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Equivariant cohomology theories

Notation
k � �eld of characteristic zero,

G � linear algebraic group over k .

Motivation
Extend to the algebraic setting equivariant cohomology theories

de�ned using the classifying space BG .

Classical equivariant cohomology

H∗
G (X ) := H∗(X ×G EG )

Remark
Note that X ×G EG is a �ber bundle over BG with the �ber X .
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Equivariant Chow groups

(Totaro, Edidin�Graham)

De�ne CH∗
G (X ) using approximations of the universal G -bundle

EG → BG by algebraic �ber bundles EGi → BGi :

CH i
G (X ) := CH i (X ×G EGi ).

Construction
Let V be a representation of G such that G acts freely on an open

subvariety U ⊂ V , the quotient U/G is quasiprojective and

codim(V \ U) > i . Take U → U/G as EGi → BGi .

Remark
Under the above assumptions, CH i (X ×G U) does not depend on

the choice of V .
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Algebraic cobordism

Notation
X/k � algebraic variety,

Ω∗(X ) � algebraic cobordism ring of X .

• (Levine�Morel) Construction of the universal oriented

cohomology theory Ω∗(−);

• (Levine�Pandharipande) Presentation of Ωn(X ) by generators

(=projective morphisms [Y → X ] of relative codimension n)
and relations (=double point relations).

Example

Ω∗(pt) = L � Lazard ring;

L ' Z[a1, a2, . . .],

where deg(ai ) = −i .
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Equivariant algebraic cobordism

Construction
Let V be a representation of G such that G acts freely on an open

subvariety U ⊂ V , the quotient U/G is quasiprojective and

codim(V \ U) > i . Take U → U/G as EGi → BGi .

Remark
In contrast with Chow groups, Ωi (X ×G U) might depend on the

choice of V .

Solution
Use the �ltration Ωi (X ) = F 0Ωi (X ) ⊃ F 1Ωi (X ) ⊃ . . ., where
F jΩi (X ) is spanned by the classes [π : Y → X ] such that

codim(π(Y )) ≥ j .

• (Deshpande) Ω∗
G (X ) for smooth X

• (Krishna, Heller�Malag�on-L�opez) Ω∗
G (X ) for all X
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Equivariant algebraic cobordism

Observation

Ωi
G (X )j :=

Ωi

(
X

G
× EGj

)
F jΩi

(
X

G
× EGj

)
does not depend on the choice of EGj → BGj .

De�nition

Ωi
G (X ) = lim←−

j

Ωi
G (X )j
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Equivariant algebraic cobordism

Example

G = T � split torus, ΛT � the character lattice of T

Ωi
T (pt) := lim←−

j

(Sym<j(ΛT )⊗ L)
i
.

Remark
If we �x a basis χ1, . . . , χn in ΛT and put xi := cT1 (Lχi ) then

Ω∗
T (pt) ' Lgr [[x1, . . . , xn]],

where Lgr [[x1, . . . , xn]] is the graded power series ring.

Relation with BT

Ω∗
T (pt) ' MU∗(BT ).
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Flag varieties

Notation
G � connected reductive group with a maximal torus T split over k
B ⊂ G � Borel subgroup containing T

De�nition
X = G/B is the variety of complete �ags

Example G = GLn(k)

X is the variety of complete �ags in kn:

X = {{0} = V 0 ⊂ V 1 ⊂ . . . ⊂ V n−1 ⊂ V n = kn| dimV i = i}
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Borel presentation

Picard group of X

Each character χ of T gives rise to the G -equivariant line bundle

Lχ := G
B
× Lχ on X . This gives the isomorphism

Pic(X ) ' ΛT .

Fact
CH∗(X )⊗Q (but not always CH∗(X )) is generated multiplicatively

by Pic(X ).

Torsion index
The torsion index of G is de�ned as the smallest positive integer tG
such that tG [pt] belongs to the subring of CH∗(X ) generated by

Pic(X ). For instance, tGLn = 1.
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Borel presentation for equivariant cobordism

Theorem (K.-Kishna, 2011)

Put S := Ω∗
T (pt). After inverting tG

Ω∗
T (G/B) ' S ⊗SW S ,

where SW ⊂ S is the subring of the Weyl group invariants.

Remark
The isomorphism S ⊗SW S → Ω∗

T (G/B) is given by

cT1 (Lχ)⊗ cT1 (Lχ′)→ cT1 (Lχ) · cT1 (Lχ).

Example G = GLn(k)

Ω∗
T (G/B) ' Lgr [[x1, . . . , xn; t1, . . . , tn]]/(si (x1, . . . , xn)−

si (t1, . . . , tn), i = 1, . . . , n).
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Borel presentation for usual cobordism

Corollary

After inverting tG
Ω∗(G/B) ' S ⊗SW L.

Remark
This corollary is similar to the result of Calm�es�Petrov�Zainoulline

(2009), who described Ω∗(G/B) in terms of the completion of S
with respect to its augmentation ideal.
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Schubert calculus

De�nition
Let W = N(T )/T denote the Weyl group of G . For each element

w ∈W , the Schubert variety Xw ⊂ X is

Xw = BwB.

De�nition
The Schubert cycle [Xw ] is the class of Xw in CH∗(X ).

Fact
Schubert cycles [Xw ] for all w ∈W form a basis in CH∗(X ).

Central question

How to multiply [Xw ]?
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Tool: divided di�erence operators

De�nition
Let α1,. . . , αn be simple roots of G . Divided di�erence operator δi
(for the simple root αi ) acts on Sym(ΛT ) as follows:

δi : f 7→ f − si (f )

c1(Lαi )
.

Example G = GLn
δi acts on Z[x1, . . . , xn] as follows:

δi : f 7→ f − si (f )

xi − xi+1
.
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Applications of divided di�erence operators

Theorem (Bernstein�Gelfand�Gelfand, Demazure, 1973)

Let w = si1 . . . si` be a reduced expression. In the Borel

presentation,

[Xw ] = δi` . . . δi1 [Xid ],

where [Xid ] is the class of a point.

Remark
For GLn,

[Xid ] = xn−1
1 xn−2

2 · · · xn−1.

If tG 6= 1, there is no denominator-free formula.
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Geometric meaning of divided di�erence operators

Gysin morphism

Let Pi be a minimal parabolic subgroup, and pi : G/B → G/Pi the

natural projection. Then the action of δi on CH∗(G/B,Z) coincides
with the action of p∗i ◦ pi ∗:

δi : CH∗(G/B,Z)
pi∗−→ CH∗(G/Pi ,Z)

p∗i−→ CH∗(G/B,Z).

Example

If G = GLn, then G/Pi is obtained by forgetting the i-th space in a

�ag.
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Generalizations of divided di�erence operators

Generalized cohomology theories

Let A∗ be an oriented cohomology theory. De�ne generalized

divided di�erence operator δAi as the composition

δAi : A∗(G/B,Z)
pAi ∗−→ A∗(G/Pi ,Z)

p∗Ai−→ A∗(G/B,Z).

Examples

• classical cohomology H∗ or Chow ring CH∗

• K -theory K ∗
0

• complex cobordism MU∗ or algebraic cobordism Ω∗
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Generalizations of divided di�erence operators

Question
Is there an algebraic formula for δAi ?

Formal group law

There exists a formal power series FA(x , y) = x + y + . . . with
coe�cients in A0 such that

F (cA1 (L), cA1 (M)) = cA1 (L⊗M)

in A∗(X ) for any pair of line bundles L and M on a variety X .

Examples

CH∗ F (x , y) = x + y

K ∗
0 F (x , y) = x + y − xy

Ω∗ F (x , y) = x + y − [P1]xy + ([P1]2 − [P2])x2y + . . .
universal formal group law
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Ω∗ F (x , y) = x + y − [P1]xy + ([P1]2 − [P2])x2y + . . .
universal formal group law
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Generalizations of divided di�erence operators

Theorem (follows from Quillen�Vishik formula)

δAi = (1 + si )
1

cA1 (Lαi )

Example G = GLn

δAi = (1 + si )
1

xi −A xi+1

• If A = CH, then δAi = δi .

• If A = K0, then δ
A
i is the Demazure operator (=isobaric

divided di�erence operator).
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Schubert calculus for cobordism

Question
What are analogs of Schubert cycles in cobordism?

Remark
In general, Schubert varieties are not smooth.

Bott�Samelson varieties
For each sequence (si1 , . . . , si`) of simple re�ections one can

construct by successive P1-�brations a smooth variety RI of

dimension ` together with a morphism πI : RI → X . If

w = si1 . . . si` is a reduced decomposition then RI is a resolution of

singularities for Xw = πI (RI ).
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Schubert calculus for cobordism

Results
Formulas for Bott�Samelson classes via divided di�erence

operators. Algorithms for multiplying Bott-Samelson classes in the

Borel presentation.

MU∗ Bressler�Evens, 1992

Ω∗ Hornbostel�K., Calm�es�Petrov�Zainoulline, 2009

Ω∗
T K.�Krishna, 2011
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Example

G = GL3

[R212] = 1 + ([P1]2 − [P2])x21 ; [R121] = 1 + ([P1]2 − [P2])x1x2;

[R12] = −x1 − [P1]x21 ; [R21] = x3 = −x1 − x2;

[R1] = x1x2; [R2] = x21 ;

[Re ] = −x21x2.



Schubert calculus for cobordism

Open problems

• Analogs of Schubert polynomials?

• �Positivity� of structure constants?

• Explicit Chevalley�Pieri formula (for multiplying [RI ] by
c1(Lχ))?
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