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3.1 : Geometric interpretation of Thue Equations

We have looked at Thue equations on one hand and rational points on projective curves on the
other. As it turns out, Thue equations are closely related to integral points on curves. The notion
of integral points is rather obvious on affine varieties. For instance, consider the affine curve

C ′ : x2y − xy2 + 3xy + 1 = 0.

The (rational) integral points on this curve are the points (x0, y0) ∈ C ′(Q) for which x0, y0 ∈ Z.

We can consider the projective closure

C : X2Y −XY 2 + 3XY Z + Z3 = 0,

and we have the embedding
C ′ → C

(x, y) 7→ (x : y : 1)

Thus, we see that the integral points on C ′ map to points (X0 : Y0 : Z0) that can be represented
by X0, Y0, Z0 ∈ Z and Z0 = 1 (or more generally, a unit). These are exactly the rational projective
points on C that do no reduce to any of the 3 points (1 : 0 : 0), (0 : 1 : 0), (1 : 1 : 0), which are the
points where C intersects the line at infinity Z = 0.

The curve C is a genus 0 curve, as shown by the parametrization

P1 → C
(U : V ) → (U3 : V 3 : UV (U − V )).

Thus, we see that the integral points on C ′ correspond to solutions to

f(U, V ) = UV (U − V ) = ±1 with U, V ∈ Z.

Furthermore, since C ′ = C \ {Z = 0}, we find that

C ′ ' P1 \ {UV (U − V ) = 0}.
This applies in general: Solving Thue equations is essentially the same as finding the integral points
on projective lines minus points (if you do this over rings of integers with non-trivial class groups
there are some complications)

3.2 : Embedding in a group variety

Let us consider a degree d Thue equation

f(x, y) = c

where f(z, 1) ∈ Z[z] is monic of degree d in z. Let L = Q[θ] = Q[z]/(f(z, 1)) and consider the affine
variety J obtained from

Pd−1 with coordinates (z0 : · · · : zd−1)

by removing the hypersurface

NL/Q(z0 + z1θ + · · ·+ zd−1θ
d−1) = 0.

Then we can induce the structure of an abelian group on J by using the multiplication on L×,
written out with respect to the basis {1, θ, . . . , θd−1} (it is clear you get a group structure on the
affine cone over J in Ad and homogeneity shows that the group law descends to J ⊂ Pd−1 too. We
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have J(Q) ' L×/Q× and J(Z) ⊂ O×L/Z×. As we saw in a previous lecture, solving Thue-equations
amounts to solving equations of the form

x− θy
γ

∈ O×L ,

which corresponds to finding integral points on a curve X ⊂ J , where γ is an element of norm c.

3.3 Key Ingredient: Dirichlet Unit Theorem yields that J(Z) is a finitely generated abelian group.

3.4 : Reduction and Sieving

As before let p be a prime of good reduction for J . We have the reduction homomorphism
ρp : J(Z)→ J(Fp) and write Λp = ker(ρp), which is a finite index subgroup. From

X(Z)
ι //

��

J(Z)

ρS

��∏
p∈S X(Fp)

ιS //
∏

p∈S J(Fp)

we can compute
VS := im ιS ∩ im ρS

which consists of a relatively small number of cosets of

ΛS :=
⋂
p∈S

Λp

in which X(Z) must lie.

3.5 Poonen’s Heuristic: One expects that for any B > 1 one can carefully choose a set S such
that ΛS ⊂ BJ(Z), we have that the image of VS under J(Z)/ΛS → J(Z)/BJ(Z) consists of cosets
that actually contain a point from X(Z).

The key ingredient here is that X is of dimension strictly less than the dimension of J and that
J(Z) is finitely generated, together with the assumptions that the group orders of J(Fp) and the
images of ιS behave sufficiently as if they were random.

3.6 Corollary: If X(Z) = ∅, we expect to be able to prove this.

3.7 : Projective curves

Let us now consider a smooth projective curve X of genus g ≥ 2. As we have seen, we naturally
have an embedding X ↪→ Pic1(X) and if we have a rational divisor class of degree 1, then the latter
is isomorphic to J = Pic0(X), which is an Abelian variety of dimension g. This J is the Jacobian
of X, which for curves is also the Albanese variety of X.

3.8 Degree 1 divisor classes: Note that if X(Qp) is empty for some p then we can use that to
prove that X has no rational points and hence determine X(Q). If X(Qp) is non-empty for all p
then Pic1(X) has points everywhere locally, so Pic1(X) is an everywhere locally trivial J-torsor.
That means Pic1(X) represents a class in X(J). We will be needing J(Q) soon anyway, and the
main method we know to determine J(Q) uses descent and can recognise whether Pic1(X) is a
trivial torsor in the process.

Furthermore, if X has points everywhere locally, then any rational divisor class can actually be
represented by a rational divisor. Therefore, from this point on, we assume that we have a degree
1 divisor on X, although not necessarily an effective one, so we are not assuming X has a rational
point. This allows us to consider X as a subvariety of J .
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3.9 Theorem (Mordell-Weil): J(Q) is finitely generated.

Note that J is projective, so J(Q) = J(Z) and concepts like reduction work properly. Indeed, for
primes of good reduction for X, we have J(Fp) = Pic0(X/Fp). We write Λp ⊂ J(Q) for the kernel
of the natural reduction homomorphism ρp : J(Z)→ J(Fp).
3.10 Mordell-Weil Sieving: We expect that for B > 1, we can exactly determine the cosets in
J(Q)/BJ(Q) that contain rational points from X(Q).

3.11 Experiment: (B.-Stoll 2008) We’ve been able to decide for all genus 2 curves admitting
models

y2 = f6x
6 + · · ·+ f0 with f0, . . . , f6 ∈ {−3, . . . , 3}

if they have rational points using Mordell-Weil sieving.

3.12 : Chabauty’s Method (general prime version)

Suppose we have a collection of rational points {P1, . . . , Pm} ⊂ X(Q) and B > 1 and a prime p > 2
of good reduction of X such that

• BJ(Q) ⊂ Λp ⊂ J(Q)
• The points P1, . . . , Pm represent the cosets of BJ(Q) that contain X(Q).
• The points P1, . . . , Pm have distinct reductions on X(Fp)

(These properties can be relaxed considerably but not in a way that makes them considerably easier
to meet and in their current form they remove some technical problems)

We are now interested in a method to prove that each Pi is the only rational point in its fibre of
reduction modulo p. As it turns out, we can generalize the idea behind Skolem’s method. General
theory implies that Λp ⊂ J(Q) is a free subgroup of finite index. We assume it is of rank r < g.
This does not always apply, so this is where our method loses complete generality!

An important part in Skolem’s method was the p-adic logarithm. Note that

Log(1 + t1) =

∫ t1

t=0

1

t
dt,

one of the key ingredients being that the differential 1
t
dt has no poles outside t = 0,∞.

On a genus g curveX we can find a g-dimensional space of regular differentials onX, say 〈ω1, . . . , ωg〉.
3.13 Example: On a genus 2 curve

y2 = f6x
6 + · · ·+ f0

the space of regular differentials is generated by

ω1 =
1

y
dx and ω2 =

x

y
dx

3.14 Lemma: Let D ∈ Λp and P0 ∈ X(Qp). Then D can be represented by a divisor of the form

Q1 + · · ·+Qg − gP0.

3.15 Definition: Integration along degree 0 divisors. Let D = Q1 + · · ·+Qg − gP0.∫
D

ωj =

g∑
i=1

∫ Qi

P0

ωj



14

3.16 Definition: For P0 and a good prime p we choose a good uniformizer in the following way.
We take the reduction P 0 = P0 mod p. We choose a uniformizer t at P 0 (i.e., a function with a
multiplicity 1 zero at P 0). We lift this to a function t at P0.

3.17 Lemma: If Q reduces to the same point as P0 modulo p, then t(Q) ∈ pZp. Furthermore, we
can expand ω as ω = h(t)dt, where h(t) ∈ Qp[t], convergent on pZp. Then∫ Q

P0

ω =

∫ t(Q)

t=0

hω(t)dt

where the latter integral is the formal power series integral.

3.18 Proposition: We have a homomorphism of Zp-modules

Λp ⊗ Zp → pZg
p

D 7→ (
∫
D
ω1, . . . ,

∫
D
ωg)

3.19 Corollary: If r < g then the image is a module of Zp-rank strictly smaller than g. Then there
is a non-trivial Zp-linear combination ω of ω1, . . . , ωg such that

∫
D
ω = 0 for all D ∈ Λp. We say

that such a differential annihilates the Mordell-Weil group. Such a differential ω does not depend
on the choice of base point P0.

3.20 Proposition: Let P0 ∈ X(Q) and let ω be an annihilating differential. Let t be a good
uniformizer. If there is a point Q ∈ X(Q) with Q 6= P but such that Q reduces to the same point
modulo P then the power series ∫ t0

0

hω(z)d(z) ∈ Qp[[t0]]

must have a root t0 ∈ pZp with t0 6= 0. In particular, hω(z) must be zero modulo p, so the reduction
of ω modulo p has a zero at the reduction of P0.

3.21 Corollary: Let ω be an annihilating p-adic differential. Then the only fibers of reduction of
X modulo p that can contain more than one rational point are those where the reduction of ω has
a zero.

3.22 : What if the Chabauty condition r < g is not met?

Use a finite unramified cover Y → X. The rational points of X are covered by the rational points
on finitely many twists of Y , so we can reduce the question to trying to find the rational points on
finitely many curves Y . Note that Y will usually be of far larger genus and there is no particular
reason why the rank of its Jacobian should be far larger too, so there is a reasonable chance that
Y is amenable to the method of Chabauty.

3.23 : Elliptic Chabauty

Determining J(Q) is usually the stumbling block in these computations. One can sometimes get
away with computing a smaller part. For instance, if X is a curve over Q that covers a genus 1
curve over an extension k:

X
defined over k

~~}}
}}

}}
}}

defined over Q

��

E

defined over k   @
@@

@@
@@

@

P1
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then we can map X into the [k : Q]-dimensional abelian variety obtained by taking the Weil
restriction of scalars of E with respect to k/Q. The Mordell-Weil group of that variety is naturally
isomorphic to E(k), which is relatively easy to work with.

Alternatively, you can compute those points in E(k) that map to P1(Q). This is fully implemented
in Magma.


