BIRS 2012 - Nils Bruin: 6. Workshop Problems - continued

N10. Consider the genus 2 curve

$$
X: y^{2}=-x^{6}-x^{2}+x+2
$$

We have the following bits of information:
(i) We have the points $P_{1}=(1,1) \in X(\mathbb{Q})$ and $P_{2}=(1,-1) \in X(\mathbb{Q})$
(ii) $\operatorname{Pic}^{0}(X / \mathbb{Q})=\left\langle G=\left[P_{2}-P_{1}\right]\right\rangle \simeq \mathbb{Z}$.
(iii)

$$
\Lambda_{3}=\langle 5 G\rangle=\left\langle\left[Q_{1}+Q_{2}-2 P_{1}\right]\right\rangle
$$

where

$$
\begin{aligned}
& Q_{1}=\left(10 \sqrt{3}-44+O\left(3^{4}\right), \sqrt{3}+7+O\left(3^{4}\right)\right) \\
& Q_{2}=\left(-10 \sqrt{3}-44+O\left(3^{4}\right),-\sqrt{3}+7+O\left(3^{4}\right)\right)
\end{aligned}
$$

(iv) An annihilating 3 -adic differential is $\omega=\frac{1}{y} d x+O(3)$.

Together you can use this to determine all rational points on X.
(a) Determine $X\left(\mathbb{F}_{3}\right)$.
(b) Determine the points where ω vanishes modulo 3 .
(c) Determine $X(\mathbb{Q})$.
(d) Verify (iii) assuming (ii)
(e) Verify (iv)

N11. A classic curve for explicit Chabauty equations is a curve considered by Poonen, Schaefer and Stoll, arising from considering periodic points under quadratic polynomial maps.

$$
X: y^{2}=x^{6}+8 x^{5}+22 x^{4}+22 x^{3}+5 x^{2}+6 x+1
$$

(a) Verify that X has good reduction at $p=3$.
(b) Assume that $[(-3,1)-(0,1)]$ generates Λ_{3}. Determine an annihilating 3-adic differential. $[x$ is a good uniformizer for $(0,1)]$.
(c) Determine $X\left(\mathbb{F}_{3}\right)$.
(d) In order to analyze the points with $x=\infty$, change coordinates to $(z, w)=\left(\frac{1}{x}, \frac{y}{x^{3}}\right)$. Verify that modulo 3 , the annihilating differential does not have a zero with $z=0$.
(e) By expanding ω to a little higher precision around $(x, y)=(0,1)$, you can read off that there are at most two rational points that reduce to $(0,1)$ modulo 3 .
(f) You can assemble this to a full determination of all rational points on X.

N12. Prove the baby version of Strassman's Lemma: Let $f(z) \sum_{i=0}^{\infty} a_{i} z^{i} \in \mathbb{Z}_{p}[[z]]$ be a power series that converges on \mathbb{Z}_{p} (i.e., $\left.\lim _{i \rightarrow \infty} v_{p}\left(a_{i}\right)=\infty\right)$. Suppose that $v_{p}\left(a_{i}\right)>v_{p}\left(a_{1}\right)$ for all $i=2, \ldots$. Then $f(z)$ has only one root in \mathbb{Z}_{p}.

Worthwhile questions from previous exercise batches: N7, N3, except you probably want to do $x^{3}-2 y^{3}=5$ instead, in view of $27-16=11$.

