BIRS 2012 - Nils Bruin: 5. Workshop Problems - continued

N7. Consider the genus 1 curve

$$
C: y^{2}=2 x^{4}-17
$$

Writing $\theta=\sqrt[4]{17 / 2}$ and $L=\mathbb{Q}(\theta)$, we can consider the map

$$
\left.\left.\begin{array}{rl}
\gamma: \quad C(\mathbb{Q}) & \rightarrow \\
& L^{\times} / L^{\times 2} \mathbb{Q}^{\times} \\
& (x, y)
\end{array}\right) \mapsto x-\theta x-x\right)
$$

which plays the same role we have seen before. Check that any $\delta \in L^{\times}$representing an element in the image of γ would have to have $N(\delta) \in 2 \mathbb{Q}^{\text {times } 2}$. Verify that such δ do not exist.

For added satisfaction, check that C does have points everywhere locally.
N8. Magma has a command TwoCoverDescent that implements the computation of fake 2-Selmer sets of hyperelliptic curves. Read its documentation and explain its computations for the curve

$$
C: y^{2}=-x^{6}+2 x^{5}+3 x^{4}-x^{3}+x^{2}+x-3
$$

You might want to run SetVerbose("Selmer", 4); to see some of the work it is doing.
N9. Determine the rational points on

$$
C: y^{2}=\left(x^{2}+3\right)\left(x^{4}-18 x^{2}+9\right)
$$

