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Recap: Ribet’s Level-Lowering Theorem

Let

E/Q an elliptic curve,

∆ = ∆min be the discriminant for a minimal model of E ,

N be the conductor of E ,

for a prime p let

Np = N
/ ∏

q||N,
p | ordq(∆)

q.

Theorem

(A simplified special case of Ribet’s Level-Lowering Theorem) Let
p ≥ 5 be a prime such that E does not have any p-isogenies. Let
Np be as defined above. Then there exists a newform f of level Np

such that E ∼p f .
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Recap

Proposition

Let E/Q have conductor N, and f have level N ′. Suppose E ∼p f .
Then there is some prime ideal P | p of OK such that for all
primes `

(i) if ` - pNN ′ then a`(E ) ≡ c` (mod P), and

(ii) if ` - pN ′ and ` || N then `+ 1 ≡ ±c` (mod P).

If E ∼p f and f is rational then we write E ∼p Ef .

Proposition

Let E , F have conductors N and N ′ respectively. If E ∼p F then
for all primes `

(i) if ` - NN ′ then a`(E ) ≡ a`(F ) (mod p), and

(ii) if ` - N ′ and ` || N then `+ 1 ≡ ±a`(F ) (mod p).
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Frey Curves

Given a Diophantine equation, suppose that it has a solution

and
associate the solution somehow to an elliptic curve E called a Frey
curve, if possible. The key properties of a ‘Frey curve’ are

the coefficients of E depend on the solution to the
Diophantine equation;

the minimal discriminant of the elliptic curve can be written in
the form ∆ = C · Dp where D is an expression that depends
on the solution of the Diophantine equation. The factor C
does not depend on the solutions but only on the
equation itself.

E has multiplicative reduction at primes dividing D.
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Frey Curves II

the coefficients of E depend on the solution to the
Diophantine equation;

the minimal discriminant of the elliptic curve can be written in
the form ∆ = C · Dp where D is an expression that depends
on the solution of the Diophantine equation. The factor C
does not depend on the solutions but only on the
equation itself.

E has multiplicative reduction at primes dividing D.

The conductor N of E will be divisible by the primes dividing C
and D, and those dividing D will be removed when we write down
Np. In other words we can make a finite list of possibilities for Np

that depend on the equation. Thus we are able to list a finite set
of newforms f such that E ∼p f .
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A Variant of the Fermat Equation

Let L be an odd prime number. Consider

xp + Lryp + zp = 0, xyz 6= 0, p ≥ 5 is prime,

We assume that

x , y , z are pairwise coprime, 0 < r < p.

Let A, B, C be some permutation of xp, Lryp and zp such that
A ≡ −1 (mod 4) and 2 | B, and let E be the elliptic curve

E : Y 2 = X (X − A)(X + B).

The minimal discriminant and conductor of E are

∆min = 2−8L2r (xyz)2p, N = Rad(Lxyz).

Np = N
/ ∏

`||N,
p | ord`(∆)

` = 2L.
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A Variant of the Fermat Equation

Let L be an odd prime number. Consider

xp + Lryp + zp = 0, xyz 6= 0, p ≥ 5 is prime,

. . . Ribet’s Theorem says there is a newform f at level Np = 2L
such that E ∼p f .

Fact: there are no newforms at levels

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 60.

Equation has no non-trivial solutions for L = 3, 5, 11.
Can we do anything for other values of L? e.g. L = 19.
From the above we know that E ∼p f for some newform at level
Np = 38. There are two newforms at level 38:

f1 = q − q2 + q3 + q4 − q6 − q7 + · · ·
f2 = q + q2 − q3 + q4 − 4q5 − q6 + 3q7 + · · ·

No contradiction yet.
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Bounding the Exponent

Notation:

E/Q elliptic curve of conductor N,

t | #E (Q)tors,

f is a newform of level N ′:

f = q +
∑
n≥2

cnqn, K = Q(c2, c3, . . . ).

Suppose E ∼p f .

Let ` be a prime such that

` - N ′, `2 - N.

We know, for some P | p,

(i) if ` - pNN ′ then a`(E ) ≡ c` (mod P), and

(ii) if ` - pN ′ and ` || N then `+ 1 ≡ ±c` (mod P).
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Bounding the Exponent

t | #E (Q)tors,

Let ` be a prime such that

` - N ′, `2 - N.

We know, for some P | p,

(i) if ` - pNN ′ then a`(E ) ≡ c` (mod P), and

(ii) if ` - pN ′ and ` || N then `+ 1 ≡ ±c` (mod P).

Either p = `,

or p | Norm(a`(E )− c`) (case ` - N),

or p | Norm((`+ 1)2 − c2
` ) (case ` | N).
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Bounding the Exponent

t | #E (Q)tors,

Either p = `,

or p | Norm(a`(E )− c`) (case ` - N),

or p | Norm((`+ 1)2 − c2
` ) (case ` | N).

Suppose ` - N.
−2
√
` ≤ a`(E ) ≤

√
`.

Also
t | #E (F`), since E (Q)tors ↪→ E (F`).

But #E (F`) = `+ 1− a`(E ). So

p | Norm(a− c`) − 2
√
` ≤ a ≤

√
`, `+ 1 ≡ a (mod t).
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Bounding the Exponent

Proposition

Let ` be a prime such that ` - N ′ and `2 - N. Let

S` =
{

a ∈ Z : −2
√
` ≤ a ≤ 2

√
`, a ≡ `+ 1 (mod t)

}
.

Let c` be the `-th coefficient of f and define

B ′`(f ) = NormK/Q((`+ 1)2 − c2
l )
∏
a∈S`

NormK/Q(a− c`)

and

B`(f ) =

{
` · B ′`(f ) if f is irrational,

B ′`(f ) if f is rational.

If E ∼p f then p | B`(f ).
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A Variant of the Fermat Equation

xp + 19ryp + zp = 0, xyz 6= 0, p ≥ 5 is prime,

We know that E ∼p f for some newform at level Np = 38. There
are two newforms at level 38:

f1 = q − q2 + q3 + q4 − q6 − q7 + · · ·
f2 = q + q2 − q3 + q4 − 4q5 − q6 + 3q7 + · · ·

Apply the Proposition with t = 4:

B3(f1) = −15, B5(f1) = −144,
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A Variant of the Fermat Equation

Suppose

xp + 19ryp + zp = 0, xyz 6= 0, p ≥ 5 is prime,

has a non-trivial solution. Then E ∼p f2. But

B3(f2) = 15, B5(f2) = 240, B7(f2) = 1155, B11(f2) = 3360

=⇒ p = 5.

Is B`(f2) always divisible by 5?

newform f2 ←→ elliptic curve F = 38B1.

#F (Q)tors = 5 =⇒ 5 | (`+ 1− c`)

=⇒ 5 | B`(f2) := (`+ 1− cl)(`+ 1 + c`)
∏
a∈S`

(a− c`).
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Eliminating p = 5

Suppose p = 5. Want a contradiction.

` - NN ′ =⇒ a`(E ) ≡ c` (mod 5).

#E (F`) = `+ 1− a`(E ) ≡ `+ 1− c` ≡ 0 (mod 5).

Čebotarev Density Theorem =⇒ E has a 5-isogeny.

But E is semi-stable and has full 2-torsion. Mazur’s Theorem
gives contradiction.
The equation

xp + 19ryp + zp = 0, xyz 6= 0, p ≥ 5 is prime,

has no solutions.
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Čebotarev Density Theorem =⇒ E has a 5-isogeny.

But E is semi-stable and has full 2-torsion. Mazur’s Theorem
gives contradiction.
The equation

xp + 19ryp + zp = 0, xyz 6= 0, p ≥ 5 is prime,

has no solutions.

Samir Siksek (University of Warwick) Modular Approach to Diophantine Equations II June 15, 2012 14 / 21



Eliminating p = 5

Suppose p = 5. Want a contradiction.

` - NN ′ =⇒ a`(E ) ≡ c` (mod 5).

#E (F`) = `+ 1− a`(E ) ≡ `+ 1− c` ≡ 0 (mod 5).
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Bounding the Exponent x2 − 2 = y p?

x2 − 2 = yp, p ≥ 5 prime.

Frey curve: E(x ,y) : Y 2 = X 3 + 2xX 2 + 2X , t = 2.

∆min = 28yp, N = 27 Rad(y), Np = 128.

By Ribet, E(x ,y) ∼p F where F is one of

F1 = 128A1, F2 = 128B1, F3 = 128C 1, F4 = 128D1.

Exercise: Show that B`(Fi ) = 0 for all ` and i = 1, 2, 3, 4.
No bound on p from the modular method. Note E(−1,−1) = F1

and E(1,−1) = F3.
Note equation has solutions (x , y , p) = (±1,−1, p).
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Bounding the Exponent

B`(f ) 6= 0 =⇒ p is bounded.

We are guaranteed to succeed in two cases:

(a) If f is irrational, then c` 6∈ Q for infinitely many of the
coefficients `, and so B`(f ) 6= 0.

(b) Suppose

f is rational,
t is prime or t = 4,
every elliptic curve F in the isogeny class corresponding to f
we have t - #F (Q)tors.

Then there are infinitely many primes ` such that B`(f ) 6= 0.

Samir Siksek (University of Warwick) Modular Approach to Diophantine Equations II June 15, 2012 16 / 21



Bounding the Exponent

B`(f ) 6= 0 =⇒ p is bounded.

We are guaranteed to succeed in two cases:

(a) If f is irrational, then c` 6∈ Q for infinitely many of the
coefficients `, and so B`(f ) 6= 0.

(b) Suppose

f is rational,
t is prime or t = 4,
every elliptic curve F in the isogeny class corresponding to f
we have t - #F (Q)tors.

Then there are infinitely many primes ` such that B`(f ) 6= 0.

Samir Siksek (University of Warwick) Modular Approach to Diophantine Equations II June 15, 2012 16 / 21



Bounding the Exponent

B`(f ) 6= 0 =⇒ p is bounded.

We are guaranteed to succeed in two cases:

(a) If f is irrational, then c` 6∈ Q for infinitely many of the
coefficients `, and so B`(f ) 6= 0.

(b) Suppose

f is rational,
t is prime or t = 4,
every elliptic curve F in the isogeny class corresponding to f
we have t - #F (Q)tors.

Then there are infinitely many primes ` such that B`(f ) 6= 0.

Samir Siksek (University of Warwick) Modular Approach to Diophantine Equations II June 15, 2012 16 / 21



Method of Kraus

x2 + 7 = ym, m ≥ 3.

Easy exercise: Show there are no solutions with y odd.

Hint: just like x2 + 1 = yp.

Don’t bother doing the exercise!

Plenty of solutions with y even.

m x y m x y m x y

3 ±1 2 3 ±181 32 4 ±3 ±2
5 ±5 2 5 ±181 8 7 ±11 2
15 ±181 2
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The Method of Kraus

x2 + 7 = yp, p ≥ 11.

WLOG
x ≡ 1 (mod 4) and y is even.

Ex : Y 2 = X 3 + xX 2 +
(x2 + 7)

4
X

∆ =
−7yp

212
, N = 14

∏
`|y , `-14

`.

Ex ∼p F where F = 14A. Note E−11 = 14A4.
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Fix p ≥ 11. We choose ` satisfying certain conditions so that we
obtain a contradiction.

Condition 1: ` - 14,
(−7
`

)
= 1.

So ` - (x2 + 7). Hence ` - NN ′.

a`(Ex) ≡ a`(F ) (mod p).

Let
T (`, p) = {α ∈ F` : a`(Eα) ≡ a`(F ) (mod p)}.

So x ≡ α (mod `) for some α ∈ T (`, p).
Let

R(`, p) = {β ∈ F` : β2 + 7 ∈ (F×` )p}.

Also x ≡ β (mod `) for some β ∈ R(`, p).
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The Method of Kraus

Lemma

If ` satisfies Condition 1 and T (`, p) ∩ R(`, p) = ∅ then
x2 + 7 = yp has no solutions.

T (`, p) = {α ∈ F` : a`(Eα) ≡ a`(F ) (mod p)}.

R(`, p) = {β ∈ F` : β2 + 7 ∈ (F×` )p}.
Note T (`, p) 6= ∅. e.g. −11 ∈ T (`, p).
If p - (`− 1) then

(F×` )p = F×` =⇒ R(`, p) = F` =⇒ T (`, p) ∩ R(`, p) 6= ∅.
However, if p | (`− 1), then

#(F×` )p =
`− 1

p
. =⇒ good chance that T (`, p) = R(`, p).
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Proposition

There are no solutions to x2 + 7 = yp with 11 ≤ p ≤ 108.

Proof.

By computer. For each p find ` ≡ 1 (mod p) satisfying condition
1, so that T (`, p) ∩ R(`, p) = ∅.

Theorem

The only solutions to x2 + 7 = ym, with m ≥ 3 are

m x y m x y m x y

3 ±1 2 3 ±181 32 4 ±3 ±2
5 ±5 2 5 ±181 8 7 ±11 2
15 ±181 2

Proof.

Linear forms in logs tell us p ≤ 108. For small m reduce to Thue
equations and solve by computer algebra.
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