BIRS 2012 – Nils Bruin: 5. Workshop Problems – continued

N7. Consider the genus 1 curve

$$C: y^2 = 2x^4 - 17.$$

Writing $\theta = \sqrt[4]{17/2}$ and $L = \mathbb{Q}(\theta)$, we can consider the map
 $\gamma: \quad C(\mathbb{Q}) \rightarrow L^{\times}/L^{\times 2}\mathbb{Q}^{\times}$
 $(x, y) \mapsto x - \theta$

which plays the same role we have seen before. Check that any $\delta \in L^{\times}$ representing an element in the image of γ would have to have $N(\delta) \in 2\mathbb{Q}^{times^2}$. Verify that such δ do not exist.

For added satisfaction, check that C does have points everywhere locally.

N8. Magma has a command TwoCoverDescent that implements the computation of fake 2-Selmer sets of hyperelliptic curves. Read its documentation and explain its computations for the curve

$$C: y^{2} = -x^{6} + 2x^{5} + 3x^{4} - x^{3} + x^{2} + x - 3$$

You might want to run SetVerbose("Selmer",4); to see some of the work it is doing.

N9. Determine the rational points on

$$C: y^2 = (x^2 + 3)(x^4 - 18x^2 + 9).$$