Modular Approach to Diophantine Equations II

Samir Siksek
University of Warwick
June 15, 2012

Recap: Ribet's Level-Lowering Theorem

Let

- E / \mathbb{Q} an elliptic curve,
- $\Delta=\Delta_{\text {min }}$ be the discriminant for a minimal model of E,
- N be the conductor of E,
- for a prime p let

$$
N_{p}=N / \prod_{\substack{q \| N, p \mid \operatorname{ord}_{q}(\Delta)}} q
$$

Recap: Ribet's Level-Lowering Theorem

Let

- E / \mathbb{Q} an elliptic curve,
- $\Delta=\Delta_{\text {min }}$ be the discriminant for a minimal model of E,
- N be the conductor of E,
- for a prime p let

$$
N_{p}=N / \prod_{\substack{q \| N, p \mid \operatorname{ord}_{q}(\Delta)}} q
$$

Theorem

(A simplified special case of Ribet's Level-Lowering Theorem) Let $p \geq 5$ be a prime such that E does not have any p-isogenies. Let N_{p} be as defined above. Then there exists a newform f of level N_{p} such that $E \sim_{p} f$.

Recap

Proposition

Let E / \mathbb{Q} have conductor N, and f have level N^{\prime}. Suppose $E \sim_{p} f$. Then there is some prime ideal $\mathfrak{P} \mid p$ of \mathcal{O}_{K} such that for all primes ℓ
(i) if $\ell \nmid p N N^{\prime}$ then $a_{\ell}(E) \equiv c_{\ell}(\bmod \mathfrak{P})$, and
(ii) if $\ell \nmid p N^{\prime}$ and $\ell \| N$ then $\ell+1 \equiv \pm c_{\ell}(\bmod \mathfrak{P})$.

Recap

Proposition

Let E / \mathbb{Q} have conductor N, and f have level N^{\prime}. Suppose $E \sim_{p} f$. Then there is some prime ideal $\mathfrak{P} \mid p$ of \mathcal{O}_{K} such that for all primes ℓ
(i) if $\ell \nmid p N N^{\prime}$ then $a_{\ell}(E) \equiv c_{\ell}(\bmod \mathfrak{P})$, and
(ii) if $\ell \nmid p N^{\prime}$ and $\ell \| N$ then $\ell+1 \equiv \pm c_{\ell}(\bmod \mathfrak{P})$.

If $E \sim_{p} f$ and f is rational then we write $E \sim_{p} E_{f}$.

Recap

Proposition

Let E / \mathbb{Q} have conductor N, and f have level N^{\prime}. Suppose $E \sim_{p} f$. Then there is some prime ideal $\mathfrak{P} \mid p$ of \mathcal{O}_{K} such that for all primes ℓ
(i) if $\ell \nmid p N N^{\prime}$ then $a_{\ell}(E) \equiv c_{\ell}(\bmod \mathfrak{P})$, and
(ii) if $\ell \nmid p N^{\prime}$ and $\ell \| N$ then $\ell+1 \equiv \pm c_{\ell}(\bmod \mathfrak{P})$.

If $E \sim_{p} f$ and f is rational then we write $E \sim_{p} E_{f}$.

Proposition

Let E, F have conductors N and N^{\prime} respectively. If $E \sim_{p} F$ then for all primes ℓ
(i) if $\ell \nmid N N^{\prime}$ then $a_{\ell}(E) \equiv a_{\ell}(F)(\bmod p)$, and
(ii) if $\ell \nmid N^{\prime}$ and $\ell \| N$ then $\ell+1 \equiv \pm a_{\ell}(F)(\bmod p)$.

Frey Curves

Given a Diophantine equation, suppose that it has a solution

Frey Curves

Given a Diophantine equation, suppose that it has a solution and associate the solution somehow to an elliptic curve E called a Frey curve, if possible.

Frey Curves

Given a Diophantine equation, suppose that it has a solution and associate the solution somehow to an elliptic curve E called a Frey curve, if possible. The key properties of a 'Frey curve' are

Frey Curves

Given a Diophantine equation, suppose that it has a solution and associate the solution somehow to an elliptic curve E called a Frey curve, if possible. The key properties of a 'Frey curve' are

- the coefficients of E depend on the solution to the Diophantine equation;

Frey Curves

Given a Diophantine equation, suppose that it has a solution and associate the solution somehow to an elliptic curve E called a Frey curve, if possible. The key properties of a 'Frey curve' are

- the coefficients of E depend on the solution to the Diophantine equation;
- the minimal discriminant of the elliptic curve can be written in the form $\Delta=C \cdot D^{p}$ where D is an expression that depends on the solution of the Diophantine equation. The factor C does not depend on the solutions but only on the equation itself.

Frey Curves

Given a Diophantine equation, suppose that it has a solution and associate the solution somehow to an elliptic curve E called a Frey curve, if possible. The key properties of a 'Frey curve' are

- the coefficients of E depend on the solution to the Diophantine equation;
- the minimal discriminant of the elliptic curve can be written in the form $\Delta=C \cdot D^{p}$ where D is an expression that depends on the solution of the Diophantine equation. The factor C does not depend on the solutions but only on the equation itself.
- E has multiplicative reduction at primes dividing D.

Frey Curves II

- the coefficients of E depend on the solution to the Diophantine equation;
- the minimal discriminant of the elliptic curve can be written in the form $\Delta=C \cdot D^{p}$ where D is an expression that depends on the solution of the Diophantine equation. The factor C does not depend on the solutions but only on the equation itself.
- E has multiplicative reduction at primes dividing D.

The conductor N of E will be divisible by the primes dividing C and D, and those dividing D will be removed when we write down N_{p}. In other words we can make a finite list of possibilities for N_{p} that depend on the equation. Thus we are able to list a finite set of newforms f such that $E \sim_{p} f$.

A Variant of the Fermat Equation

Let L be an odd prime number. Consider

$$
x^{p}+L^{r} y^{p}+z^{p}=0, \quad x y z \neq 0, \quad p \geq 5 \text { is prime },
$$

A Variant of the Fermat Equation

Let L be an odd prime number. Consider

$$
x^{p}+L^{r} y^{p}+z^{p}=0, \quad x y z \neq 0, \quad p \geq 5 \text { is prime },
$$

We assume that

$$
x, y, z \text { are pairwise coprime }, \quad 0<r<p
$$

A Variant of the Fermat Equation

Let L be an odd prime number. Consider

$$
x^{p}+L^{r} y^{p}+z^{p}=0, \quad x y z \neq 0, \quad p \geq 5 \text { is prime }
$$

We assume that

$$
x, y, z \text { are pairwise coprime }, \quad 0<r<p
$$

Let A, B, C be some permutation of $x^{p}, L^{r} y^{p}$ and z^{p} such that $A \equiv-1(\bmod 4)$ and $2 \mid B$, and let E be the elliptic curve

$$
E: \quad Y^{2}=X(X-A)(X+B)
$$

The minimal discriminant and conductor of E are

$$
\Delta_{\min }=2^{-8} L^{2 r}(x y z)^{2 p}, \quad N=\operatorname{Rad}(L x y z)
$$

A Variant of the Fermat Equation

Let L be an odd prime number. Consider

$$
x^{p}+L^{r} y^{p}+z^{p}=0, \quad x y z \neq 0, \quad p \geq 5 \text { is prime }
$$

We assume that

$$
x, y, z \text { are pairwise coprime }, \quad 0<r<p
$$

Let A, B, C be some permutation of $x^{p}, L^{r} y^{p}$ and z^{p} such that $A \equiv-1(\bmod 4)$ and $2 \mid B$, and let E be the elliptic curve

$$
E: \quad Y^{2}=X(X-A)(X+B)
$$

The minimal discriminant and conductor of E are

$$
\begin{gathered}
\Delta_{\min }=2^{-8} L^{2 r}(x y z)^{2 p}, \quad N=\operatorname{Rad}(L x y z) . \\
N_{p}=N / \prod_{\substack{\ell \| N, p \mid \operatorname{ord}_{\ell}(\Delta)}} \ell=2 L .
\end{gathered}
$$

A Variant of the Fermat Equation

Let L be an odd prime number. Consider

$$
x^{p}+L^{r} y^{p}+z^{p}=0, \quad x y z \neq 0, \quad p \geq 5 \text { is prime },
$$

... Ribet's Theorem says there is a newform f at level $N_{p}=2 L$ such that $E \sim_{p} f$.

A Variant of the Fermat Equation

Let L be an odd prime number. Consider

$$
x^{p}+L^{r} y^{p}+z^{p}=0, \quad x y z \neq 0, \quad p \geq 5 \text { is prime },
$$

... Ribet's Theorem says there is a newform f at level $N_{p}=2 L$ such that $E \sim_{p} f$.
Fact: there are no newforms at levels

$$
1,2,3,4,5,6,7,8,9,10,12,13,16,18,22,25,28,60 .
$$

A Variant of the Fermat Equation

Let L be an odd prime number. Consider

$$
x^{p}+L^{r} y^{p}+z^{p}=0, \quad x y z \neq 0, \quad p \geq 5 \text { is prime },
$$

... Ribet's Theorem says there is a newform f at level $N_{p}=2 L$ such that $E \sim_{p} f$.
Fact: there are no newforms at levels

$$
1,2,3,4,5,6,7,8,9,10,12,13,16,18,22,25,28,60 .
$$

Equation has no non-trivial solutions for $L=3,5,11$.

A Variant of the Fermat Equation

Let L be an odd prime number. Consider

$$
x^{p}+L^{r} y^{p}+z^{p}=0, \quad x y z \neq 0, \quad p \geq 5 \text { is prime },
$$

... Ribet's Theorem says there is a newform f at level $N_{p}=2 L$ such that $E \sim_{p} f$.
Fact: there are no newforms at levels

$$
1,2,3,4,5,6,7,8,9,10,12,13,16,18,22,25,28,60 .
$$

Equation has no non-trivial solutions for $L=3,5,11$.
Can we do anything for other values of L ? e.g. $L=19$.

A Variant of the Fermat Equation

Let L be an odd prime number. Consider

$$
x^{p}+L^{r} y^{p}+z^{p}=0, \quad x y z \neq 0, \quad p \geq 5 \text { is prime },
$$

... Ribet's Theorem says there is a newform f at level $N_{p}=2 L$ such that $E \sim_{p} f$.
Fact: there are no newforms at levels

$$
1,2,3,4,5,6,7,8,9,10,12,13,16,18,22,25,28,60 .
$$

Equation has no non-trivial solutions for $L=3,5,11$.
Can we do anything for other values of L ? e.g. $L=19$.
From the above we know that $E \sim_{p} f$ for some newform at level $N_{p}=38$. There are two newforms at level 38:

$$
\begin{gathered}
f_{1}=q-q^{2}+q^{3}+q^{4}-q^{6}-q^{7}+\cdots \\
f_{2}=q+q^{2}-q^{3}+q^{4}-4 q^{5}-q^{6}+3 q^{7}+\cdots
\end{gathered}
$$

A Variant of the Fermat Equation

Let L be an odd prime number. Consider

$$
x^{p}+L^{r} y^{p}+z^{p}=0, \quad x y z \neq 0, \quad p \geq 5 \text { is prime },
$$

... Ribet's Theorem says there is a newform f at level $N_{p}=2 L$ such that $E \sim_{p} f$.
Fact: there are no newforms at levels

$$
1,2,3,4,5,6,7,8,9,10,12,13,16,18,22,25,28,60 .
$$

Equation has no non-trivial solutions for $L=3,5,11$.
Can we do anything for other values of L ? e.g. $L=19$.
From the above we know that $E \sim_{p} f$ for some newform at level $N_{p}=38$. There are two newforms at level 38:

$$
\begin{gathered}
f_{1}=q-q^{2}+q^{3}+q^{4}-q^{6}-q^{7}+\cdots \\
f_{2}=q+q^{2}-q^{3}+q^{4}-4 q^{5}-q^{6}+3 q^{7}+\cdots
\end{gathered}
$$

No contradiction yet.

Bounding the Exponent

Notation:

Bounding the Exponent

Notation:

- E / \mathbb{Q} elliptic curve of conductor N,

Bounding the Exponent

Notation:

- E / \mathbb{Q} elliptic curve of conductor N,
- $t \mid \# E(\mathbb{Q})_{\text {tors }}$,

Bounding the Exponent

Notation:

- E / \mathbb{Q} elliptic curve of conductor N,
- $t \mid \# E(\mathbb{Q})_{\text {tors }}$,
- f is a newform of level N^{\prime} :

Bounding the Exponent

Notation:

- E / \mathbb{Q} elliptic curve of conductor N,
- $t \mid \# E(\mathbb{Q})_{\text {tors }}$,
- f is a newform of level N^{\prime} :

$$
f=q+\sum_{n \geq 2} c_{n} q^{n}, \quad K=\mathbb{Q}\left(c_{2}, c_{3}, \ldots\right) .
$$

- Suppose $E \sim_{p} f$.

Bounding the Exponent

Notation:

- E / \mathbb{Q} elliptic curve of conductor N,
- $t \mid \# E(\mathbb{Q})_{\text {tors }}$,
- f is a newform of level N^{\prime} :

$$
f=q+\sum_{n \geq 2} c_{n} q^{n}, \quad K=\mathbb{Q}\left(c_{2}, c_{3}, \ldots\right)
$$

- Suppose $E \sim_{p} f$.
- Let ℓ be a prime such that

$$
\ell \nmid N^{\prime}, \quad \ell^{2} \nmid N .
$$

We know, for some $\mathfrak{P} \mid p$,
(i) if $\ell \nmid p N N^{\prime}$ then $a_{\ell}(E) \equiv c_{\ell}(\bmod \mathfrak{P})$, and
(ii) if $\ell \nmid p N^{\prime}$ and $\ell \| N$ then $\ell+1 \equiv \pm c_{\ell}(\bmod \mathfrak{P})$.

Bounding the Exponent

- $t \mid \# E(\mathbb{Q})_{\text {tors }}$,
- Let ℓ be a prime such that

$$
\ell \nmid N^{\prime}, \quad \ell^{2} \nmid N .
$$

We know, for some $\mathfrak{P} \mid p$,
(i) if $\ell \nmid p N N^{\prime}$ then $a_{\ell}(E) \equiv c_{\ell}(\bmod \mathfrak{P})$, and
(ii) if $\ell \nmid p N^{\prime}$ and $\ell \| N$ then $\ell+1 \equiv \pm c_{\ell}(\bmod \mathfrak{P})$.

Bounding the Exponent

- $t \mid \# E(\mathbb{Q})_{\text {tors }}$,
- Let ℓ be a prime such that

$$
\ell \nmid N^{\prime}, \quad \ell^{2} \nmid N .
$$

We know, for some $\mathfrak{P} \mid p$,
(i) if $\ell \nmid p N N^{\prime}$ then $a_{\ell}(E) \equiv c_{\ell}(\bmod \mathfrak{P})$, and
(ii) if $\ell \nmid p N^{\prime}$ and $\ell \| N$ then $\ell+1 \equiv \pm c_{\ell}(\bmod \mathfrak{P})$.

- Either $p=\ell$,
- or $p \mid \operatorname{Norm}\left(a_{\ell}(E)-c_{\ell}\right) \quad($ case $\ell \nmid N)$,
- or $p \mid \operatorname{Norm}\left((\ell+1)^{2}-c_{\ell}^{2}\right) \quad($ case $\ell \mid N)$.

Bounding the Exponent

- $t \mid \# E(\mathbb{Q})_{\text {tors }}$,
- Either $p=\ell$,
- or $p \mid \operatorname{Norm}\left(a_{\ell}(E)-c_{\ell}\right) \quad($ case $\ell \nmid N)$,
- or $p \mid \operatorname{Norm}\left((\ell+1)^{2}-c_{\ell}^{2}\right) \quad($ case $\ell \mid N)$.

Bounding the Exponent

- $t \mid \# E(\mathbb{Q})_{\text {tors }}$,
- Either $p=\ell$,
- or $p \mid \operatorname{Norm}\left(a_{\ell}(E)-c_{\ell}\right) \quad($ case $\ell \nmid N)$,
- or $p \mid \operatorname{Norm}\left((\ell+1)^{2}-c_{\ell}^{2}\right) \quad($ case $\ell \mid N)$.

Suppose $\ell \nmid N$.

$$
-2 \sqrt{\ell} \leq a_{\ell}(E) \leq \sqrt{\ell}
$$

Bounding the Exponent

- $t \mid \# E(\mathbb{Q})_{\text {tors }}$,
- Either $p=\ell$,
- or $p \mid \operatorname{Norm}\left(a_{\ell}(E)-c_{\ell}\right) \quad($ case $\ell \nmid N)$,
- or $p \mid \operatorname{Norm}\left((\ell+1)^{2}-c_{\ell}^{2}\right) \quad($ case $\ell \mid N)$.

Suppose $\ell \nmid N$.

$$
-2 \sqrt{\ell} \leq a_{\ell}(E) \leq \sqrt{\ell}
$$

Also

$$
t \mid \# E\left(\mathbb{F}_{\ell}\right), \quad \text { since } E(\mathbb{Q})_{\text {tors }} \hookrightarrow E\left(\mathbb{F}_{\ell}\right)
$$

Bounding the Exponent

- $t \mid \# E(\mathbb{Q})_{\text {tors }}$,
- Either $p=\ell$,
- or $p \mid \operatorname{Norm}\left(a_{\ell}(E)-c_{\ell}\right) \quad($ case $\ell \nmid N)$,
- or $p \mid \operatorname{Norm}\left((\ell+1)^{2}-c_{\ell}^{2}\right) \quad($ case $\ell \mid N)$.

Suppose $\ell \nmid N$.

$$
-2 \sqrt{\ell} \leq a_{\ell}(E) \leq \sqrt{\ell}
$$

Also

$$
t \mid \# E\left(\mathbb{F}_{\ell}\right), \quad \text { since } E(\mathbb{Q})_{\text {tors }} \hookrightarrow E\left(\mathbb{F}_{\ell}\right)
$$

But $\# E\left(\mathbb{F}_{\ell}\right)=\ell+1-a_{\ell}(E)$.

Bounding the Exponent

- $t \mid \# E(\mathbb{Q})_{\text {tors }}$,
- Either $p=\ell$,
- or $p \mid \operatorname{Norm}\left(a_{\ell}(E)-c_{\ell}\right) \quad($ case $\ell \nmid N)$,
- or $p \mid \operatorname{Norm}\left((\ell+1)^{2}-c_{\ell}^{2}\right) \quad($ case $\ell \mid N)$.

Suppose $\ell \nmid N$.

$$
-2 \sqrt{\ell} \leq a_{\ell}(E) \leq \sqrt{\ell}
$$

Also

$$
t \mid \# E\left(\mathbb{F}_{\ell}\right), \quad \text { since } E(\mathbb{Q})_{\text {tors }} \hookrightarrow E\left(\mathbb{F}_{\ell}\right) .
$$

But $\# E\left(\mathbb{F}_{\ell}\right)=\ell+1-a_{\ell}(E)$. So
$p \mid \operatorname{Norm}\left(a-c_{\ell}\right) \quad-2 \sqrt{\ell} \leq a \leq \sqrt{\ell}, \quad \ell+1 \equiv a \quad(\bmod t)$.

Bounding the Exponent

Proposition

Let ℓ be a prime such that $\ell \nmid N^{\prime}$ and $\ell^{2} \nmid N$. Let

$$
S_{\ell}=\{a \in \mathbb{Z}: \quad-2 \sqrt{\ell} \leq a \leq 2 \sqrt{\ell}, \quad a \equiv \ell+1 \quad(\bmod t)\} .
$$

Let c_{ℓ} be the ℓ-th coefficient of f and define

$$
B_{\ell}^{\prime}(f)=\operatorname{Norm}_{K / \mathbb{Q}}\left((\ell+1)^{2}-c_{l}^{2}\right) \prod_{a \in S_{\ell}} \operatorname{Norm}_{K / \mathbb{Q}}\left(a-c_{\ell}\right)
$$

and

$$
B_{\ell}(f)= \begin{cases}\ell \cdot B_{\ell}^{\prime}(f) & \text { if } f \text { is irrational }, \\ B_{\ell}^{\prime}(f) & \text { if } f \text { is rational. }\end{cases}
$$

If $E \sim_{p} f$ then $p \mid B_{\ell}(f)$.

A Variant of the Fermat Equation

$$
x^{p}+19^{r} y^{p}+z^{p}=0, \quad x y z \neq 0, \quad p \geq 5 \text { is prime },
$$

We know that $E \sim_{p} f$ for some newform at level $N_{p}=38$. There are two newforms at level 38:

$$
\begin{gathered}
f_{1}=q-q^{2}+q^{3}+q^{4}-q^{6}-q^{7}+\cdots \\
f_{2}=q+q^{2}-q^{3}+q^{4}-4 q^{5}-q^{6}+3 q^{7}+\cdots
\end{gathered}
$$

A Variant of the Fermat Equation

$$
x^{p}+19^{r} y^{p}+z^{p}=0, \quad x y z \neq 0, \quad p \geq 5 \text { is prime },
$$

We know that $E \sim_{p} f$ for some newform at level $N_{p}=38$. There are two newforms at level 38:

$$
\begin{gathered}
f_{1}=q-q^{2}+q^{3}+q^{4}-q^{6}-q^{7}+\cdots \\
f_{2}=q+q^{2}-q^{3}+q^{4}-4 q^{5}-q^{6}+3 q^{7}+\cdots
\end{gathered}
$$

Apply the Proposition with $t=4$:

$$
\begin{gathered}
B_{3}\left(f_{1}\right)=-15, \quad B_{5}\left(f_{1}\right)=-144, \\
\operatorname{gcd}(-15,144)=3 \Longrightarrow E \not \chi_{p} f_{1} \quad(p \geq 5) .
\end{gathered}
$$

A Variant of the Fermat Equation

$$
x^{p}+19^{r} y^{p}+z^{p}=0, \quad x y z \neq 0, \quad p \geq 5 \text { is prime },
$$

We know that $E \sim_{p} f$ for some newform at level $N_{p}=38$. There are two newforms at level 38:

$$
\begin{gathered}
f_{1}=q-q^{2}+q^{3}+q^{4}-q^{6}-q^{7}+\cdots \\
f_{2}=q+q^{2}-q^{3}+q^{4}-4 q^{5}-q^{6}+3 q^{7}+\cdots
\end{gathered}
$$

Apply the Proposition with $t=4$:

$$
\begin{gathered}
B_{3}\left(f_{1}\right)=-15, \quad B_{5}\left(f_{1}\right)=-144, \\
\operatorname{gcd}(-15,144)=3 \Longrightarrow E \not \chi_{p} f_{1} \quad(p \geq 5) .
\end{gathered}
$$

Eliminated f_{1}.

A Variant of the Fermat Equation

Suppose

$$
x^{p}+19^{r} y^{p}+z^{p}=0, \quad x y z \neq 0, \quad p \geq 5 \text { is prime },
$$

has a non-trivial solution. Then $E \sim_{p} f_{2}$. But

$$
\begin{gathered}
B_{3}\left(f_{2}\right)=15, \quad B_{5}\left(f_{2}\right)=240, \quad B_{7}\left(f_{2}\right)=1155, \quad B_{11}\left(f_{2}\right)=3360 \\
\Longrightarrow p=5 .
\end{gathered}
$$

A Variant of the Fermat Equation

Suppose

$$
x^{p}+19^{r} y^{p}+z^{p}=0, \quad x y z \neq 0, \quad p \geq 5 \text { is prime },
$$

has a non-trivial solution. Then $E \sim_{p} f_{2}$. But

$$
\begin{gathered}
B_{3}\left(f_{2}\right)=15, \quad B_{5}\left(f_{2}\right)=240, \quad B_{7}\left(f_{2}\right)=1155, \quad B_{11}\left(f_{2}\right)=3360 \\
\Longrightarrow p=5 .
\end{gathered}
$$

Is $B_{\ell}\left(f_{2}\right)$ always divisible by 5 ?

A Variant of the Fermat Equation

Suppose

$$
x^{p}+19^{r} y^{p}+z^{p}=0, \quad x y z \neq 0, \quad p \geq 5 \text { is prime },
$$

has a non-trivial solution. Then $E \sim_{p} f_{2}$. But

$$
\begin{gathered}
B_{3}\left(f_{2}\right)=15, \quad B_{5}\left(f_{2}\right)=240, \quad B_{7}\left(f_{2}\right)=1155, \quad B_{11}\left(f_{2}\right)=3360 \\
\Longrightarrow p=5 .
\end{gathered}
$$

Is $B_{\ell}\left(f_{2}\right)$ always divisible by 5 ?

$$
\text { newform } f_{2} \longleftrightarrow \text { elliptic curve } F=38 B 1
$$

A Variant of the Fermat Equation

Suppose

$$
x^{p}+19^{r} y^{p}+z^{p}=0, \quad x y z \neq 0, \quad p \geq 5 \text { is prime },
$$

has a non-trivial solution. Then $E \sim_{p} f_{2}$. But

$$
\begin{gathered}
B_{3}\left(f_{2}\right)=15, \quad B_{5}\left(f_{2}\right)=240, \quad B_{7}\left(f_{2}\right)=1155, \quad B_{11}\left(f_{2}\right)=3360 \\
\Longrightarrow p=5 .
\end{gathered}
$$

Is $B_{\ell}\left(f_{2}\right)$ always divisible by 5 ?
newform $f_{2} \longleftrightarrow$ elliptic curve $F=38 B 1$.

$$
\begin{gathered}
\# F(\mathbb{Q})_{\text {tors }}=5 \Longrightarrow 5 \mid\left(\ell+1-c_{\ell}\right) \\
\Longrightarrow 5 \mid B_{\ell}\left(f_{2}\right):=\left(\ell+1-c_{l}\right)\left(\ell+1+c_{\ell}\right) \prod_{a \in S_{\ell}}\left(a-c_{\ell}\right) .
\end{gathered}
$$

Eliminating $p=5$

Suppose $p=5$. Want a contradiction.

Eliminating $p=5$

Suppose $p=5$. Want a contradiction.

$$
\ell \nmid N N^{\prime} \Longrightarrow a_{\ell}(E) \equiv c_{\ell} \quad(\bmod 5) .
$$

Eliminating $p=5$

Suppose $p=5$. Want a contradiction.

$$
\begin{gathered}
\ell \nmid N N^{\prime} \Longrightarrow a_{\ell}(E) \equiv c_{\ell} \quad(\bmod 5) \\
\# E\left(\mathbb{F}_{\ell}\right)=\ell+1-a_{\ell}(E) \equiv \ell+1-c_{\ell} \equiv 0 \quad(\bmod 5)
\end{gathered}
$$

Eliminating $p=5$

Suppose $p=5$. Want a contradiction.

$$
\begin{gathered}
\ell \nmid N N^{\prime} \Longrightarrow a_{\ell}(E) \equiv c_{\ell} \quad(\bmod 5) \\
\# E\left(\mathbb{F}_{\ell}\right)=\ell+1-a_{\ell}(E) \equiv \ell+1-c_{\ell} \equiv 0 \quad(\bmod 5) .
\end{gathered}
$$

Čebotarev Density Theorem $\Longrightarrow E$ has a 5-isogeny.

Eliminating $p=5$

Suppose $p=5$. Want a contradiction.

$$
\begin{gathered}
\ell \nmid N N^{\prime} \Longrightarrow a_{\ell}(E) \equiv c_{\ell} \quad(\bmod 5) . \\
\# E\left(\mathbb{F}_{\ell}\right)=\ell+1-a_{\ell}(E) \equiv \ell+1-c_{\ell} \equiv 0 \quad(\bmod 5) .
\end{gathered}
$$

Čebotarev Density Theorem $\Longrightarrow E$ has a 5-isogeny.
But E is semi-stable and has full 2-torsion. Mazur's Theorem gives contradiction.

Eliminating $p=5$

Suppose $p=5$. Want a contradiction.

$$
\begin{gathered}
\ell \nmid N N^{\prime} \Longrightarrow a_{\ell}(E) \equiv c_{\ell} \quad(\bmod 5) \\
\# E\left(\mathbb{F}_{\ell}\right)=\ell+1-a_{\ell}(E) \equiv \ell+1-c_{\ell} \equiv 0 \quad(\bmod 5)
\end{gathered}
$$

Čebotarev Density Theorem $\Longrightarrow E$ has a 5-isogeny.
But E is semi-stable and has full 2-torsion. Mazur's Theorem gives contradiction.
The equation

$$
x^{p}+19^{r} y^{p}+z^{p}=0, \quad x y z \neq 0, \quad p \geq 5 \text { is prime },
$$

has no solutions.

Bounding the Exponent $x^{2}-2=y^{p}$?

$$
x^{2}-2=y^{p}, \quad p \geq 5 \text { prime. }
$$

Bounding the Exponent $x^{2}-2=y^{\rho} ?$

$$
x^{2}-2=y^{p}, \quad p \geq 5 \text { prime }
$$

Frey curve: $\quad E_{(x, y)}: \quad Y^{2}=X^{3}+2 x X^{2}+2 X, \quad t=2$.

Bounding the Exponent $x^{2}-2=y^{\rho} ?$

$$
x^{2}-2=y^{p}, \quad p \geq 5 \text { prime. }
$$

Frey curve: $\quad E_{(x, y)}: \quad Y^{2}=X^{3}+2 x X^{2}+2 X, \quad t=2$.

$$
\Delta_{\min }=2^{8} y^{p}, \quad N=2^{7} \operatorname{Rad}(y), \quad N_{p}=128
$$

Bounding the Exponent $x^{2}-2=y^{p}$?

$$
x^{2}-2=y^{p}, \quad p \geq 5 \text { prime. }
$$

Frey curve: $\quad E_{(x, y)}: \quad Y^{2}=X^{3}+2 x X^{2}+2 X, \quad t=2$.

$$
\Delta_{\min }=2^{8} y^{p}, \quad N=2^{7} \operatorname{Rad}(y), \quad N_{p}=128
$$

By Ribet, $E_{(x, y)} \sim_{p} F$ where F is one of

$$
F_{1}=128 A 1, \quad F_{2}=128 B 1, \quad F_{3}=128 C 1, \quad F_{4}=128 D 1 .
$$

Bounding the Exponent $x^{2}-2=y^{p}$?

$$
x^{2}-2=y^{p}, \quad p \geq 5 \text { prime. }
$$

Frey curve: $\quad E_{(x, y)}: \quad Y^{2}=X^{3}+2 x X^{2}+2 X, \quad t=2$.

$$
\Delta_{\min }=2^{8} y^{p}, \quad N=2^{7} \operatorname{Rad}(y), \quad N_{p}=128
$$

By Ribet, $E_{(x, y)} \sim_{p} F$ where F is one of

$$
F_{1}=128 A 1, \quad F_{2}=128 B 1, \quad F_{3}=128 C 1, \quad F_{4}=128 D 1 .
$$

Exercise: Show that $B_{\ell}\left(F_{i}\right)=0$ for all ℓ and $i=1,2,3,4$.

Bounding the Exponent $x^{2}-2=y^{p}$?

$$
x^{2}-2=y^{p}, \quad p \geq 5 \text { prime. }
$$

Frey curve:

$$
\begin{aligned}
& \text { rve: } \quad E_{(x, y)}: \quad Y^{2}=X^{3}+2 x X^{2}+2 X, \\
& \Delta_{\min }=2^{8} y^{p}, \quad N=2^{7} \operatorname{Rad}(y), \quad N_{p}=128
\end{aligned}
$$

$$
t=2
$$

By Ribet, $E_{(x, y)} \sim_{p} F$ where F is one of

$$
F_{1}=128 A 1, \quad F_{2}=128 B 1, \quad F_{3}=128 C 1, \quad F_{4}=128 D 1 .
$$

Exercise: Show that $B_{\ell}\left(F_{i}\right)=0$ for all ℓ and $i=1,2,3,4$.
No bound on p from the modular method. Note $E_{(-1,-1)}=F_{1}$ and $E_{(1,-1)}=F_{3}$.

Bounding the Exponent $x^{2}-2=y^{p}$?

$$
x^{2}-2=y^{p}, \quad p \geq 5 \text { prime. }
$$

Frey curve: $\quad E_{(x, y)}: \quad Y^{2}=X^{3}+2 x X^{2}+2 X, \quad t=2$.

$$
\Delta_{\min }=2^{8} y^{p}, \quad N=2^{7} \operatorname{Rad}(y), \quad N_{p}=128 .
$$

By Ribet, $E_{(x, y)} \sim_{p} F$ where F is one of

$$
F_{1}=128 A 1, \quad F_{2}=128 B 1, \quad F_{3}=128 C 1, \quad F_{4}=128 D 1 .
$$

Exercise: Show that $B_{\ell}\left(F_{i}\right)=0$ for all ℓ and $i=1,2,3,4$.
No bound on p from the modular method. Note $E_{(-1,-1)}=F_{1}$ and $E_{(1,-1)}=F_{3}$.
Note equation has solutions $(x, y, p)=(\pm 1,-1, p)$.

Bounding the Exponent

$B_{\ell}(f) \neq 0 \Longrightarrow p$ is bounded.

Bounding the Exponent

$B_{\ell}(f) \neq 0 \Longrightarrow p$ is bounded.
We are guaranteed to succeed in two cases:
(a) If f is irrational, then $c_{\ell} \notin \mathbb{Q}$ for infinitely many of the coefficients ℓ, and so $B_{\ell}(f) \neq 0$.

Bounding the Exponent

$B_{\ell}(f) \neq 0 \Longrightarrow p$ is bounded.
We are guaranteed to succeed in two cases:
(a) If f is irrational, then $c_{\ell} \notin \mathbb{Q}$ for infinitely many of the coefficients ℓ, and so $B_{\ell}(f) \neq 0$.
(b) Suppose

- f is rational,
- t is prime or $t=4$,
- every elliptic curve F in the isogeny class corresponding to f we have $t \nmid \# F(\mathbb{Q})_{\text {tors }}$.
Then there are infinitely many primes ℓ such that $B_{\ell}(f) \neq 0$.

Method of Kraus

$$
x^{2}+7=y^{m}, \quad m \geq 3
$$

Method of Kraus

$$
x^{2}+7=y^{m}, \quad m \geq 3
$$

Easy exercise: Show there are no solutions with y odd.

Method of Kraus

$$
x^{2}+7=y^{m}, \quad m \geq 3
$$

Easy exercise: Show there are no solutions with y odd.

- Hint: just like $x^{2}+1=y^{p}$.

Method of Kraus

$$
x^{2}+7=y^{m}, \quad m \geq 3
$$

Easy exercise: Show there are no solutions with y odd.

- Hint: just like $x^{2}+1=y^{p}$.
- Don't bother doing the exercise!

Method of Kraus

$$
x^{2}+7=y^{m}, \quad m \geq 3
$$

Easy exercise: Show there are no solutions with y odd.

- Hint: just like $x^{2}+1=y^{p}$.
- Don't bother doing the exercise!

Plenty of solutions with y even.

m	x	y	m	x	y	m	x	y
3	± 1	2	3	± 181	32	4	± 3	± 2
5	± 5	2	5	± 181	8	7	± 11	2
15	± 181	2						

The Method of Kraus

$$
x^{2}+7=y^{p}, \quad p \geq 11 .
$$

The Method of Kraus

$$
x^{2}+7=y^{p}, \quad p \geq 11
$$

WLOG

$$
x \equiv 1 \quad(\bmod 4) \quad \text { and } \quad y \text { is even. }
$$

The Method of Kraus

$$
x^{2}+7=y^{p}, \quad p \geq 11
$$

WLOG

$$
\begin{gathered}
x \equiv 1 \quad(\bmod 4) \quad \text { and } \quad y \text { is even. } \\
E_{x}: \quad Y^{2}=X^{3}+x X^{2}+\frac{\left(x^{2}+7\right)}{4} X \\
\Delta=\frac{-7 y^{p}}{2^{12}}, \quad N=14 \prod_{\ell \mid y, \ell \nmid 14} \ell
\end{gathered}
$$

The Method of Kraus

$$
x^{2}+7=y^{p}, \quad p \geq 11
$$

WLOG

$$
\begin{gathered}
x \equiv 1 \quad(\bmod 4) \quad \text { and } \quad y \text { is even. } \\
E_{x}: \quad Y^{2}=X^{3}+x X^{2}+\frac{\left(x^{2}+7\right)}{4} X \\
\Delta=\frac{-7 y^{p}}{2^{12}}, \quad N=14 \prod_{\ell \mid y, \ell \nmid 14} \ell .
\end{gathered}
$$

$E_{X} \sim_{p} F$ where $F=14 A$. Note $E_{-11}=14 A 4$.

Fix $p \geq 11$. We choose ℓ satisfying certain conditions so that we obtain a contradiction.

- Condition 1: $\ell \nmid 14, \quad\left(\frac{-7}{\ell}\right)=1$.

Fix $p \geq 11$. We choose ℓ satisfying certain conditions so that we obtain a contradiction.

- Condition 1: $\ell \nmid 14, \quad\left(\frac{-7}{\ell}\right)=1$. So $\ell \nmid\left(x^{2}+7\right)$. Hence $\ell \nmid N N^{\prime}$.

Fix $p \geq 11$. We choose ℓ satisfying certain conditions so that we obtain a contradiction.

- Condition 1: $\ell \nmid 14, \quad\left(\frac{-7}{\ell}\right)=1$. So $\ell \nmid\left(x^{2}+7\right)$. Hence $\ell \nmid N N^{\prime}$.

$$
a_{\ell}\left(E_{\chi}\right) \equiv a_{\ell}(F) \quad(\bmod p)
$$

Fix $p \geq 11$. We choose ℓ satisfying certain conditions so that we obtain a contradiction.

- Condition 1: $\ell \nmid 14, \quad\left(\frac{-7}{\ell}\right)=1$.

So $\ell \nmid\left(x^{2}+7\right)$. Hence $\ell \nmid N N^{\prime}$.

$$
a_{\ell}\left(E_{\chi}\right) \equiv a_{\ell}(F) \quad(\bmod p)
$$

Let

$$
T(\ell, p)=\left\{\alpha \in \mathbb{F}_{\ell}: a_{\ell}\left(E_{\alpha}\right) \equiv a_{\ell}(F) \quad(\bmod p)\right\}
$$

Fix $p \geq 11$. We choose ℓ satisfying certain conditions so that we obtain a contradiction.

- Condition 1: $\ell \nmid 14, \quad\left(\frac{-7}{\ell}\right)=1$.

So $\ell \nmid\left(x^{2}+7\right)$. Hence $\ell \nmid N N^{\prime}$.

$$
a_{\ell}\left(E_{X}\right) \equiv a_{\ell}(F) \quad(\bmod p)
$$

Let

$$
T(\ell, p)=\left\{\alpha \in \mathbb{F}_{\ell}: a_{\ell}\left(E_{\alpha}\right) \equiv a_{\ell}(F) \quad(\bmod p)\right\}
$$

So $x \equiv \alpha(\bmod \ell)$ for some $\alpha \in T(\ell, p)$.
Let

$$
R(\ell, p)=\left\{\beta \in \mathbb{F}_{\ell}: \beta^{2}+7 \in\left(\mathbb{F}_{\ell}^{\times}\right)^{p}\right\}
$$

Also $x \equiv \beta(\bmod \ell)$ for some $\beta \in R(\ell, p)$.

The Method of Kraus

Lemma

If ℓ satisfies Condition 1 and $T(\ell, p) \cap R(\ell, p)=\emptyset$ then $x^{2}+7=y^{p}$ has no solutions.

The Method of Kraus

Lemma

If ℓ satisfies Condition 1 and $T(\ell, p) \cap R(\ell, p)=\emptyset$ then $x^{2}+7=y^{p}$ has no solutions.

$$
\begin{gathered}
T(\ell, p)=\left\{\alpha \in \mathbb{F}_{\ell}: a_{\ell}\left(E_{\alpha}\right) \equiv a_{\ell}(F) \quad(\bmod p)\right\} . \\
R(\ell, p)=\left\{\beta \in \mathbb{F}_{\ell}: \beta^{2}+7 \in\left(\mathbb{F}_{\ell}^{\times}\right)^{p}\right\} .
\end{gathered}
$$

The Method of Kraus

Lemma

If ℓ satisfies Condition 1 and $T(\ell, p) \cap R(\ell, p)=\emptyset$ then $x^{2}+7=y^{p}$ has no solutions.

$$
\begin{gathered}
T(\ell, p)=\left\{\alpha \in \mathbb{F}_{\ell}: a_{\ell}\left(E_{\alpha}\right) \equiv a_{\ell}(F) \quad(\bmod p)\right\} . \\
R(\ell, p)=\left\{\beta \in \mathbb{F}_{\ell}: \beta^{2}+7 \in\left(\mathbb{F}_{\ell}^{\times}\right)^{p}\right\} .
\end{gathered}
$$

Note $T(\ell, p) \neq \emptyset$. e.g. $\overline{-11} \in T(\ell, p)$.

The Method of Kraus

Lemma

If ℓ satisfies Condition 1 and $T(\ell, p) \cap R(\ell, p)=\emptyset$ then $x^{2}+7=y^{p}$ has no solutions.

$$
\begin{gathered}
T(\ell, p)=\left\{\alpha \in \mathbb{F}_{\ell}: a_{\ell}\left(E_{\alpha}\right) \equiv a_{\ell}(F) \quad(\bmod p)\right\} . \\
R(\ell, p)=\left\{\beta \in \mathbb{F}_{\ell}: \beta^{2}+7 \in\left(\mathbb{F}_{\ell}^{\times}\right)^{p}\right\} .
\end{gathered}
$$

Note $T(\ell, p) \neq \emptyset$. e.g. $\overline{-11} \in T(\ell, p)$.
If $p \nmid(\ell-1)$ then

$$
\left(\mathbb{F}_{\ell}^{\times}\right)^{p}=\mathbb{F}_{\ell}^{\times} \Longrightarrow R(\ell, p)=\mathbb{F}_{\ell} \Longrightarrow T(\ell, p) \cap R(\ell, p) \neq \emptyset
$$

The Method of Kraus

Lemma

If ℓ satisfies Condition 1 and $T(\ell, p) \cap R(\ell, p)=\emptyset$ then $x^{2}+7=y^{p}$ has no solutions.

$$
\begin{gathered}
T(\ell, p)=\left\{\alpha \in \mathbb{F}_{\ell}: a_{\ell}\left(E_{\alpha}\right) \equiv a_{\ell}(F) \quad(\bmod p)\right\} . \\
R(\ell, p)=\left\{\beta \in \mathbb{F}_{\ell}: \beta^{2}+7 \in\left(\mathbb{F}_{\ell}^{\times}\right)^{p}\right\} .
\end{gathered}
$$

Note $T(\ell, p) \neq \emptyset$. e.g. $\overline{-11} \in T(\ell, p)$.
If $p \nmid(\ell-1)$ then

$$
\left(\mathbb{F}_{\ell}^{\times}\right)^{p}=\mathbb{F}_{\ell}^{\times} \Longrightarrow R(\ell, p)=\mathbb{F}_{\ell} \Longrightarrow T(\ell, p) \cap R(\ell, p) \neq \emptyset .
$$

However, if $p \mid(\ell-1)$, then

$$
\#\left(\mathbb{F}_{\ell}^{\times}\right)^{p}=\frac{\ell-1}{p} . \Longrightarrow \text { good chance that } T(\ell, p)=R(\ell, p)
$$

Proposition

There are no solutions to $x^{2}+7=y^{p}$ with $11 \leq p \leq 10^{8}$.
Proof.
By computer. For each p find $\ell \equiv 1(\bmod p)$ satisfying condition 1 , so that $T(\ell, p) \cap R(\ell, p)=\emptyset$.

Theorem

The only solutions to $x^{2}+7=y^{m}$, with $m \geq 3$ are

m	x	y	m	x	y	m	x	y
3	± 1	2	3	± 181	32	4	± 3	± 2
5	± 5	2	5	± 181	8	7	± 11	2
15	± 181	2						

Proof.

Linear forms in logs tell us $p \leq 10^{8}$. For small m reduce to Thue equations and solve by computer algebra.

