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Recap: Ribet's Level-Lowering Theorem

Let
E/Q an elliptic curve,

A = Apnin be the discriminant for a minimal model of E,
N be the conductor of E,
for a prime p let

=N/ T[] a

q|IN,
plordg(A)
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Recap: Ribet's Level-Lowering Theorem

Let
E/Q an elliptic curve,

A = Apnin be the discriminant for a minimal model of E,
N be the conductor of E,

for a prime p let
=N/ T[] a

q|IN,
plordg(A)

Theorem

(A simplified special case of Ribet's Level-Lowering Theorem) Let
p > 5 be a prime such that E does not have any p-isogenies. Let
Ny be as defined above. Then there exists a newform f of level N,
such that E ~, f.
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Recap

Proposition
Let E/Q have conductor N, and f have level N'. Suppose E ~, f.
Then there is some prime ideal B | p of Ok such that for all
primes /

(i) if £+ pNN’ then as(E) = ¢; (mod ‘B), and

(it) if ¢4 pN" and ¢ || N then ¢ +1 = +¢; (mod P).
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Recap

Proposition

Let E/Q have conductor N, and f have level N'. Suppose E ~, f.
Then there is some prime ideal B | p of Ok such that for all
primes /

(i) if £+ pNN’ then as(E) = ¢; (mod ‘B), and

(it) if ¢4 pN" and ¢ || N then ¢ +1 = +¢; (mod P).

If E ~p f and f is rational then we write E ~, Ef.
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Recap

Proposition

Let E/Q have conductor N, and f have level N'. Suppose E ~, f.
Then there is some prime ideal B | p of Ok such that for all
primes /

(i) if £+ pNN’ then as(E) = ¢; (mod ‘B), and

(it) if ¢4 pN" and ¢ || N then ¢ +1 = +¢; (mod P).

If E ~p f and f is rational then we write E ~, Ef.
Proposition

Let E, F have conductors N and N’ respectively. If E ~, F then
for all primes ¢

(i) if €4 NN" then a;(E) = a¢(F) (mod p), and
(it) if ¢4 N" and £ || N then £ + 1 = tay(F) (mod p).
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Frey Curves

Given a Diophantine equation, suppose that it has a solution
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Frey Curves

Given a Diophantine equation, suppose that it has a solution and
associate the solution somehow to an elliptic curve E called a Frey
curve, if possible.
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Frey Curves

Given a Diophantine equation, suppose that it has a solution and
associate the solution somehow to an elliptic curve E called a Frey
curve, if possible. The key properties of a ‘Frey curve' are

o the coefficients of E depend on the solution to the
Diophantine equation;
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Frey Curves

Given a Diophantine equation, suppose that it has a solution and
associate the solution somehow to an elliptic curve E called a Frey
curve, if possible. The key properties of a ‘Frey curve' are

o the coefficients of E depend on the solution to the
Diophantine equation;

@ the minimal discriminant of the elliptic curve can be written in
the form A = C - DP where D is an expression that depends
on the solution of the Diophantine equation. The factor C
does not depend on the solutions but only on the
equation itself.

Samir Siksek (University of Warwick Modular Approach to Diophantine Equation: June 15, 2012 4 /21



|
Frey Curves

Given a Diophantine equation, suppose that it has a solution and
associate the solution somehow to an elliptic curve E called a Frey
curve, if possible. The key properties of a ‘Frey curve' are
o the coefficients of E depend on the solution to the
Diophantine equation;
@ the minimal discriminant of the elliptic curve can be written in
the form A = C - DP where D is an expression that depends
on the solution of the Diophantine equation. The factor C
does not depend on the solutions but only on the
equation itself.

@ E has multiplicative reduction at primes dividing D.
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Frey Curves Il

@ the coefficients of E depend on the solution to the
Diophantine equation;

@ the minimal discriminant of the elliptic curve can be written in
the form A = C - DP where D is an expression that depends
on the solution of the Diophantine equation. The factor C
does not depend on the solutions but only on the
equation itself.

@ E has multiplicative reduction at primes dividing D.

The conductor N of E will be divisible by the primes dividing C
and D, and those dividing D will be removed when we write down
Np. In other words we can make a finite list of possibilities for N,
that depend on the equation. Thus we are able to list a finite set
of newforms f such that E ~, f.
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A Variant of the Fermat Equation

Let L be an odd prime number. Consider

xP+ L"yP + 2P =0, xyz #0, p>5is prime,
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A Variant of the Fermat Equation
Let L be an odd prime number. Consider
xP+ L"yP + 2P =0, xyz #0, p>5is prime,
We assume that

X, Y, Z are pairwise coprime, 0<r<np.
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A Variant of the Fermat Equation

Let L be an odd prime number. Consider
xP+ L"yP + 2P =0, xyz #0, p>5is prime,
We assume that
X, Y, Z are pairwise coprime, 0<r<np.

Let A, B, C be some permutation of xP, L"yP and zP such that
= —1 (mod 4) and 2 | B, and let E be the elliptic curve

E: Y?=X(X-A(X+B).
The minimal discriminant and conductor of E are

Amin = 2_8L2r(XyZ)2p, N = Rad(nyz).
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A Variant of the Fermat Equation

Let L be an odd prime number. Consider
xP+ L"yP + 2P =0, xyz #0, p>5is prime,
We assume that
X, Y, Z are pairwise coprime, 0<r<np.

Let A, B, C be some permutation of xP, L"yP and zP such that
= —1 (mod 4) and 2 | B, and let E be the elliptic curve

E: Y?=X(X-A(X+B).
The minimal discriminant and conductor of E are

Amin = 2_8L2r(XyZ)2p, N = Rad(nyz).

Np=N/ T[] e=2L

an,
plordy(8)
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A Variant of the Fermat Equation

Let L be an odd prime number. Consider
xP+ L"yP + 2P =0, xyz #0, p>5is prime,

... Ribet’s Theorem says there is a newform f at level N, = 2L
such that E ~, f.
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A Variant of the Fermat Equation

Let L be an odd prime number. Consider
xP+ L"yP + 2P =0, xyz #0, p>5is prime,

... Ribet’s Theorem says there is a newform f at level N, = 2L
such that E ~, f.
Fact: there are no newforms at levels

1,2,3,4,5,6,7,8,9,10,12,13, 16, 18,22, 25, 28, 60.
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A Variant of the Fermat Equation

Let L be an odd prime number. Consider
xP+ L"yP + 2P =0, xyz #0, p>5is prime,

... Ribet’s Theorem says there is a newform f at level N, = 2L
such that E ~, f.
Fact: there are no newforms at levels

1,2,3,4,5,6,7,8,9,10,12,13, 16, 18,22, 25, 28, 60.

Equation has no non-trivial solutions for L = 3, 5, 11.
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A Variant of the Fermat Equation

Let L be an odd prime number. Consider
xP+ L"yP + 2P =0, xyz #0, p>5is prime,

... Ribet’s Theorem says there is a newform f at level N, = 2L
such that E ~, f.

Fact: there are no newforms at levels
1,2,3,4,5,6,7,8,9,10,12,13,16, 18, 22, 25, 28, 60.

Equation has no non-trivial solutions for L = 3, 5, 11.
Can we do anything for other values of L? e.g. L =19.
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A Variant of the Fermat Equation

Let L be an odd prime number. Consider
xP+ L"yP + 2P =0, xyz #0, p>5is prime,

... Ribet’s Theorem says there is a newform f at level N, = 2L
such that E ~, f.

Fact: there are no newforms at levels
1,2,3,4,5,6,7,8,9,10,12,13,16, 18, 22, 25, 28, 60.

Equation has no non-trivial solutions for L = 3, 5, 11.

Can we do anything for other values of L? e.g. L =19.

From the above we know that E ~, f for some newform at level
Np = 38. There are two newforms at level 38:

A=q-a+¢+q" —¢°—q" +-
h=q+¢ —a+q"—4¢° —q°+3q¢" +- -
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A Variant of the Fermat Equation

Let L be an odd prime number. Consider
xP+ L"yP + 2P =0, xyz #0, p>5is prime,

... Ribet’s Theorem says there is a newform f at level N, = 2L
such that E ~, f.

Fact: there are no newforms at levels
1,2,3,4,5,6,7,8,9,10,12,13,16, 18, 22, 25, 28, 60.

Equation has no non-trivial solutions for L = 3, 5, 11.

Can we do anything for other values of L? e.g. L =19.

From the above we know that E ~, f for some newform at level
Np = 38. There are two newforms at level 38:

A=q-a+¢+q" —¢°—q" +-
h=q+¢ —a+q"—4¢° —q°+3q¢" +- -

No contradiction yet.
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Bounding the Exponent

Notation:
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Bounding the Exponent

Notation:

e E/Q elliptic curve of conductor N,
ot | #E(Q)tor&

e f is a newform of level N’
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Bounding the Exponent

Notation:

e E/Q elliptic curve of conductor N,
ot | #E(Q)tor&

e f is a newform of level N’

f:q+chq”, K =Q(c,c3,...).

n>2

@ Suppose E ~, f.
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Bounding the Exponent

Notation:

E/Q elliptic curve of conductor N,

t | #E(Q)tor&

e f is a newform of level N’

f:q+chq”, K =Q(c,c3,...).

n>2

Suppose E ~, f.

Let £ be a prime such that
0N, YN,
We know, for some 3 | p,
(i) if £4 pNN’ then ay(E) = ¢; (mod B), and

(ii) if £4 pN" and ¢ || N then £+ 1 = +¢; (mod ‘B).
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Bounding the Exponent

o t [ #E(Q)rors,
@ Let ¢ be a prime such that

(YN, 2NN

We know, for some 33 | p,
(i) if £4 pNN’ then ay(E) = ¢ (mod ‘B), and
(it) if 4 pN" and £ || N then £+ 1 = +¢; (mod P).
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Bounding the Exponent

o t [ #E(Q)rors,
@ Let ¢ be a prime such that

(YN, 2NN

We know, for some 33 | p,
(i) if £4 pNN’ then ay(E) = ¢ (mod ‘B), and
(it) if 4 pN" and £ || N then £+ 1 = +¢; (mod P).

o Either p =/,
@ or p| Norm(ay(E) — &) (case £ 1 N),
e or p | Norm((¢+ 1)? — c?) (case ¢ | N).
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Bounding the Exponent

ot ’ #E(Q)torSy

o Either p =/,
@ or p| Norm(ay(E) — &) (case £ 1 N),
e or p| Norm((¢+1)2 — c?) (case £ | N).
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Bounding the Exponent

ot ’ #E(Q)torSy

o Either p =/,
@ or p| Norm(ay(E) — &) (case £ 1 N),
e or p| Norm((¢+1)2 — c?) (case £ | N).

Suppose £ 1 N.
—2V1 < ay(E) < V1.
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Bounding the Exponent

ot ’ #E(Q)torSy

o Either p =/,
@ or p| Norm(ay(E) — &) (case £ 1 N),
e or p| Norm((¢+1)2 — c?) (case £ | N).

Suppose £ 1 N.
—2V1 < ay(E) < V1.

Also
t| #E(F,), since E(Q)tors — E(Fy).
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Bounding the Exponent

ot ’ #E(Q)torSy

o Either p =/,
@ or p| Norm(ay(E) — &) (case £ 1 N),
e or p| Norm((¢+1)2 — c?) (case £ | N).

Suppose £ 1 N.
—2V1 < ay(E) < V1.

Also
t| #E(F,), since E(Q)tors — E(Fy).

But #E(F;) = £+ 1 — ay(E).
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Bounding the Exponent

ot ’ #E(Q)torSy

o Either p =/,
@ or p| Norm(ay(E) — &) (case £ 1 N),
e or p| Norm((¢+1)2 — c?) (case £ | N).

Suppose £ 1 N.
—2V1 < ay(E) < V1.

Also
t| #E(F,), since E(Q)tors — E(Fy).

But #E(F;) = £+ 1 — ay(E). So

p | Norm(a — ¢) VI <a< Vi, {+1=a (mod t).
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Bounding the Exponent

Proposition

Let ¢ be a prime such that £{ N" and (> N. Let
Sg:{QEZ . —2Vi<a<2Vl, a=/(+1 (mod t)}
Let ¢, be the ¢-th coefficient of f and define

By(f) = Normy/g((¢ 4+ 1)* — ¢f') H Normy ,g(a — c)
aesSy

and
() = (- B)(f) iff is irrational,
anve By(f) if f is rational.

If E ~p f then p | By(f).
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A Variant of the Fermat Equation

xP +19"yP + zP =0, xyz #0, p>5is prime,

We know that E ~, f for some newform at level N, = 38. There
are two newforms at level 38:

i=q-+a+q" =" —q’ +--
h=q+a —q¢+q"—4¢°—q°+3q" +--
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A Variant of the Fermat Equation

xP +19"yP + zP =0, xyz #0, p>5is prime,

We know that E ~, f for some newform at level N, = 38. There
are two newforms at level 38:

i=q-+a+q" =" —q’ +--
h=q+¢ —q+q"—4¢° —q°+3q¢" + -
Apply the Proposition with t = 4:

Bs(fi) = —15, Bs(fi) = —144,
ged(—15,144) =3 = E %, (p >5).
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A Variant of the Fermat Equation

xP +19"yP + zP =0, xyz #0, p>5is prime,

We know that E ~, f for some newform at level N, = 38. There
are two newforms at level 38:

i=q-+a+q" =" —q’ +--
h=q+a —q¢+q"—4¢°—q°+3q" +--

Apply the Proposition with t = 4:

Bs(fi) = —15, Bs(fi) = —144,
ged(—15,144) =3 = E %, (p >5).

Eliminated f;.
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A Variant of the Fermat Equation

Suppose
xP 4+19"yP + 2P =0, xyz #0, p>5is prime,
has a non-trivial solution. Then E ~, f,. But

Bs(f,) =15, Bs(f) =240, By(f,) =1155, Bii(f) = 3360
— p=>5.
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A Variant of the Fermat Equation

Suppose
xP 4+19"yP + 2P =0, xyz #0, p>5is prime,
has a non-trivial solution. Then E ~, f,. But

Bs(f,) =15, Bs(f) =240, By(f,) =1155, Bii(f) = 3360
— p=>5.

Is By(f2) always divisible by 57?
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A Variant of the Fermat Equation

Suppose
xP 4+19"yP + 2P =0, xyz #0, p>5is prime,
has a non-trivial solution. Then E ~, f,. But

Bs(f,) =15, Bs(f) =240, By(f,) =1155, Bii(f) = 3360
— p=>5.

Is By(f2) always divisible by 57?

newform f, <— elliptic curve F = 38B1.

Samir Siksek (University of Warwick Modular Approach to Diophantine Equation: June 15, 2012 13 /21



-
A Variant of the Fermat Equation

Suppose
xP 4+19"yP + 2P =0, xyz #0, p>5is prime,
has a non-trivial solution. Then E ~, f,. But

Bs(f,) =15, Bs(f) =240, By(f,) =1155, Bii(f) = 3360
— p=>5.

Is By(f2) always divisible by 57?

newform f, <— elliptic curve F = 38B1.

#F(Q)tors =5=5|(l+1— )

= 5[ By(h):=U+1-c)(l+1+c) [[(a— )
EISNY)
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Eliminating p =5

Suppose p = 5. Want a contradiction.
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Eliminating p =5

Suppose p = 5. Want a contradiction.

04NN = ay(E) = ¢, (mod 5).

Samir Siksek (University of Warwick Modular Approach to Diophantine Equation: June 15, 2012 14 / 21



|
Eliminating p =5

Suppose p = 5. Want a contradiction.

04NN = ay(E) = ¢, (mod 5).

HE[F)=l+1—aWE)=f+1—¢ =0 (mod5).
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Eliminating p =5

Suppose p = 5. Want a contradiction.

04NN = ay(E) = ¢, (mod 5).
HE[F)=l+1—aWE)=f+1—¢ =0 (mod5).

Cebotarev Density Theorem = E has a 5-isogeny.
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Eliminating p =5

Suppose p = 5. Want a contradiction.
04 NN = ay(E) = ¢; (mod 5).
HE[F)=0+1—aWE)=L+1—¢ =0 (mod5).
Cebotarev Density Theorem = E has a 5-isogeny.

But E is semi-stable and has full 2-torsion. Mazur’s Theorem
gives contradiction.
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Eliminating p =5

Suppose p = 5. Want a contradiction.

04NN = ay(E) = ¢, (mod 5).
HE[F)=l+1—aWE)=f+1—¢ =0 (mod5).

Cebotarev Density Theorem = E has a 5-isogeny.

But E is semi-stable and has full 2-torsion. Mazur’s Theorem
gives contradiction.
The equation

xP +19"yP + zP =0, xyz #0, p >5is prime,

has no solutions.

Samir Siksek (University of Warwick Modular Approach to Diophantine Equation: June 15, 2012

14 / 21
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Bounding the Exponent x> — 2 = yP?

x2—2=yP, p > 5 prime.
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Bounding the Exponent x> — 2 = yP?

x2—2=yP, p > 5 prime.

Frey curve: E( Y2 = X3 4+ 2xX2? + 2X, t=2.

X,y)
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Bounding the Exponent x> — 2 = yP?

x2—2=yP, p > 5 prime.

Frey curve: E( Y2 = X3 4+ 2xX2? + 2X, t=2.

xy) -

Amin =28yP, N =2"Rad(y), N, =128.
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Bounding the Exponent x> — 2 = yP?

x2—2=yP, p > 5 prime.

Frey curve: E( Y2 = X3 4+ 2xX2? + 2X, t=2.

xy) -

Amin =28yP, N =2"Rad(y), N, =128.

By Ribet, E ~p F where F is one of

x,y)

Fi = 128A1, F», =128B1, F3=128Cl, F4=128D1.
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Bounding the Exponent x> — 2 = yP?

x2—2=yP, p > 5 prime.

Frey curve: E( Y2 = X3 4+ 2xX2? + 2X, t=2.

xy) -

Amin =28yP, N =2"Rad(y), N, =128.

By Ribet, E ~p F where F is one of

x,y)

Fi = 128A1, F,=128B1, F;3=128Cl, F,=128D1.
Exercise: Show that By(F;) =0 for all £ and i = 1,2, 3, 4.
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Bounding the Exponent x> — 2 = yP?

x2—2=yP, p > 5 prime.

Frey curve: Exy - Y? = X3 4 2xX2% 4+ 2X, t=2.

Amin =28yP, N =2"Rad(y), N, =128.
By Ribet, E(, ,) ~p F where F is one of

Fi = 128A1, F», =128B1, F3=128Cl, F4=128D1.

Exercise: Show that By(F;) =0 for all £ and i = 1,2, 3, 4.
No bound on p from the modular method. Note £_; 1) = F1

and E(l,fl) = F3.
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Bounding the Exponent x> — 2 = yP?

x2—2=yP, p > 5 prime.

Frey curve: Exy - Y? = X3 4 2xX2% 4+ 2X, t=2.

Amin =28yP, N =2"Rad(y), N, =128.
By Ribet, E(, ,) ~p F where F is one of

Fi = 128A1, F», =128B1, F3=128Cl, F4=128D1.

Exercise: Show that By(F;) =0 for all £ and i = 1,2, 3, 4.
No bound on p from the modular method. Note £_; 1) = F1
and E(l,fl) = F3.
Note equation has solutions (x, y, p) = (£1, -1, p).
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Bounding the Exponent

By(f) # 0 = p is bounded.
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Bounding the Exponent

By(f) # 0 = p is bounded.

We are guaranteed to succeed in two cases:

(a) If f is irrational, then ¢; € Q for infinitely many of the
coefficients ¢, and so By(f) # 0.
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|
Bounding the Exponent

By(f) # 0 = p is bounded.

We are guaranteed to succeed in two cases:

(a) If f is irrational, then ¢; € Q for infinitely many of the
coefficients ¢, and so By(f) # 0.
(b) Suppose
e f is rational,

e tis prime or t =4,
e every elliptic curve F in the isogeny class corresponding to f

we have t 1 #F(Q)tors-
Then there are infinitely many primes £ such that By(f) # 0.
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Method of Kraus

X2 +7=ym m > 3.

Easy exercise: Show there are no solutions with y odd.
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Method of Kraus

X2 +7=ym m > 3.
Easy exercise: Show there are no solutions with y odd.
@ Hint: just like x2 +1 = yP.

@ Don't bother doing the exercise!
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I
Method of Kraus

X247 =ym, m> 3.
Easy exercise: Show there are no solutions with y odd.
@ Hint: just like x2 +1 = yP.
@ Don't bother doing the exercise!

Plenty of solutions with y even.

m X yil m x y m X y
3 +1 213 £181 32|14 +£3 £2
5 5 2|5 #£181 8 7 £11 2
15 4181 2
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X2 +7=yP, p > 11.
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The Method of Kraus

X2 +7=yP, p > 11.

WLOG
x=1 (mod 4) and y is even.
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The Method of Kraus

X2 +7=yP, p > 11.

WLOG
x=1 (mod 4) and y is even.
2
7
E, - Y2—X3+XX2+WX
Ly, ¢14
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I
The Method of Kraus

X2 +7=yP, p > 11.

WLOG
x=1 (mod 4) and y is even.
2
7
E, - Y2—X3+XX2+WX
Ly, ¢14

Ex ~p F where F = 14A. Note E_1; = 14A4.
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Fix p > 11. We choose ¢ satisfying certain conditions so that we
obtain a contradiction.

o Condition 1: /114, () =1.
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So £1(x?+7). Hence £ 1 NN'.
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Fix p > 11. We choose ¢ satisfying certain conditions so that we
obtain a contradiction.

o Condition 1: /114, () =1.
So £1(x?+7). Hence £ 1 NN'.

ar(Ex) = a(F)  (mod p).
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Fix p > 11. We choose ¢ satisfying certain conditions so that we
obtain a contradiction.

o Condition 1: /114, () =1.
So £1(x?+7). Hence £ 1 NN'.

ar(Ex)
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Fix p > 11. We choose ¢ satisfying certain conditions so that we

obtain a contradiction.
o Condition 1: /114, () =1.
So £1(x?+7). Hence £ 1 NN'.

ar(Ex) = au(F) (mod p).
Let

T(C,p) ={a€Fr:anEs) =ai(F) (mod p)}.

So x = a (mod ¢) for some a € T(¢, p).
Let

R(6,p) = (B € Fo: B2 +7 € (F})P).
Also x = 3 (mod ¢) for some 5 € R(¢, p).
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I
The Method of Kraus

Lemma

If ¢ satisfies Condition 1 and T(¢,p) N R(¢,p) =0 then
x? 47 = yP has no solutions.
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If ¢ satisfies Condition 1 and T(¢,p) N R(¢,p) =0 then
x? 47 = yP has no solutions.

T(l,p) ={a €Fy:aEa) = a(F) (mod p)}.

R(¢,p) = {B €F,: B>+ 7€ (F))P}.
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The Method of Kraus

Lemma

If ¢ satisfies Condition 1 and T(¢,p) N R(¢,p) =0 then
x? 47 = yP has no solutions.

T(l,p) ={a €Fy:aEa) = a(F) (mod p)}.

R(.p)= (B € By B +7 € (F})P).
Note T(¢,p) # 0. eg. —11 € T(¢, p).
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I
The Method of Kraus

Lemma

If ¢ satisfies Condition 1 and T(¢,p) N R(¢,p) =0 then
x? 4+ 7 = yP has no solutions.

T(l,p) ={a €Fy:aEa) = a(F) (mod p)}.

R(¢,p) = {B €F,: B>+ 7€ (F))P}.
Note T(¢,p) # 0. eg. —11 € T(¢, p).
If p1(¢—1) then

(F)P = F) = R({,p) = Fy => T(£,p) N R(£, p) # 0.
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I
The Method of Kraus

Lemma

If ¢ satisfies Condition 1 and T(¢,p) N R(¢,p) =0 then
x? 4+ 7 = yP has no solutions.

T(l,p) ={a €Fy:aEa) = a(F) (mod p)}.

R(Lp) = (5 € Fe: B2 +7 € (5]},
Note T(¢,p) # 0. eg. —11 € T(¢, p).
If p1(¢—1) then
(F )P =F, = R({,p) =F, = T({,p) N R(¢, p) # 0.
However, if p | (¢ — 1), then
#(F,)P = K; . = good chance that T(¢, p) = R(¢, p).
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Proposition
There are no solutions to x> +7 = yP with 11 < p < 108.

Proof.

By computer. For each p find £ =1 (mod p) satisfying condition
1, so that T(¢,p) N R(¢, p) = 0. O
Theorem

m

The only solutions to x> +7 = y™, with m > 3 are

m X yim x y m X y
3 =1 23 £181 324 3 £2
5 5 2|5 #£181 8 7 £11 2
15 £181 2

Proof.

Linear forms in logs tell us p < 108. For small m reduce to Thue

equations and solve by computer algebra. Ol
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