Exercise 1. In this exercise, you will solve

$$
x^{2 p}+y^{2 p}=z^{5}, \quad x, y, z \text { coprime, } p \text { prime, } p \geq 7 .
$$

(i) Show z is odd. Without loss of generality x is even and y is odd.
(ii) Show that

$$
x^{p}+i y^{p}=(u+i v)^{5}
$$

for some integers u, v.
(iii) Deduce that

$$
x^{p}=u\left(u^{4}-10 u^{2} v^{2}+5 v^{4}\right), \quad y^{p}=v\left(5 u^{4}-10 u^{2} v^{2}+v^{4}\right) .
$$

(iv) Show that u, v are coprime, with u even.
(v) Case I: Suppose that $5 \nmid u v$.

- Show that

$$
\begin{array}{ll}
u=A^{p}, & u^{4}-10 u^{2} v^{2}+5 v^{4}=B^{p}, \\
v=C^{p}, & 5 u^{4}-10 u^{2} v^{2}+v^{4}=D^{p} .
\end{array}
$$

- Deduce

$$
D^{p}+20 A^{4 p}=w^{2}
$$

for an appropriate integer w.

- Use an appropriate Frey curve to deduce a contradiction.
(vii) Case II: Repeat for $5 \mid u v$.

