Modular Approach to Diophantine Equations II

Samir Siksek

University of Warwick

June 15, 2012

Samir Siksek (University of Warwick) Modular Approach to Diophantine Equation

Image: A = A

Recap: Ribet's Level-Lowering Theorem

Let

- E/\mathbb{Q} an elliptic curve,
- $\Delta = \Delta_{\min}$ be the discriminant for a minimal model of E,
- N be the conductor of E,
- for a prime p let

$$N_{p} = N \left/ \prod_{\substack{q \mid \mid N, \ p \mid \operatorname{ord}_{q}(\Delta)}} q.
ight.$$

< ロト < 同ト < ヨト < ヨト

Recap: Ribet's Level-Lowering Theorem

Let

- *E*/Q an elliptic curve,
- $\Delta = \Delta_{\min}$ be the discriminant for a minimal model of *E*,
- N be the conductor of E,
- for a prime p let

$$N_{p} = N \Big/ \prod_{\substack{q \mid \mid N, \ p \mid \operatorname{ord}_{q}(\Delta)}} q.$$

Theorem

(A simplified special case of Ribet's Level-Lowering Theorem) Let $p \ge 5$ be a prime such that E does not have any p-isogenies. Let N_p be as defined above. Then there exists a newform f of level N_p such that $E \sim_p f$.

Recap

Proposition

Let E/\mathbb{Q} have conductor N, and f have level N'. Suppose $E \sim_p f$. Then there is some prime ideal $\mathfrak{P} \mid p$ of \mathcal{O}_K such that for all primes ℓ

(i) if $\ell \nmid pNN'$ then $a_{\ell}(E) \equiv c_{\ell} \pmod{\mathfrak{P}}$, and

(ii) if $\ell \nmid pN'$ and $\ell \parallel N$ then $\ell + 1 \equiv \pm c_{\ell} \pmod{\mathfrak{P}}$.

< < p>< < p>

Recap

Proposition

Let E/\mathbb{Q} have conductor N, and f have level N'. Suppose $E \sim_p f$. Then there is some prime ideal $\mathfrak{P} \mid p$ of \mathcal{O}_K such that for all primes ℓ

(i) if $\ell \nmid pNN'$ then $a_{\ell}(E) \equiv c_{\ell} \pmod{\mathfrak{P}}$, and

(ii) if $\ell \nmid pN'$ and $\ell \parallel N$ then $\ell + 1 \equiv \pm c_{\ell} \pmod{\mathfrak{P}}$.

If $E \sim_p f$ and f is rational then we write $E \sim_p E_f$.

< ロト < 同ト < ヨト < ヨト

Recap

Proposition

Let E/\mathbb{Q} have conductor N, and f have level N'. Suppose $E \sim_p f$. Then there is some prime ideal $\mathfrak{P} \mid p$ of \mathcal{O}_K such that for all primes ℓ

(i) if
$$\ell \nmid pNN'$$
 then $a_{\ell}(E) \equiv c_{\ell} \pmod{\mathfrak{P}}$, and

(ii) if
$$\ell \nmid pN'$$
 and $\ell \parallel N$ then $\ell + 1 \equiv \pm c_{\ell} \pmod{\mathfrak{P}}$.

If $E \sim_p f$ and f is rational then we write $E \sim_p E_f$.

Proposition

Let E, F have conductors N and N' respectively. If E \sim_p F then for all primes ℓ

(i) if $\ell \nmid NN'$ then $a_{\ell}(E) \equiv a_{\ell}(F) \pmod{p}$, and

(ii) if $\ell \nmid N'$ and $\ell \parallel N$ then $\ell + 1 \equiv \pm a_{\ell}(F) \pmod{p}$.

Given a Diophantine equation, suppose that it has a solution

イロト イヨト イヨト イヨ

Given a Diophantine equation, suppose that it has a solution and associate the solution somehow to an elliptic curve E called a *Frey curve*, **if possible**.

3

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Image: A marked and A marked

• the coefficients of *E* depend on the solution to the Diophantine equation;

< ロト < 同ト < ヨト < ヨト

- the coefficients of *E* depend on the solution to the Diophantine equation;
- the minimal discriminant of the elliptic curve can be written in the form Δ = C · D^p where D is an expression that depends on the solution of the Diophantine equation. The factor C does not depend on the solutions but only on the equation itself.

(日) (同) (日) (日) (日)

- the coefficients of *E* depend on the solution to the Diophantine equation;
- the minimal discriminant of the elliptic curve can be written in the form $\Delta = C \cdot D^p$ where D is an expression that depends on the solution of the Diophantine equation. The factor C does not depend on the solutions but only on the equation itself.
- *E* has multiplicative reduction at primes dividing *D*.

(日) (同) (日) (日) (日)

Frey Curves II

- the coefficients of *E* depend on the solution to the Diophantine equation;
- the minimal discriminant of the elliptic curve can be written in the form Δ = C · D^p where D is an expression that depends on the solution of the Diophantine equation. The factor C does not depend on the solutions but only on the equation itself.
- *E* has multiplicative reduction at primes dividing *D*.

The conductor N of E will be divisible by the primes dividing Cand D, and those dividing D will be removed when we write down N_p . In other words we can make a finite list of possibilities for N_p that depend on the equation. Thus we are able to list a finite set of newforms f such that $E \sim_p f$.

Let L be an odd prime number. Consider

 $x^{p} + L^{r}y^{p} + z^{p} = 0,$ $xyz \neq 0,$ $p \ge 5$ is prime,

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Let L be an odd prime number. Consider

 $x^{p} + L^{r}y^{p} + z^{p} = 0,$ $xyz \neq 0,$ $p \ge 5$ is prime,

We assume that

x, y, z are pairwise coprime, 0 < r < p.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Let L be an odd prime number. Consider

 $x^{p} + L^{r}y^{p} + z^{p} = 0,$ $xyz \neq 0,$ $p \ge 5$ is prime,

We assume that

x, y, z are pairwise coprime, 0 < r < p.

Let A, B, C be some permutation of x^p , $L^r y^p$ and z^p such that $A \equiv -1 \pmod{4}$ and $2 \mid B$, and let E be the elliptic curve

$$E : Y^2 = X(X - A)(X + B).$$

The minimal discriminant and conductor of E are

$$\Delta_{\min} = 2^{-8} L^{2r} (xyz)^{2p}, \qquad N = \mathsf{Rad}(Lxyz).$$

Let L be an odd prime number. Consider

 $x^{p} + L^{r}y^{p} + z^{p} = 0,$ $xyz \neq 0,$ $p \ge 5$ is prime,

We assume that

x, y, z are pairwise coprime, 0 < r < p.

Let A, B, C be some permutation of x^p , $L^r y^p$ and z^p such that $A \equiv -1 \pmod{4}$ and $2 \mid B$, and let E be the elliptic curve

$$E : Y^2 = X(X - A)(X + B).$$

The minimal discriminant and conductor of E are

$$\Delta_{\min} = 2^{-8} L^{2r} (xyz)^{2p}, \qquad N = \mathsf{Rad}(Lxyz).$$

$$N_{p} = N \Big/ \prod_{\substack{\ell \mid |N, \\ p \mid \operatorname{ord}_{\ell}(\Delta)}} \ell = 2L.$$

Let L be an odd prime number. Consider

 $x^{p} + L^{r}y^{p} + z^{p} = 0,$ $xyz \neq 0,$ $p \ge 5$ is prime,

... Ribet's Theorem says there is a newform f at level $N_p = 2L$ such that $E \sim_p f$.

Let L be an odd prime number. Consider

 $x^{p} + L^{r}y^{p} + z^{p} = 0,$ $xyz \neq 0,$ $p \ge 5$ is prime,

... Ribet's Theorem says there is a newform f at level $N_p = 2L$ such that $E \sim_p f$.

Fact: there are no newforms at levels

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 60.

Let L be an odd prime number. Consider

 $x^{p} + L^{r}y^{p} + z^{p} = 0,$ $xyz \neq 0,$ $p \ge 5$ is prime,

... Ribet's Theorem says there is a newform f at level $N_p = 2L$ such that $E \sim_p f$. Fact: there are no newforms at levels

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 60.

Equation has no non-trivial solutions for L = 3, 5, 11.

Let L be an odd prime number. Consider

 $x^{p} + L^{r}y^{p} + z^{p} = 0,$ $xyz \neq 0,$ $p \ge 5$ is prime,

... Ribet's Theorem says there is a newform f at level $N_p = 2L$ such that $E \sim_p f$.

Fact: there are no newforms at levels

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 60.

Equation has no non-trivial solutions for L = 3, 5, 11. Can we do anything for other values of L? e.g. L = 19.

Let L be an odd prime number. Consider

 $x^{p} + L^{r}y^{p} + z^{p} = 0,$ $xyz \neq 0,$ $p \ge 5$ is prime,

... Ribet's Theorem says there is a newform f at level $N_p = 2L$ such that $E \sim_p f$.

Fact: there are no newforms at levels

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 60.

Equation has no non-trivial solutions for L = 3, 5, 11. Can we do anything for other values of L? e.g. L = 19. From the above we know that $E \sim_p f$ for some newform at level $N_p = 38$. There are two newforms at level 38:

$$f_1 = q - q^2 + q^3 + q^4 - q^6 - q^7 + \cdots$$

$$f_2 = q + q^2 - q^3 + q^4 - 4q^5 - q^6 + 3q^7 + \cdots$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへの

Let L be an odd prime number. Consider

 $x^{p} + L^{r}y^{p} + z^{p} = 0,$ $xyz \neq 0,$ $p \ge 5$ is prime,

... Ribet's Theorem says there is a newform f at level $N_p = 2L$ such that $E \sim_p f$.

Fact: there are no newforms at levels

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 60.

Equation has no non-trivial solutions for L = 3, 5, 11. Can we do anything for other values of L? e.g. L = 19. From the above we know that $E \sim_p f$ for some newform at level $N_p = 38$. There are two newforms at level 38:

$$f_1 = q - q^2 + q^3 + q^4 - q^6 - q^7 + \cdots$$

$$f_2 = q + q^2 - q^3 + q^4 - 4q^5 - q^6 + 3q^7 + \cdots$$

No contradiction yet.

Notation:

Samir Siksek (University of Warwick) Modular Approach to Diophantine Equation

イロト イヨト イヨト イヨト

Notation:

• E/\mathbb{Q} elliptic curve of conductor N,

イロト イヨト イヨト イヨト

Notation:

- E/\mathbb{Q} elliptic curve of conductor N,
- $t \mid \#E(\mathbb{Q})_{\text{tors}}$,

イロト イヨト イヨト イヨト

Notation:

- E/\mathbb{Q} elliptic curve of conductor N,
- $t \mid \#E(\mathbb{Q})_{\text{tors}}$,
- f is a newform of level N':

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Notation:

- E/\mathbb{Q} elliptic curve of conductor N,
- $t \mid \#E(\mathbb{Q})_{\mathrm{tors}}$,
- f is a newform of level N':

$$f = q + \sum_{n \geq 2} c_n q^n, \qquad \mathcal{K} = \mathbb{Q}(c_2, c_3, \dots).$$

• Suppose
$$E \sim_p f$$
.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Notation:

- E/\mathbb{Q} elliptic curve of conductor N,
- $t \mid \#E(\mathbb{Q})_{\mathrm{tors}}$,
- f is a newform of level N':

$$f = q + \sum_{n \geq 2} c_n q^n, \qquad K = \mathbb{Q}(c_2, c_3, \dots).$$

- Suppose $E \sim_p f$.
- Let ℓ be a prime such that

$$\ell \nmid N', \qquad \ell^2 \nmid N.$$

We know, for some $\mathfrak{P} \mid p$, (i) if $\ell \nmid pNN'$ then $a_{\ell}(E) \equiv c_{\ell} \pmod{\mathfrak{P}}$, and (ii) if $\ell \nmid pN'$ and $\ell \mid\mid N$ then $\ell + 1 \equiv \pm c_{\ell} \pmod{\mathfrak{P}}$.

June 15, 2012

8 / 21

• $t \mid \#E(\mathbb{Q})_{\mathrm{tors}}$,

• Let ℓ be a prime such that

$$\ell \nmid N', \qquad \ell^2 \nmid N.$$

We know, for some $\mathfrak{P} \mid p$, (i) if $\ell \nmid pNN'$ then $a_{\ell}(E) \equiv c_{\ell} \pmod{\mathfrak{P}}$, and (ii) if $\ell \nmid pN'$ and $\ell \mid\mid N$ then $\ell + 1 \equiv \pm c_{\ell} \pmod{\mathfrak{P}}$.

イロト 不得下 イヨト イヨト

- $t \mid \#E(\mathbb{Q})_{\mathrm{tors}}$,
- Let ℓ be a prime such that

$$\ell \nmid N', \qquad \ell^2 \nmid N.$$

We know, for some $\mathfrak{P} \mid p$, (i) if $\ell \nmid pNN'$ then $a_{\ell}(E) \equiv c_{\ell} \pmod{\mathfrak{P}}$, and (ii) if $\ell \nmid pN'$ and $\ell \mid\mid N$ then $\ell + 1 \equiv \pm c_{\ell} \pmod{\mathfrak{P}}$.

• Either
$$p = \ell$$
,
• or $p \mid \text{Norm}(a_{\ell}(E) - c_{\ell})$ (case $\ell \nmid N$),
• or $p \mid \text{Norm}((\ell + 1)^2 - c_{\ell}^2)$ (case $\ell \mid N$).

3

ヘロト 不得下 不足下 不足下

- $t \mid \#E(\mathbb{Q})_{\mathrm{tors}}$,
- Either $p = \ell$, • or $p \mid \text{Norm}(a_{\ell}(E) - c_{\ell})$ (case $\ell \nmid N$),
- or $p \mid \operatorname{Norm}((\ell+1)^2 c_\ell^2)$ (case $\ell \mid N$).

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

- $t \mid \#E(\mathbb{Q})_{\mathrm{tors}}$,
- Either $p = \ell$, • or $p \mid \text{Norm}(a_{\ell}(E) - c_{\ell})$ (case $\ell \nmid N$), • or $p \mid \text{Norm}((\ell + 1)^2 - c_{\ell}^2)$ (case $\ell \mid N$). Suppose $\ell \nmid N$. $-2\sqrt{\ell} < a_{\ell}(E) < \sqrt{\ell}$.

• $t \mid \#E(\mathbb{Q})_{\mathrm{tors}}$,

• Either
$$p = \ell$$
,
• or $p \mid \text{Norm}(a_{\ell}(E) - c_{\ell})$ (case $\ell \nmid N$),
• or $p \mid \text{Norm}((\ell + 1)^2 - c_{\ell}^2)$ (case $\ell \mid N$).
Suppose $\ell \nmid N$.
 $-2\sqrt{\ell} \le a_{\ell}(E) \le \sqrt{\ell}$.

Also

$$t \mid \#E(\mathbb{F}_{\ell}), \quad \text{since } E(\mathbb{Q})_{\text{tors}} \hookrightarrow E(\mathbb{F}_{\ell}).$$

문 🛌 문

A D > A B > A B >

• $t \mid \#E(\mathbb{Q})_{\mathrm{tors}}$,

• Either
$$p = \ell$$
,
• or $p \mid \text{Norm}(a_{\ell}(E) - c_{\ell})$ (case $\ell \nmid N$),
• or $p \mid \text{Norm}((\ell + 1)^2 - c_{\ell}^2)$ (case $\ell \mid N$).
Suppose $\ell \nmid N$.
 $-2\sqrt{\ell} \le a_{\ell}(E) \le \sqrt{\ell}$.

Also

$$t \mid \#E(\mathbb{F}_{\ell}), \quad \text{since } E(\mathbb{Q})_{\text{tors}} \hookrightarrow E(\mathbb{F}_{\ell}).$$

But $#E(\mathbb{F}_{\ell}) = \ell + 1 - a_{\ell}(E)$.

æ -

イロト イポト イヨト イヨト

• $t \mid \#E(\mathbb{Q})_{\mathrm{tors}}$,

• Either
$$p = \ell$$
,
• or $p \mid \text{Norm}(a_{\ell}(E) - c_{\ell})$ (case $\ell \nmid N$),
• or $p \mid \text{Norm}((\ell + 1)^2 - c_{\ell}^2)$ (case $\ell \mid N$).
Suppose $\ell \nmid N$.
 $-2\sqrt{\ell} \le a_{\ell}(E) \le \sqrt{\ell}$.

Also

$$t \mid \#E(\mathbb{F}_{\ell}), \quad \text{since } E(\mathbb{Q})_{\text{tors}} \hookrightarrow E(\mathbb{F}_{\ell}).$$

But $\#E(\mathbb{F}_{\ell}) = \ell + 1 - a_{\ell}(E)$. So

$$p \mid \operatorname{Norm}(a - c_{\ell}) \qquad -2\sqrt{\ell} \leq a \leq \sqrt{\ell}, \qquad \ell + 1 \equiv a \pmod{t}.$$

2

イロト イポト イヨト イヨト
Bounding the Exponent

Proposition

Let ℓ be a prime such that $\ell \nmid N'$ and $\ell^2 \nmid N$. Let

$$\mathcal{S}_\ell = \left\{ \mathbf{a} \in \mathbb{Z} \ : \ -2\sqrt{\ell} \le \mathbf{a} \le 2\sqrt{\ell}, \ \mathbf{a} \equiv \ell+1 \pmod{t}
ight\}$$

Let c_{ℓ} be the ℓ -th coefficient of f and define

$$B_\ell'(f) = \operatorname{Norm}_{K/\mathbb{Q}}((\ell+1)^2 - c_l^2) \prod_{a \in S_\ell} \operatorname{Norm}_{K/\mathbb{Q}}(a - c_\ell)$$

and

$$B_\ell(f) = egin{cases} \ell \cdot B'_\ell(f) & ext{if } f ext{ is irrational,} \ B'_\ell(f) & ext{if } f ext{ is rational.} \end{cases}$$

If $E \sim_p f$ then $p \mid B_{\ell}(f)$.

 $x^{p} + 19^{r}y^{p} + z^{p} = 0,$ $xyz \neq 0,$ $p \ge 5$ is prime,

We know that $E \sim_p f$ for some newform at level $N_p = 38$. There are two newforms at level 38:

$$f_1 = q - q^2 + q^3 + q^4 - q^6 - q^7 + \cdots$$

$$f_2 = q + q^2 - q^3 + q^4 - 4q^5 - q^6 + 3q^7 + \cdots$$

 $x^{p} + 19^{r}y^{p} + z^{p} = 0,$ $xyz \neq 0,$ $p \ge 5$ is prime,

We know that $E \sim_p f$ for some newform at level $N_p = 38$. There are two newforms at level 38:

$$f_1 = q - q^2 + q^3 + q^4 - q^6 - q^7 + \cdots$$

 $f_2 = q + q^2 - q^3 + q^4 - 4q^5 - q^6 + 3q^7 + \cdots$

Apply the Proposition with t = 4:

$$B_3(f_1) = -15, \qquad B_5(f_1) = -144,$$

 $gcd(-15, 144) = 3 \Longrightarrow E \not\sim_p f_1 \qquad (p \ge 5).$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = ・ のへで

 $x^{p} + 19^{r}y^{p} + z^{p} = 0,$ $xyz \neq 0,$ $p \ge 5$ is prime,

We know that $E \sim_p f$ for some newform at level $N_p = 38$. There are two newforms at level 38:

$$f_1 = q - q^2 + q^3 + q^4 - q^6 - q^7 + \cdots$$

 $f_2 = q + q^2 - q^3 + q^4 - 4q^5 - q^6 + 3q^7 + \cdots$

Apply the Proposition with t = 4:

$$B_3(f_1) = -15, \qquad B_5(f_1) = -144,$$

 $gcd(-15, 144) = 3 \Longrightarrow E \not\sim_p f_1 \qquad (p \ge 5).$

Eliminated f_1 .

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = ・ のへで

Suppose

$$x^{p} + 19^{r}y^{p} + z^{p} = 0, \qquad xyz \neq 0, \quad p \geq 5 \text{ is prime},$$

has a non-trivial solution. Then $E \sim_p f_2$. But

$$B_3(f_2) = 15$$
, $B_5(f_2) = 240$, $B_7(f_2) = 1155$, $B_{11}(f_2) = 3360$
 $\implies p = 5$.

æ

A D > A B > A B > A

Suppose

$$x^{p} + 19^{r}y^{p} + z^{p} = 0, \qquad xyz \neq 0, \quad p \geq 5 \text{ is prime},$$

has a non-trivial solution. Then $E \sim_p f_2$. But

$$B_3(f_2) = 15$$
, $B_5(f_2) = 240$, $B_7(f_2) = 1155$, $B_{11}(f_2) = 3360$
 $\implies p = 5$.

Is $B_{\ell}(f_2)$ always divisible by 5?

3

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Suppose

$$x^{p} + 19^{r}y^{p} + z^{p} = 0, \qquad xyz \neq 0, \quad p \geq 5 \text{ is prime},$$

has a non-trivial solution. Then $E \sim_p f_2$. But

$$B_3(f_2) = 15$$
, $B_5(f_2) = 240$, $B_7(f_2) = 1155$, $B_{11}(f_2) = 3360$
 $\implies p = 5$.

Is $B_{\ell}(f_2)$ always divisible by 5?

newform $f_2 \leftrightarrow$ elliptic curve F = 38B1.

E Sac

(日) (同) (日) (日) (日)

Suppose

$$x^{p} + 19^{r}y^{p} + z^{p} = 0,$$
 $xyz \neq 0,$ $p \ge 5$ is prime,

has a non-trivial solution. Then $E \sim_p f_2$. But

$$B_3(f_2) = 15$$
, $B_5(f_2) = 240$, $B_7(f_2) = 1155$, $B_{11}(f_2) = 3360$
 $\implies p = 5$.

Is $B_{\ell}(f_2)$ always divisible by 5?

newform
$$f_2 \leftrightarrow$$
 elliptic curve $F = 38B1$.

$$\#F(\mathbb{Q})_{\text{tors}} = 5 \Longrightarrow 5 \mid (\ell + 1 - c_{\ell})$$
$$\Longrightarrow 5 \mid B_{\ell}(f_2) := (\ell + 1 - c_{\ell})(\ell + 1 + c_{\ell}) \prod_{a \in S_{\ell}} (a - c_{\ell}).$$

3

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Eliminating p = 5

Suppose p = 5. Want a contradiction.

E 990

$$\ell \nmid NN' \Longrightarrow a_{\ell}(E) \equiv c_{\ell} \pmod{5}.$$

E 990

$$\ell \nmid NN' \Longrightarrow a_{\ell}(E) \equiv c_{\ell} \pmod{5}.$$

$$\#E(\mathbb{F}_\ell) = \ell + 1 - a_\ell(E) \equiv \ell + 1 - c_\ell \equiv 0 \pmod{5}.$$

E 990

$$\ell \nmid NN' \Longrightarrow a_{\ell}(E) \equiv c_{\ell} \pmod{5}.$$

$$\#E(\mathbb{F}_{\ell})=\ell+1-a_{\ell}(E)\equiv\ell+1-c_{\ell}\equiv 0 \pmod{5}.$$

Čebotarev Density Theorem $\implies E$ has a 5-isogeny.

E 990

$$\ell \nmid NN' \Longrightarrow a_{\ell}(E) \equiv c_{\ell} \pmod{5}.$$

$$\#E(\mathbb{F}_{\ell})=\ell+1-a_{\ell}(E)\equiv\ell+1-c_{\ell}\equiv 0 \pmod{5}.$$

Čebotarev Density Theorem $\implies E$ has a 5-isogeny.

But *E* is semi-stable and has full 2-torsion. Mazur's Theorem gives contradiction.

E Sac

$$\ell \nmid NN' \Longrightarrow a_{\ell}(E) \equiv c_{\ell} \pmod{5}.$$

$$\#E(\mathbb{F}_{\ell})=\ell+1-a_{\ell}(E)\equiv\ell+1-c_{\ell}\equiv 0 \pmod{5}.$$

Čebotarev Density Theorem $\implies E$ has a 5-isogeny.

But E is semi-stable and has full 2-torsion. Mazur's Theorem gives contradiction.

The equation

 $x^p + 19^r y^p + z^p = 0,$ $xyz \neq 0,$ $p \ge 5$ is prime,

has no solutions.

$$x^2 - 2 = y^p$$
, $p \ge 5$ prime.

Samir Siksek (University of Warwick) Modular Approach to Diophantine Equation

E 990

$$x^2 - 2 = y^p$$
, $p \ge 5$ prime.

Frey curve:
$$E_{(x,y)}$$
 : $Y^2 = X^3 + 2xX^2 + 2X$, $t = 2$.

$$x^2 - 2 = y^p$$
, $p \ge 5$ prime.

Frey curve:
$$E_{(x,y)}$$
 : $Y^2 = X^3 + 2xX^2 + 2X$, $t = 2$.

$$\Delta_{\min} = 2^8 y^{p}, \qquad N = 2^7 \operatorname{Rad}(y), \qquad N_{p} = 128.$$

$$x^2 - 2 = y^p$$
, $p \ge 5$ prime.

Frey curve:
$$E_{(x,y)}$$
 : $Y^2 = X^3 + 2xX^2 + 2X$, $t = 2$.

$$\Delta_{\min} = 2^8 y^p, \qquad N = 2^7 \operatorname{Rad}(y), \qquad N_p = 128.$$

By Ribet, $E_{(x,y)} \sim_p F$ where F is one of

 $F_1 = 128A1, \quad F_2 = 128B1, \quad F_3 = 128C1, \quad F_4 = 128D1.$

$$x^2 - 2 = y^p$$
, $p \ge 5$ prime.

Frey curve:
$$E_{(x,y)}$$
 : $Y^2 = X^3 + 2xX^2 + 2X$, $t = 2$.

$$\Delta_{\min} = 2^8 y^p, \qquad N = 2^7 \operatorname{Rad}(y), \qquad N_p = 128.$$

By Ribet, $E_{(x,y)} \sim_p F$ where F is one of

 $F_1 = 128A1$, $F_2 = 128B1$, $F_3 = 128C1$, $F_4 = 128D1$. Exercise: Show that $B_{\ell}(F_i) = 0$ for all ℓ and i = 1, 2, 3, 4.

▲□▶ ▲□▶ ★ □▶ ★ □▶ - □ - つく⊙

$$x^2 - 2 = y^p$$
, $p \ge 5$ prime.

Frey curve:
$$E_{(x,y)}$$
 : $Y^2 = X^3 + 2xX^2 + 2X$, $t = 2$.

$$\Delta_{\min} = 2^8 y^p, \qquad N = 2^7 \operatorname{Rad}(y), \qquad N_p = 128.$$

By Ribet, $E_{(x,y)} \sim_p F$ where F is one of

 $F_1 = 128A1, \quad F_2 = 128B1, \quad F_3 = 128C1, \quad F_4 = 128D1.$

Exercise: Show that $B_{\ell}(F_i) = 0$ for all ℓ and i = 1, 2, 3, 4. **No bound on** p from the modular method. Note $E_{(-1,-1)} = F_1$ and $E_{(1,-1)} = F_3$.

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

$$x^2 - 2 = y^p$$
, $p \ge 5$ prime.

Frey curve:
$$E_{(x,y)}$$
 : $Y^2 = X^3 + 2xX^2 + 2X$, $t = 2$.

$$\Delta_{\min} = 2^8 y^p, \qquad N = 2^7 \operatorname{Rad}(y), \qquad N_p = 128.$$

By Ribet, $E_{(x,y)} \sim_p F$ where F is one of

 $F_1 = 128A1, \quad F_2 = 128B1, \quad F_3 = 128C1, \quad F_4 = 128D1.$

Exercise: Show that $B_{\ell}(F_i) = 0$ for all ℓ and i = 1, 2, 3, 4. **No bound on** p from the modular method. Note $E_{(-1,-1)} = F_1$ and $E_{(1,-1)} = F_3$. Note equation has solutions $(x, y, p) = (\pm 1, -1, p)_{\text{product}}$

Bounding the Exponent

$B_{\ell}(f) \neq 0 \Longrightarrow p$ is bounded.

E 990

 $B_{\ell}(f) \neq 0 \Longrightarrow p$ is bounded.

We are guaranteed to succeed in two cases:

(a) If f is irrational, then $c_{\ell} \notin \mathbb{Q}$ for infinitely many of the coefficients ℓ , and so $B_{\ell}(f) \neq 0$.

E SQA

(日) (同) (日) (日) (日)

 $B_{\ell}(f) \neq 0 \Longrightarrow p$ is bounded.

We are guaranteed to succeed in two cases:

- (a) If f is irrational, then $c_{\ell} \notin \mathbb{Q}$ for infinitely many of the coefficients ℓ , and so $B_{\ell}(f) \neq 0$.
- (b) Suppose
 - f is rational,
 - t is prime or t = 4,
 - every elliptic curve F in the isogeny class corresponding to f we have t ∤ #F(Q)_{tors}.

Then there are infinitely many primes ℓ such that $B_{\ell}(f) \neq 0$.

Method of Kraus

$$x^2 + 7 = y^m, \qquad m \ge 3.$$

Samir Siksek (University of Warwick) Modular Approach to Diophantine Equation

= 990

イロト イヨト イヨト イヨト

$$x^2 + 7 = y^m, \qquad m \ge 3.$$

Samir Siksek (University of Warwick) Modular Approach to Diophantine Equation

3

A D > A B > A B >

$$x^2 + 7 = y^m, \qquad m \ge 3.$$

• Hint: just like
$$x^2 + 1 = y^p$$
.

3

A D > A B > A B >

$$x^2+7=y^m, \qquad m\geq 3.$$

- Hint: just like $x^2 + 1 = y^p$.
- Don't bother doing the exercise!

3

$$x^2+7=y^m, \qquad m\geq 3.$$

- Hint: just like $x^2 + 1 = y^p$.
- Don't bother doing the exercise!

Plenty of solutions with y even.

m	Х	y	m	X	y	m	X	у
3	± 1	2	3	± 181	32	4	±3	± 2
5	± 5	2	5	± 181	8	7	± 11	2
15	± 181	2						

3

-

$$x^2 + 7 = y^p, \qquad p \ge 11.$$

Samir Siksek (University of Warwick) Modular Approach to Diophantine Equation

2

イロト イヨト イヨト イヨ

$$x^2+7=y^p, \qquad p\geq 11.$$
 WLOG $x\equiv 1 \pmod{4}$ and y is even.

Samir Siksek (University of Warwick) Modular Approach to Diophantine Equation

Ξ.

Ξ.

・ロト ・回ト ・ヨト

WLOG

$$x^{2} + 7 = y^{p}, \qquad p \ge 11.$$

 $x \equiv 1 \pmod{4} \quad \text{and} \quad y \text{ is even.}$
 $E_{x}: \qquad Y^{2} = X^{3} + xX^{2} + \frac{(x^{2} + 7)}{4}X$
 $\Delta = \frac{-7y^{p}}{2^{12}}, \qquad N = 14 \prod_{\ell \mid y, \ell \mid 14} \ell.$

Samir Siksek (University of Warwick) Modular Approach to Diophantine Equation

Ξ.

イロト イヨト イヨト イヨト

WLOG

$$x^{2} + 7 \equiv y^{p}, \qquad p \ge 11.$$

$$x \equiv 1 \pmod{4} \qquad \text{and} \qquad y \text{ is even.}$$

$$E_{x} : \qquad Y^{2} = X^{3} + xX^{2} + \frac{(x^{2} + 7)}{4}X$$

$$\Delta = \frac{-7y^{p}}{2^{12}}, \qquad N = 14 \prod_{\ell \mid y, \ell \nmid 14} \ell.$$

 $E_x \sim_p F$ where F = 14A. Note $E_{-11} = 14A4$.

2

Fix $p \ge 11$. We choose ℓ satisfying certain conditions so that we obtain a contradiction.

• Condition 1: $\ell \nmid 14$, $(\frac{-7}{\ell}) = 1$.

Fix $p \ge 11$. We choose ℓ satisfying certain conditions so that we obtain a contradiction.

• Condition 1: $\ell \nmid 14$, $(\frac{-7}{\ell}) = 1$.

So $\ell \nmid (x^2 + 7)$. Hence $\ell \nmid NN'$.

Fix $p \ge 11$. We choose ℓ satisfying certain conditions so that we obtain a contradiction.

• Condition 1: $\ell \nmid 14$, $(\frac{-7}{\ell}) = 1$.

So $\ell \nmid (x^2 + 7)$. Hence $\ell \nmid NN'$.

$$a_\ell(E_x) \equiv a_\ell(F) \pmod{p}.$$
Fix $p \ge 11$. We choose ℓ satisfying certain conditions so that we obtain a contradiction.

• Condition 1: $\ell \nmid 14$, $\left(\frac{-7}{\ell}\right) = 1$.

So $\ell \nmid (x^2 + 7)$. Hence $\ell \nmid NN'$.

$$a_\ell(E_x) \equiv a_\ell(F) \pmod{p}.$$

Let

$$T(\ell, p) = \{ \alpha \in \mathbb{F}_{\ell} : a_{\ell}(E_{\alpha}) \equiv a_{\ell}(F) \pmod{p} \}.$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Fix $p \ge 11$. We choose ℓ satisfying certain conditions so that we obtain a contradiction.

• Condition 1: $\ell \nmid 14$, $\left(\frac{-7}{\ell}\right) = 1$.

So $\ell \nmid (x^2 + 7)$. Hence $\ell \nmid NN'$.

$$a_\ell(E_x) \equiv a_\ell(F) \pmod{p}.$$

Let

$$T(\ell, p) = \{ \alpha \in \mathbb{F}_{\ell} : a_{\ell}(E_{\alpha}) \equiv a_{\ell}(F) \pmod{p} \}.$$

So $x \equiv \alpha \pmod{\ell}$ for some $\alpha \in T(\ell, p)$.
Let

$$R(\ell, p) = \{\beta \in \mathbb{F}_{\ell} : \beta^2 + 7 \in (\mathbb{F}_{\ell}^{\times})^p\}.$$

Also $x \equiv \beta \pmod{\ell}$ for some $\beta \in R(\ell, p).$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Lemma

If ℓ satisfies Condition 1 and $T(\ell, p) \cap R(\ell, p) = \emptyset$ then $x^2 + 7 = y^p$ has no solutions.

3

-

Lemma

If ℓ satisfies Condition 1 and $T(\ell, p) \cap R(\ell, p) = \emptyset$ then $x^2 + 7 = y^p$ has no solutions.

$$T(\ell,p) = \{ lpha \in \mathbb{F}_{\ell} : a_{\ell}(E_{lpha}) \equiv a_{\ell}(F) \pmod{p} \}.$$

$$R(\ell, p) = \{\beta \in \mathbb{F}_{\ell} : \beta^2 + 7 \in (\mathbb{F}_{\ell}^{\times})^p\}.$$

3

-

Lemma

If ℓ satisfies Condition 1 and $T(\ell, p) \cap R(\ell, p) = \emptyset$ then $x^2 + 7 = y^p$ has no solutions.

$$T(\ell, p) = \{ \alpha \in \mathbb{F}_{\ell} : a_{\ell}(E_{\alpha}) \equiv a_{\ell}(F) \pmod{p} \}.$$

$$R(\ell, p) = \{\beta \in \mathbb{F}_{\ell} : \beta^2 + 7 \in (\mathbb{F}_{\ell}^{\times})^p\}.$$

Note $T(\ell, p) \neq \emptyset$. e.g. $-11 \in T(\ell, p)$.

3

-

Lemma

If ℓ satisfies Condition 1 and $T(\ell, p) \cap R(\ell, p) = \emptyset$ then $x^2 + 7 = y^p$ has no solutions.

$$T(\ell, p) = \{ \alpha \in \mathbb{F}_{\ell} : a_{\ell}(E_{\alpha}) \equiv a_{\ell}(F) \pmod{p} \}.$$

~

$$R(\ell, p) = \{\beta \in \mathbb{F}_{\ell} : \beta^{2} + 7 \in (\mathbb{F}_{\ell}^{\times})^{p}\}.$$

Note $T(\ell, p) \neq \emptyset$. e.g. $\overline{-11} \in T(\ell, p)$.
If $p \nmid (\ell - 1)$ then
 $(\mathbb{F}_{\ell}^{\times})^{p} = \mathbb{F}_{\ell}^{\times} \Longrightarrow R(\ell, p) = \mathbb{F}_{\ell} \Longrightarrow T(\ell, p) \cap R(\ell, p) \neq \emptyset.$

3

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Lemma

If ℓ satisfies Condition 1 and $T(\ell, p) \cap R(\ell, p) = \emptyset$ then $x^2 + 7 = y^p$ has no solutions.

$$T(\ell, p) = \{ \alpha \in \mathbb{F}_{\ell} : a_{\ell}(E_{\alpha}) \equiv a_{\ell}(F) \pmod{p} \}.$$

$$R(\ell, p) = \{\beta \in \mathbb{F}_{\ell} : \beta^{2} + 7 \in (\mathbb{F}_{\ell}^{\times})^{p}\}.$$

Note $T(\ell, p) \neq \emptyset$. e.g. $-\overline{11} \in T(\ell, p)$.
If $p \nmid (\ell - 1)$ then
 $(\mathbb{F}_{\ell}^{\times})^{p} = \mathbb{F}_{\ell}^{\times} \Longrightarrow R(\ell, p) = \mathbb{F}_{\ell} \Longrightarrow T(\ell, p) \cap R(\ell, p) \neq \emptyset.$
However, if $p \mid (\ell - 1)$, then
 $\#(\mathbb{F}_{\ell}^{\times})^{p} = \frac{\ell - 1}{p}. \Longrightarrow$ good chance that $T(\ell, p) = R(\ell, p).$

3

-

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Proposition

There are no solutions to $x^2 + 7 = y^p$ with $11 \le p \le 10^8$.

Proof.

By computer. For each p find $\ell \equiv 1 \pmod{p}$ satisfying condition 1, so that $T(\ell, p) \cap R(\ell, p) = \emptyset$.

Theorem

The only solutions to $x^2 + 7 = y^m$, with $m \ge 3$ are

т	x	y	m	x	y	m	X	у
3	± 1	2	3	± 181	32	4	±3	±2
5	± 5	2	5	± 181	8	7	± 11	2
15	± 181	2						

Proof.

Linear forms in logs tell us $p \le 10^8$. For small *m* reduce to Thue equations and solve by computer algebra.

21 / 21