline{B w B} .
$$

Definition
The Schubert cycle $\left[X_{w}\right]$ is the class of X_{w} in $\mathrm{CH}^{*}(X)$ Schubert cycles $\left[X_{w}\right]$ for all $w \in W$ form a basis in $\mathrm{CH}^{*}(X)$.

Central question
How to multiply $\left[X_{w}\right]$?

Schubert calculus

Definition

Let $W=N(T) / T$ denote the Weyl group of G. For each element $w \in W$, the Schubert variety $X_{w} \subset X$ is

$$
X_{w}=\overline{B w B} .
$$

Definition
The Schubert cycle $\left[X_{w}\right]$ is the class of X_{w} in $\mathrm{CH}^{*}(X)$.

Schubert cycles $\left[X_{w}\right]$ for all $w \in W$ form a basis in $\mathrm{CH}^{*}(X)$.
Central question
How to multiply $\left[X_{w}\right]$?

Schubert calculus

Definition

Let $W=N(T) / T$ denote the Weyl group of G. For each element $w \in W$, the Schubert variety $X_{w} \subset X$ is

$$
X_{w}=\overline{B w B} .
$$

Definition
The Schubert cycle $\left[X_{w}\right]$ is the class of X_{w} in $\mathrm{CH}^{*}(X)$.
Fact
Schubert cycles $\left[X_{w}\right]$ for all $w \in W$ form a basis in $\mathrm{CH}^{*}(X)$.
Central question
How to multiply $\left[X_{w}\right]$?

Schubert calculus

Definition

Let $W=N(T) / T$ denote the Weyl group of G. For each element $w \in W$, the Schubert variety $X_{w} \subset X$ is

$$
X_{w}=\overline{B w B} .
$$

Definition
The Schubert cycle $\left[X_{w}\right]$ is the class of X_{w} in $\mathrm{CH}^{*}(X)$.
Fact
Schubert cycles $\left[X_{w}\right]$ for all $w \in W$ form a basis in $\mathrm{CH}^{*}(X)$.
Central question
How to multiply $\left[X_{w}\right]$?

Tool: divided difference operators

Definition

Let $\alpha_{1}, \ldots, \alpha_{n}$ be simple roots of G. Divided difference operator δ_{i} (for the simple root α_{i}) acts on $\operatorname{Sym}\left(\Lambda_{T}\right)$ as follows:

$$
\delta_{i}: f \mapsto \frac{f-s_{i}(f)}{c_{1}\left(\mathcal{L}_{\alpha_{i}}\right)} .
$$

Example $G=G L_{n}$
δ_{i} acts on $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ as follows:

Tool: divided difference operators

Definition

Let $\alpha_{1}, \ldots, \alpha_{n}$ be simple roots of G. Divided difference operator δ_{i} (for the simple root α_{i}) acts on $\operatorname{Sym}\left(\Lambda_{T}\right)$ as follows:

$$
\delta_{i}: f \mapsto \frac{f-s_{i}(f)}{c_{1}\left(\mathcal{L}_{\alpha_{i}}\right)} .
$$

Example $G=G L_{n}$
δ_{i} acts on $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ as follows:

$$
\delta_{i}: f \mapsto \frac{f-s_{i}(f)}{x_{i}-x_{i+1}}
$$

Applications of divided difference operators

Theorem (Bernstein-Gelfand-Gelfand, Demazure, 1973) Let $w=s_{i_{1}} \ldots s_{i_{\ell}}$ be a reduced expression. In the Borel presentation,

$$
\left[X_{w}\right]=\delta_{i \ell} \ldots \delta_{i_{1}}\left[X_{i d}\right]
$$

where $\left[X_{i d}\right]$ is the class of a point.
Remark
For $G L_{n}$,

If $t_{G} \neq 1$, there is no denominator-free formula.

Applications of divided difference operators

Theorem (Bernstein-Gelfand-Gelfand, Demazure, 1973)
Let $w=s_{i_{1}} \ldots s_{i_{\ell}}$ be a reduced expression. In the Borel presentation,

$$
\left[X_{w}\right]=\delta_{i_{\ell}} \ldots \delta_{i_{1}}\left[X_{i d}\right]
$$

where $\left[X_{i d}\right]$ is the class of a point.
Remark
For $G L_{n}$,

$$
\left[X_{i d}\right]=x_{1}^{n-1} x_{2}^{n-2} \cdots x_{n-1} .
$$

If $t_{G} \neq 1$, there is no denominator-free formula.

Geometric meaning of divided difference operators

Gysin morphism
Let P_{i} be a minimal parabolic subgroup, and $p_{i}: G / B \rightarrow G / P_{i}$ the natural projection. Then the action of δ_{i} on $C H^{*}(G / B, \mathbb{Z})$ coincides with the action of $p_{i}^{*} \circ p_{i_{*}}$:

$$
\delta_{i}: C H^{*}(G / B, \mathbb{Z}) \xrightarrow{p_{i *}} C H^{*}\left(G / P_{i}, \mathbb{Z}\right) \xrightarrow{p_{i}^{*}} C H^{*}(G / B, \mathbb{Z}) .
$$

Example
If $G=G L_{n}$, then G / P_{i} is obtained by forgetting the i-th space in a flag.

Geometric meaning of divided difference operators

Gysin morphism
Let P_{i} be a minimal parabolic subgroup, and $p_{i}: G / B \rightarrow G / P_{i}$ the natural projection. Then the action of δ_{i} on $C H^{*}(G / B, \mathbb{Z})$ coincides with the action of $p_{i}^{*} \circ p_{i_{*}}$:

$$
\delta_{i}: C H^{*}(G / B, \mathbb{Z}) \xrightarrow{p_{i *}} C H^{*}\left(G / P_{i}, \mathbb{Z}\right) \xrightarrow{p_{i}^{*}} C H^{*}(G / B, \mathbb{Z})
$$

Example
If $G=G L_{n}$, then G / P_{i} is obtained by forgetting the i-th space in a flag.

Generalizations of divided difference operators

Generalized cohomology theories
Let A^{*} be an oriented cohomology theory. Define generalized divided difference operator δ_{i}^{A} as the composition

$$
\delta_{i}^{A}: A^{*}(G / B, \mathbb{Z}) \xrightarrow{p_{i}^{A}} A^{*}\left(G / P_{i}, \mathbb{Z}\right) \xrightarrow{p_{i}^{* A}} A^{*}(G / B, \mathbb{Z}) .
$$

Generalizations of divided difference operators

Generalized cohomology theories
Let A^{*} be an oriented cohomology theory. Define generalized divided difference operator δ_{i}^{A} as the composition

$$
\delta_{i}^{A}: A^{*}(G / B, \mathbb{Z}) \xrightarrow{p_{i}^{A}} A^{*}\left(G / P_{i}, \mathbb{Z}\right) \xrightarrow{p_{i}^{* A}} A^{*}(G / B, \mathbb{Z})
$$

Examples

- classical cohomology H^{*} or Chow ring CH^{*}
- K-theory K_{0}^{*}
- complex cobordism $M U^{*}$ or algebraic cobordism Ω^{*}

Generalizations of divided difference operators

Generalized cohomology theories
Let A^{*} be an oriented cohomology theory. Define generalized divided difference operator δ_{i}^{A} as the composition

$$
\delta_{i}^{A}: A^{*}(G / B, \mathbb{Z}) \xrightarrow{p_{i}^{A}} A^{*}\left(G / P_{i}, \mathbb{Z}\right) \xrightarrow{p_{i}^{* A}} A^{*}(G / B, \mathbb{Z})
$$

Examples

- classical cohomology H^{*} or Chow ring CH^{*}
- K-theory K_{0}^{*}
- complex cobordism $M U^{*}$ or algebraic cobordism Ω^{*}

Generalizations of divided difference operators

Generalized cohomology theories
Let A^{*} be an oriented cohomology theory. Define generalized divided difference operator δ_{i}^{A} as the composition

$$
\delta_{i}^{A}: A^{*}(G / B, \mathbb{Z}) \xrightarrow{p_{i}^{A}} A^{*}\left(G / P_{i}, \mathbb{Z}\right) \xrightarrow{p_{i}^{* A}} A^{*}(G / B, \mathbb{Z})
$$

Examples

- classical cohomology H^{*} or Chow ring CH^{*}
- K-theory K_{0}^{*}
- complex cobordism MU* or algebraic cobordism Ω^{*}

Generalizations of divided difference operators

Generalized cohomology theories
Let A^{*} be an oriented cohomology theory. Define generalized divided difference operator δ_{i}^{A} as the composition

$$
\delta_{i}^{A}: A^{*}(G / B, \mathbb{Z}) \xrightarrow{p_{i}^{A}} A^{*}\left(G / P_{i}, \mathbb{Z}\right) \xrightarrow{p_{i}^{* A}} A^{*}(G / B, \mathbb{Z}) .
$$

Examples

- classical cohomology H^{*} or Chow ring CH^{*}
- K-theory K_{0}^{*}
- complex cobordism $M U^{*}$ or algebraic cobordism Ω^{*}

Generalizations of divided difference operators

Question
Is there an algebraic formula for δ_{i}^{A} ?
Formal group law
There exists a formal power series $F_{A}(x, y)=x+y+\ldots$ with coefficients in A^{0} such that

$$
F\left(c_{1}^{A}(L), c_{1}^{A}(M)\right)=c_{1}^{A}(L \otimes M)
$$

in $A^{*}(X)$ for any pair of line bundles L and M on a variety X.
Examples

Generalizations of divided difference operators

Question

Is there an algebraic formula for δ_{i}^{A} ?
Formal group law
There exists a formal power series $F_{A}(x, y)=x+y+\ldots$ with coefficients in A^{0} such that

$$
F\left(c_{1}^{A}(L), c_{1}^{A}(M)\right)=c_{1}^{A}(L \otimes M)
$$

in $A^{*}(X)$ for any pair of line bundles L and M on a variety X.

Generalizations of divided difference operators

Question

Is there an algebraic formula for δ_{i}^{A} ?
Formal group law
There exists a formal power series $F_{A}(x, y)=x+y+\ldots$ with coefficients in A^{0} such that

$$
F\left(c_{1}^{A}(L), c_{1}^{A}(M)\right)=c_{1}^{A}(L \otimes M)
$$

in $A^{*}(X)$ for any pair of line bundles L and M on a variety X.

Examples

universal formal group law

Generalizations of divided difference operators

Question

Is there an algebraic formula for δ_{i}^{A} ?
Formal group law
There exists a formal power series $F_{A}(x, y)=x+y+\ldots$ with coefficients in A^{0} such that

$$
F\left(c_{1}^{A}(L), c_{1}^{A}(M)\right)=c_{1}^{A}(L \otimes M)
$$

in $A^{*}(X)$ for any pair of line bundles L and M on a variety X.
Examples
$C H^{*} F(x, y)=x+y$

Generalizations of divided difference operators

Question

Is there an algebraic formula for δ_{i}^{A} ?
Formal group law
There exists a formal power series $F_{A}(x, y)=x+y+\ldots$ with coefficients in A^{0} such that

$$
F\left(c_{1}^{A}(L), c_{1}^{A}(M)\right)=c_{1}^{A}(L \otimes M)
$$

in $A^{*}(X)$ for any pair of line bundles L and M on a variety X.
Examples
$C H^{*} F(x, y)=x+y$

$$
K_{0}^{*} F(x, y)=x+y-x y
$$

Generalizations of divided difference operators

Question

Is there an algebraic formula for δ_{i}^{A} ?
Formal group law
There exists a formal power series $F_{A}(x, y)=x+y+\ldots$ with coefficients in A^{0} such that

$$
F\left(c_{1}^{A}(L), c_{1}^{A}(M)\right)=c_{1}^{A}(L \otimes M)
$$

in $A^{*}(X)$ for any pair of line bundles L and M on a variety X.
Examples
$C H^{*} F(x, y)=x+y$
$K_{0}^{*} F(x, y)=x+y-x y$
$\Omega^{*} F(x, y)=x+y-\left[\mathbb{P}^{1}\right] x y+\left(\left[\mathbb{P}^{1}\right]^{2}-\left[\mathbb{P}^{2}\right]\right) x^{2} y+\ldots$
universal formal group law

Generalizations of divided difference operators

Theorem (follows from Quillen-Vishik formula)

$$
\delta_{i}^{A}=\left(1+s_{i}\right) \frac{1}{c_{1}^{A}\left(\mathcal{L}_{\alpha_{i}}\right)}
$$

Example $G=G L_{n}$

- If $A=C H$, then $\delta_{i}^{A}=\delta_{i}$.
- If $A=K_{0}$, then δ_{i}^{A} is the Demazure operator (=isobaric divided difference operator).

Generalizations of divided difference operators

Theorem (follows from Quillen-Vishik formula)

$$
\delta_{i}^{A}=\left(1+s_{i}\right) \frac{1}{c_{1}^{A}\left(\mathcal{L}_{\alpha_{i}}\right)}
$$

Example $G=G L_{n}$

$$
\delta_{i}^{A}=\left(1+s_{i}\right) \frac{1}{x_{i}-A x_{i+1}}
$$

- If $A=C H$, then $\delta_{i}^{A}=\delta_{i}$.
- If $A=K_{0}$, then δ_{i}^{A} is the Demazure operator (=isobaric divided difference operator).

Generalizations of divided difference operators

Theorem (follows from Quillen-Vishik formula)

$$
\delta_{i}^{A}=\left(1+s_{i}\right) \frac{1}{c_{1}^{A}\left(\mathcal{L}_{\alpha_{i}}\right)}
$$

Example $G=G L_{n}$

$$
\delta_{i}^{A}=\left(1+s_{i}\right) \frac{1}{x_{i}-A x_{i+1}}
$$

- If $A=C H$, then $\delta_{i}^{A}=\delta_{i}$.
- If $A=K_{0}$, then δ_{i}^{A} is the Demazure operator (=isobaric divided difference operator).

Generalizations of divided difference operators

Theorem (follows from Quillen-Vishik formula)

$$
\delta_{i}^{A}=\left(1+s_{i}\right) \frac{1}{c_{1}^{A}\left(\mathcal{L}_{\alpha_{i}}\right)}
$$

Example $G=G L_{n}$

$$
\delta_{i}^{A}=\left(1+s_{i}\right) \frac{1}{x_{i}-A x_{i+1}}
$$

- If $A=C H$, then $\delta_{i}^{A}=\delta_{i}$.
- If $A=K_{0}$, then δ_{i}^{A} is the Demazure operator (=isobaric divided difference operator).

Schubert calculus for cobordism

Question
What are analogs of Schubert cycles in cobordism?
Remark
In general, Schubert varieties are not smooth.
Bott-Samelson varieties
For each sequence $\left(s_{i_{1}}, \ldots, s_{i_{\ell}}\right)$ of simple reflections one can
construct by successive \mathbb{P}^{1}-fibrations a smooth variety $R_{/}$of
dimension ℓ together with a morphism $\pi_{I}: R_{I} \rightarrow X$. If
$w=s_{i_{1}} \ldots s_{i_{\ell}}$ is a reduced decomposition then R_{I} is a resolution of
singularities for $X_{w}=\pi_{l}\left(R_{l}\right)$.

Schubert calculus for cobordism

Question
What are analogs of Schubert cycles in cobordism?
Remark
In general, Schubert varieties are not smooth.
Bott-Samelson varieties
For each sequence $\left(s_{i_{1}}, \ldots, s_{i_{\ell}}\right)$ of simple reflections one can
construct by successive \mathbb{P}^{1}-fibrations a smooth variety $R_{/}$of
dimension ℓ together with a morphism $\pi_{I}: R_{I} \rightarrow X$. If
$w=s_{i_{1}} \ldots s_{i_{\ell}}$ is a reduced decomposition then R_{l} is a resolution of
singularities for $X_{w}=\pi_{l}\left(R_{l}\right)$.

Schubert calculus for cobordism

Question

What are analogs of Schubert cycles in cobordism?

Remark

In general, Schubert varieties are not smooth.
Bott-Samelson varieties
For each sequence ($s_{i_{1}}, \ldots, s_{i_{\ell}}$) of simple reflections one can construct by successive \mathbb{P}^{1}-fibrations a smooth variety R_{I} of dimension ℓ together with a morphism $\pi_{I}: R_{I} \rightarrow X$. If
$w=s_{i_{1}} \ldots s_{i_{\ell}}$ is a reduced decomposition then R_{l} is a resolution of singularities for $X_{w}=\pi_{l}\left(R_{l}\right)$.

Schubert calculus for cobordism

Results
Formulas for Bott-Samelson classes via divided difference operators. Algorithms for multiplying Bott-Samelson classes in the Borel presentation.

MU*
Bressler-Evens, 1992
汭 Hornbostel-K., Calmés-Petrov-Zainoulline, 2009
Ω_{\top}^{*} K.-Krishna, 2011

Schubert calculus for cobordism

Results
Formulas for Bott-Samelson classes via divided difference operators. Algorithms for multiplying Bott-Samelson classes in the Borel presentation.

MU* Bressler-Evens, 1992
』* Hornbostel-K., Calmés-Petrov-Zainoulline, 2009
Ω_{T}^{*} K.-Krishna, 2011

Schubert calculus for cobordism

Results

Formulas for Bott-Samelson classes via divided difference operators. Algorithms for multiplying Bott-Samelson classes in the Borel presentation.

MU* Bressler-Evens, 1992
』* Hornbostel-K., Calmés-Petrov-Zainoulline, 2009
Ω_{T}^{*} K.-Krishna, 2011

Schubert calculus for cobordism

Results

Formulas for Bott-Samelson classes via divided difference operators. Algorithms for multiplying Bott-Samelson classes in the Borel presentation.

MU* Bressler-Evens, 1992
』* Hornbostel-K., Calmés-Petrov-Zainoulline, 2009
Ω_{T}^{*} K.-Krishna, 2011

Example

$$
\begin{aligned}
& G=G L_{3} \\
& \qquad \begin{aligned}
& {\left[R_{212}\right]=1+\left(\left[\mathbb{P}^{1}\right]^{2}-\left[\mathbb{P}^{2}\right]\right) x_{1}^{2} ; } {\left[R_{121}\right]=1+\left(\left[\mathbb{P}^{1}\right]^{2}-\left[\mathbb{P}^{2}\right]\right) x_{1} x_{2} ; } \\
& {\left[R_{12}\right]=-x_{1}-\left[\mathbb{P}^{1}\right] x_{1}^{2} ; } {\left[R_{21}\right]=x_{3}=-x_{1}-x_{2} ; } \\
& {\left[R_{1}\right]=x_{1} x_{2} ; } {\left[R_{2}\right]=x_{1}^{2} ; } \\
& {\left[R_{e}\right]=-x_{1}^{2} x_{2} . }
\end{aligned}
\end{aligned}
$$

Schubert calculus for cobordism

Open problems

- Analogs of Schubert polynomials?
- "Positivity" of structure constants?
- Explicit Chevalley-Pieri formula (for multiplying $\left[R_{1}\right]$ by $c_{1}\left(\mathcal{L}_{\chi}\right)$)?

Schubert calculus for cobordism

Open problems

- Analogs of Schubert polynomials?
- "Positivity" of structure constants?
- Explicit Chevalley-Pieri formula (for multiplying [R_{l}] by $\left.c_{1}\left(\mathcal{L}_{\chi}\right)\right)$?

Schubert calculus for cobordism

Open problems

- Analogs of Schubert polynomials?
- "Positivity" of structure constants?
- Explicit Chevalley-Pieri formula (for multiplying [R_{1}] by $\left.c_{1}\left(\mathcal{L}_{\chi}\right)\right)$?

Schubert calculus for cobordism

Open problems

- Analogs of Schubert polynomials?
- "Positivity" of structure constants?
- Explicit Chevalley-Pieri formula (for multiplying $\left[R_{l}\right]$ by $\left.c_{1}\left(\mathcal{L}_{\chi}\right)\right) ?$

[^0]: Construction
 Let V be a representation of G such that G acts freely on an open subvariety $U \subset V$, the quotient U / G is quasiprojective and $\operatorname{codim}(V \backslash U)>i$. Take $U \rightarrow U / G$ as $E G_{i} \rightarrow B G_{i}$.

 Remark
 Under the above assumptions, $C H^{i}\left(X \times^{G} U\right)$ does not depend on the choice of V.

