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1.1 : Basic observations on Thue equations

Suppose f(x, y) ∈ Z[x, y] is homogeneous, square-free of degree d and let c ∈ Z. We want to find
the solutions of

(1) f(x, y) = c for x, y ∈ Z.
Thue already proved that if d ≥ 3 then there are only finitely many solutions. Let us assume
that the coefficient fd of xd in f(x, y) is non-zero (we can always ensure this is the case via an
GL2(Z)-transformation on x, y, which preserves integrality of solutions). To avoid some technical
complications, we assume that fd = 1.

We consider the algebra L = Q[z]/(f(z, 1) and denote θ for a root of f(z, 1) in L. If f(z, 1) is
irreducible then L is a number field. Otherwise, by virtue of f(z, 1) being square-free, L is a
product of number fields, corresponding to the irreducible factors. Nothing but generality is lost
by limiting to the case where L is a number field.

We write OL for the ring of integers of L. We have that O×L = O×L,tors × 〈ε1, . . . , εr〉, where O×L,tors

is the finite subgroup of torsion units and ε1, . . . , εr is a system of fundamental units.

The main observation for most approaches to Thue equations is that

f(x, y) = NL/Q(x− θy).

Thus, we are looking for x− θy ∈ OL of norm c. It is straightforward to determine a finite number
of elements γ ∈ OL such that for any solution x, y there is a γ such that

x− θy = γεn1
1 · · · εnr

r

We can expand the right hand side with respect to the Q-basis {1, θ, . . . , θd−1} for L. We write
n = (n1, . . . , nr) and obtain

x− θy = Q0,γ(n) +Q1,γ(n)θ + · · ·+Qd−1,γ(n)θd−1.

Therefore, we can express x, y entirely in terms of n and obtain d − 2 equations in n1, . . . , nr, so
if r ≤ d − 2, which only fails when L is a totally real number field, then it is not unreasonable to
expect that these equations only have a finite number of solutions. Of course, the nature of the
function Qi,γ(n) is unclear at this moment.

1.2 : Skolem’s p-adic approach

Let p > 2 be a rational prime not dividing the discriminant of f(z, 1) or c. That means that
OL ⊗ Zp = Zp[θ], that OL/pOL is a product of finite fields and that the elements γ we considered
before are units in OL ⊗ Zp.

We consider the reduction map
O×L → (OL/pOL)×

a denote its kernel by Λp = 〈η1, . . . , ηr〉. This kernel is torsion-free and of finite index in O×L . Thus,
at the expense of having to consider more values γ, it is sufficient to consider equations

x− θy
γ

= ηn1
1 · · · ηnr

r .

In order to prove that (1) has only finitely many solutions, it suffices to prove that if there is a
solution x0, y0 for γ, then there are only finitely many other solutions for that γ, since if there are
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no such solutions, we definitely have a finite number of them. So without loss of generality we can
assume that γ = x0 + θy0.

Note that our conditions imply that such a solution would have to have the same image in OL/pOL,
so such a solution would be of the form

(x0 + px1) + θ(y0 + py1).

Thus, we are left with solving equations of the form

1 + p
(x1 − θy1)

(x0 − θy0)
= ηn1

1 · · · ηnr
r , with x0, y0 given.

Skolem’s method hinges on the observation that even for x1, y1, n1, . . . , nr ∈ Zp, such an equation
has only finitely many solutions. Note that both sides are congruent to 1 modulo p, so they lie
inside the radius of convergence of the p-adic power series

Log(1 + z) = z − 1

2
z2 +

1

3
z3 + · · · .

Taking logarithms of both sides yields

Log

(
1 + p

x1 − θy1

x0 − θy0

)
= n1 Log(η1) + · · ·+ nr Log(ηr).

which, when we expand with respect to the Zp-basis {1, θ, . . . , θd−1}, gives us d equations, linear in
n1, . . . , nr and power series in x1, y1. One can solve this system, but the fact that we are required
to look at bivariate power series is slightly awkward. We define η0 = 1 + p. Then η0 is a one-unit
in Z×p , i.e., a unit that is congruent to 1 modulo p. The multiplicative group of one-units 1 + pZp

is isomorphic to the additive group Zp, via Log(z), and η0 is a Zp-generator of it. That means for
any λ ∈ Zp there is a n0 ∈ Zp such that

(1 + pλ) = ηn0
0 .

Thus, we can rewrite our original equation as

(1 + pλ)

(
1 + p

x1 − θy1

x0 − θy0

)
= ηn0

0 · · · ηnr
r .

We see that the left hand side equals

1 + p
x1 + (x0 + px1)λ− θ(y1 + (y0 + py0)λ)

x0 − θy0

,

so assuming that y0 6≡ 0 (mod p), we can set

λ = − y1

y0 + py1

= ηn0
0

t = x1 + (x0 + px1)λ

Note that x1, y1 ∈ Zp if and only if λ, t ∈ Zp and substituting these values in we see that our
equation becomes

Log

(
1 + p

t

x0 − θy0

)
= n0 Log(η0) + · · ·+ nr Log(ηr).

If y0 ≡ 0 (mod p) then we must have x0 6≡ 0 (mod p) and we can apply the same trick with the
roles of the xi and yi swapped, to obtain

Log

(
1 + p

tθ

x0 − θy0

)
= n0 Log(η0) + · · ·+ nr Log(ηr).
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If we write

Log(1 + p
t

x0 − θy0

) = L0(t) + θL1(t) + · · ·+ θd−1Ld−1(t) with Li(t) ∈ Zp[[t]]

and
Log(ηj) = b0j + b1jθ + · · ·+ bd−1,jθ

d−1 with bij ∈ pZp,

then we obtain a system of equations
b00 · · · b0r

b10 · · · b1r
...

. . .
...

bd−1,0 · · · bd−1,r


n0

...
nr

 =


L0(t)
L1(t)

...
Ld−1(t)


We see that if r + 1 < d, then we can compute a non-trivial Qp-linear relation between the Li(t)
and hence probably a non-trivial power series equation for t. In fact, one can prove this equation
will be non-trivial.

In nearly all cases, the following lemma suffices.

1.3 Lemma: Let L(z) =
∑∞

n=0 anz
n ∈ Zp[[x]] be a power series with limn→∞ ordp(an) =∞. If

L(z) ≡ a0 + a1z (mod pm)

with ordp(a1) < m, then z = −a0/a1 is the only possible root of L(z) in Zp.

Proof. Straightforward Hensel lifting argument. �

1.4 Example: Consider f(x, y) = x3 − 2y3 = 1. Then L = Q(θ) = Q( 3
√

2), the unit rank is 1 and
ε1 = θ− 1. We consider p = 5 and the solution (x0, y0) = (−1,−1). Then γ = ε1 and we obtain the
system 55 0

0 100
0 10

(n0

n1

)
≡

 5t
5t+ 75t2

5t+ 25t2

 (mod 53),

leading to a power series equation in t approximated by

(5t+ 75t2)− 10(5t+ 25t2) ≡ 80t+ 75t2 ≡ 0 (mod 53).

Modulo 52 we see that Lemma 1.3 applies. Thus we see that the only solution x, y ∈ Z to the
equation x3 − 2y3 = 1 that has (x, y) ≡ (−1,−1) (mod 5) is the solution x0, y0 = −1,−1 itself.

1.5 : Dirichlet sieving

In the previous section we have seen a p-adic method that, given a solution x0, y0 ∈ Z to a Thue
equation f(x, y) = c, can in all likelyhood prove that there are no other such solutions that are
congruent to it modulo p. We are left with formulating a method that can show that certain
congruence classes do not contain a solution.

As we saw, we can determine a finite set Γ such that any solution x0, y0 is of the form

x0 − θy0 = γεn1
1 · · · εnr

r .

We recall that we write Λp ⊂ Zr for the kernel of the homomorphism

Zr → (OL/pOL)×

(n1, . . . , nr) 7→ εn1
1 · · · εnr

r

By looking at the equation modulo p, we can determine a set Vp ⊂ Zr/λp that contains the reduction
of any solution. The set Vp will have about p2 elements, so it likely contains congruence classes
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that do not contain actual solutions. However, notice that we can combine information from several
primes. If Λp + Λq 6= Zr, then Vp∩Vq could actually consist of less cosets of Λp∩Λq than one would
expect. On an industrial scale, one picks a set of suitable primes S and computes⋂

p∈S

Vp ⊂ Zr/(
⋂
p∈S

Λp).

The heuristic that for a suitably chosen set S, this intersection is likely very small, and hence
likely only contains cosets that actually correspond to actual solutions, is based on the following
observation.

Consider the commutative diagram

{x, y ∈ Z : x− θy ∈ 〈ε1, . . . , εr〉} //

��

Zr

��∏
p∈S{x, y ∈ Fp : x− θy ∈ 〈ε1, . . . , εr〉 (mod p)} //

∏
p∈S Zr/Λp

The key is that the group
∏

p∈S Zr/Λp is very far from cyclic if its components have many factors
in common in their group orders, whereas the image of Zr is of course only a subgroup generated
by r generators.

In practice this method works extremely well.

1.6 Example: We return to our equation f(x, y) = x3 − y3 = 1. In this case, the only value for γ
we need is γ = 1. We pick p = 5. We find

n (θ − 1)n (mod 5)
0 1
1 θ + 4
2 θ2 + 3θ + 1
3 2θ2 + 3θ + 1
4 θ2 + 3θ + 3
5 2θ2 + 4
6 3θ2 + 4θ
7 θ2 + θ + 1
8 1

We see that only for n ≡ 0, 1 (mod 5) we have that (θ − 1)n is of the form x − θy (mod 5). This
corresponds to the actual solutions (x, y) = (1, 0), (−1, 1). So in this case the information at one
prime allows us to limit only to the residue classes that contain actual solutions.

Had we made the less fortunate choice on p = 11, we would have found

(θ − 1)0 ≡ 1 (mod 11)

(θ − 1)1 ≡ θ − 1 (mod 11)

(θ − 1)14 ≡ 4θ + 3 (mod 11)

(θ − 1)19 ≡ 6θ + 4 (mod 11)

(θ − 1)40 ≡ 1 (mod 11)
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However, combined with

(θ − 1)0 ≡ 1 (mod 17)

(θ − 1)1 ≡ θ − 1 (mod 17)

(θ − 1)44 ≡ 4θ + 15 (mod 17)

(θ − 1)64 ≡ 15θ (mod 17)

(θ − 1)81 ≡ 2θ + 8 (mod 17)

(θ − 1)96 ≡ 1 (mod 17)

we see that gcd(40, 96) = 8. From p = 11 we find that n ≡ 0, 1, 6, 5 (mod 8) and for p = 17 we find
that n ≡ 0, 1, 4, 0, 1 (mod 8). Combined, we see that only n = 0, 1 (mod 96) need to be considered.

1.7 : Geometric interpretation

It is instructive to interpret Skolem’s method in a geometric setting. A Thue equation is built from
a homogeneous form. That suggests a projective variety playing a role. However, the equation itself
is not homogeneous. Let us consider an example. Take the affine curve

C ′ : x2y − xy2 + 3xy + 1 = 0

with projective closure

C : X2Y −XY 2 + 3XY Z + Z3 = 0.

It is clear what integral points on C ′ are: Points for which x, y ∈ Z. On the projective curve C
we can represent any rational point using integers because we can clear denominators. Thus, on a
projective variety, integral and rational points are the same thing. We can recognize the integral
points on C ′ from integral points on C, though: These are points that can be represented by
integers (X0 : Y0 : Z0) with Z0 a unit. Our particular example is a genus 0 curve, as shown by the
parametrization

P1 → C
(U : V ) → (U3 : V 3 : UV (U − V )).

Thus, we see that the integral points on C ′ correspond to solutions to

f(U, V ) = UV (U − V ) = ±1 with U, V ∈ Z.

Note that C ′ is C \ {Z = 0}. Since C ' P1 via the parametrization above, we find

C ′ ' P1 \ {UV (U − V ) = 0}.

This applies in general: Solving Thue equations amounts to finding the integral points on projective
lines minus points.

1.8 Multiplicative Groups: Note that P1 \ {0,∞} = Gm, the multiplicative group. The integer
points on Gm are the units of the base ring, by definition. One way to express this is as

P1 \ {UV = 0} → Gm ×Gm

Gm
(U : V ) 7→ (U : V )

With more points removed, we can map into a higher dimensional algebraic group

P1 \ {UV (U − V ) = 0} → Gm ×Gm ×Gm

Gm
(U : V ) 7→ (U : V : U − V )
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1.9 Twisted tori: We assume that xd has a non-zero coefficient in f(x, y). Let L = Q[x]/(f(x, 1)
and let θ be the class of x in L. Then Gm(L) = L×. We can make an algebraic group T over Q such
that T (Q) ' Gm(L) in the following way. We use that {1, θ, . . . , θd−1} is a Q-basis for L. Given
two elements α = a0 + a1θ + · · ·+ ad−1θ

d−1 and β = b0 + b1θ + · · ·+ bd−1θ
d−1, we can write out

αβ = c0 + c1θ + · · ·+ cd−1θ
d−1

with ci ∈ Q[a0, . . . , ad−1, b0, . . . , bd−1]. This gives us an algebraic group law, defined over Q. Simi-
larly, we can write out the norm form F (a0, . . . , ad−1) = N(α). As a variety T is Ad \ {F = 0}.
The scalar inclusion Q ⊂ L is expressed as

Gm → T
a 7→ (a, 0, . . . , 0)

Over L, we would have the map P1 \{f(x, y) = 0} → Gm defined by (x : y) 7→ x− θy. This induces
the map

P1 \ {f(x, y) = 0} → T

Gm
(x : y) 7→ (x : −y : 0 : . . . : 0)

With a little work we can check that essentially the integer points from one side have to map to
integer points on the other. Dirichlet’s Theorem implies that the integer points on a torus form a
finitely generated group.


