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What are Diophantine equations?

According to Hilbert, a Diophantine equation is an equation of
the form

D(x1, . . . , xm) = 0,

where D is a polynomial with integer coefficients.

Hilbert’s 10th problem : Determination of the solvability of a
Diophantine equation. Given a diophantine equation with any
number of unknown quantities and with rational integral
numerical coefficients: To devise a process according to which
it can be determined by a finite number of operations whether
the equation is solvable in rational integers.
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What are Diophantine equations? (take 2)

A few more opinions :

Wikipedia pretty much agrees with Hilbert

Mordell, in his book “Diophantine Equations”, never really
defines the term (!)

Wolfram states
“A Diophantine equation is an equation
in which only integer solutions are allowed”.
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Back to Hilbert’s 10th problem

Determination of the solvability of a Diophantine equation.
Given a diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients: To
devise a process according to which it can be determined by a
finite number of operations whether the equation is solvable in
rational integers.
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Matiyasevich’s Theorem

(building on work of Davis, Putnam and Robinson) is that, in
general, no such process exists.

But . . .

Hilbert’s problem is still open over Q (and over OK for most
number fields)

It is not yet understood what happens if the number of
variables is “small”
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Perhaps we should simplify (?) things...

1 We could try to answer Hilbert’s question for plane curves;
i.e. try to decide whether an equation of the shape
f(x, y) = 0 has integral or rational solutions.

2 We could try to bound the number of such solutions.

3 We could try to find an algorithm for explicitly solving
such equations.
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However....

A complete answer to Problem 1 is unavailable – no
algorithm is known to determine whether a curve has a
rational point!

Problem 2 has some partial answers (Rémond).

Problem 3 is open, even in the case of genus 2...
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So, what can we prove?

Sticking to curves – let C be a nonsingular algebraic curve of
genus g over, say, Q. Then the set of rational points on C is

1 infinite or empty if g = 0 (conic section)

2 empty or C is an elliptic curve, if g = 1 (so that the
rational points form a finitely generated abelian group, via
Mordell), or

3 at most finite if g > 1 (Faltings’ theorem née Mordell’s
conjecture).
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So, what can we prove?

Sticking to curves – let C be a nonsingular algebraic curve of
genus g over, say, Q. Then the set of integral points on C is

1 infinite or empty, or somewhere in between, if g = 0

2 at most finite if g > 0 (Siegel’s theorem).
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A Diversion : Local-Global Principles

Consider
x2 + y2 = −1,

x2 + y2 = 3,

and
x2 + y2 = 5.

Solutions over Q =⇒ solutions over R and Qp for all p.
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So we understand curves, right?

The problem is that the theorems of Faltings and Siegel and
ineffective, in that their proofs do not provide a way to
determine the implicit finite set (in case the genus of the curve
satisfies g > 1, or g > 0, respectively).

We are interested in effective methods (and not just for
curves!).
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A Diversion : Motivation

Why do we study Diophantine equations?

1 They arise “naturally” in other areas of math.

2 They provide valuable test-cases for theorems and
conjectures coming from, say, algebraic geometry.

3 It beats working.
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Case study : The Ramanujan-Nagell equation

Consider the sequence of integers 2n − 7, n ≥ 3 :

1,9,25, 57,121, 249, 505, 1017,

2041, 4089, 8185, 16377,32761,

65529, 131065, 262137, 524281,

1048569, 2097145, 4194297, . . .

Ramanujan’s Question of 1913 (Journal of the Indian
Mathematical Society) : Are the numbers in bold the only
squares in the sequence?
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A Class of Diophantine Equations

This is an example of a

Polynomial-Exponential Equation.

For a fixed, irreducible polynomal f(x) with integer coefficients
and degree at least 2, we have

P (f(x))→∞,

where P (m) denotes the greatest prime divisor of an integer m.
To quantify this statement for a fixed f(x) can turn out to be
quite difficult (linear forms in logarithms).
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Conjecture proved

In 1959, Chowla, Lewis and Skolem published a proof in the
Proceedings of the American Mathematical Society, but....

Earlier that year, Shapiro and Slotnick had published a result
that implied the conjecture in the I.B.M. Journal of Research
Developments! (more on this later), but...

As pointed out by Schinzel in 1960, he and Browkin had
published an equivalent result as early as 1956, but....
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Conjecture already proved!

In an Elementary Number Theory textbook of 1951, Trygve
Nagell has this problem as an exercise for (undergraduate)
students . . .
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And Credit Goes To...

Nagell (1948) in a Norwegian journal....

In the years since, there have been no less than fifty papers
published on this problem and its generalizations, and at least
three surveys written (including one by Helmut Hasse).
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Appearances of the Ramanujan-Nagell equation

Coding Theory

Differential Algebra

Classification of Finite Simple Groups

Design Theory

Algebraic Geometry
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The I.B.M. Journal of Research Developments?

A problem in coding theory:
The sphere Se(a) of radius e centered at the vector a ∈ FNq is
the set

Se(a) =
{
x ∈ FNq | D(x, a) ≤ e

}
,

where D(x, a) denotes the Hamming distance between the
vectors x and a; i.e. the number of nonzero components in
x− a.
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Coding theory (continued)

Since there are q − 1 ways to change an individual entry, we
have

|Se(a)| =
e∑
i=0

(
N
i

)
(q − 1)i.

If C is a code in FNq with minimum Hamming distance D and
we let e = [(D − 1)/2], then we obtain the sphere packing
bound :

|C|

(
e∑
i=0

(
N
i

)
(q − 1)i

)
≤ qN .
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The sphere packing bound

expresses the fact that spheres of Hamming radius e centered
at the codewords of C are disjoint, and the union of these
spheres is a subset of FNq . An e-error correcting code for which
equality holds in the sphere-packing bound is called perfect.

In such a situation, we have that

e∑
i=0

(
N
i

)
(q − 1)i divides qN .
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Perfect codes

A reasonable place to look for perfect codes, then, is to
examine when

e∑
i=0

(
N
i

)
(q − 1)i

is actually a power of q. In case e = 2, we have(
N
0

)
+

(
N
1

)
(q − 1) +

(
N
2

)
(q − 1)2 = qk.
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Some special cases

If q = 3, this is just the Diophantine equation

2N2 + 1 = 3k.

The solution
2 · 112 + 1 = 35

corresponds to the [11, 6, 5] ternary Golay code. This consists
of 36 codewords of length 11 and minimum distance 5.
If q = 2, the equations becomes

(2N + 1)2 + 7 = 2k+3.

This is what led Shapiro and Slotnick to the Ramanujan-Nagell
equation.
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An Amazing Code?

So maybe the identity

1812 + 7 = 215

corresponds to a remarkable code! Unfortunately, not – there’s
more going on here than just the sphere-packing-bound.

In fact, in a series of beautiful papers, beginning in the early
1970’s, van Lint, Tietäváinen, and Zinoviev and Leontiev
showed that the only perfect multiple-error-correcting codes are
the binary and ternary Golay codes, and the binary repetition
codes.
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But....

The Diophantine equations associated to perfect codes are still
mostly unsolved; even the equation corresponding to q = p
prime and e = 2 is open!

A number of similar questions in coding theory with other
metrics have been tackled via Diophantine equations.
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Case study 2 : Approximating π

We have

3 +
10

71
< π < 3 +

1

7

(Archimedes), via inscribed and circumscribed 96-gons.
Ludolph van Ceulen extended this approach to compute 35
decimal digits of π; he had

3.14159265358979323846264338327950288...

engraved on his tombstone.
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Early improvements

Gregory used the Maclaurin series for arctan = tan−1 :

arctan(x) = x− x3/3 + x5/5− x7/7 + · · ·

Taking x = 1, this requires about 10, 000 terms to get 4
decimal places of accuracy!

Machin used the relation

4 arctan
1

5
− arctan

1

239
=
π

4

to get 100 digits correctly.

William Shanks (described as “a man of independent means”)
over slightly more than 20 years used this formula to compute
the first 527 digits of π.
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Can we do better?

The equation

m arctan
1

x
+ n arctan

1

y
= k · π

4

has the known solutions

arctan
1

2
+ arctan

1

3
=
π

4
,

2 arctan
1

2
− arctan

1

7
=
π

4
,

2 arctan
1

3
+ arctan

1

7
=
π

4
and

4 arctan
1

5
− arctan

1

239
=
π

4
.

There are, in fact, no others.
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How to prove this

Notice that

a+ i b =
√
a2 + b2 ei arctan(b/a)

so that if we have

k arctan

(
1

−1

)
+m arctan

1

x
+ n arctan

1

y
= 0,

then

(1− i)k(x+ i)m(y + i)n = (1 + i)k(x− i)m(y − i)n

is real. After a little work, we find that

x+ i = ε(1 + i)δ(α+ iβ)n

y − i = ε′(1− i)δ′(α+ iβ)m
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From which we conclude that

The integers x and y satisfy

1 + x2 = 2δAn and 1 + y2 = 2δ
′
Am,

where A is an integer and δ, δ′ ∈ {0, 1}.

The arctan identities mentioned earlier correspond to

1 + 22 = 5 and 1 + 72 = 2 · 52,

1 + 22 = 5 and 1 + 32 = 2 · 5,

1 + 32 = 2 · 5 and 1 + 72 = 2 · 52,

1 + 52 = 2 · 13 and 1 + 2392 = 2 · 134.
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Ljunggren’s Theorem

Theorem

(Ljunggren, 1942) : If x and y are positive integers satisfying

x2 + 1 = 2y4,

then (x, y) = (1, 1) or (x, y) = (239, 13).

Størmer had earlier handled all other cases of

x2 + 1 = 2δAn.
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Regarding Ljunggren’s proof

Mordell : “One cannot imagine a more involved solution . . . .
One could only wish for a simpler proof”.

Guy : Problem D6 in Unsolved Problems in Number Theory is
to find an elementary solution.
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Case Study 3 : The Generalized Fermat Equation

We consider the equation

xp + yq = zr

where x, y and z are relatively prime integers, and p, q and r
are positive integers with

1

p
+

1

q
+

1

r
< 1.

(p, q, r) = (n, n, n) : Fermat’s equation

y = 1: Catalan’s equation

considered by Beukers, Granville, Tijdeman, Zagier, Beal
(and many others)
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A simple case

xp + yq = zr

where x, y and z are relatively prime integers, and p, q and r
are positive integers with

1

p
+

1

q
+

1

r
= 1.

(p, q, r) = (2, 6, 3), (2, 4, 4), (4, 4, 2), (3, 3, 3), (2, 3, 6)

each case corresponds to an elliptic curve of rank 0

the only coprime nonzero solutions is with
(p, q, r) = (2, 3, 6) – corresponding to 32 − 23 = 1
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For example : x3 + y3 = z3

We write

Y =
36(x− y)
x+ y

and X =
12z

x+ y
,

so that
Y 2 = X3 − 432.

This is 27A in Cremona’s tables – it has rank zero and

E(Q) ' Z/3Z.
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A less simple case

xp + yq = zr

where x, y and z are relatively prime integers, and p, q and r
are positive integers with

1

p
+

1

q
+

1

r
> 1.

(2, 2, r), (2, q, 2), (2, 3, 3), (2, 3, 4), (2, 4, 3), (2, 3, 5)

in each case, the coprime integer solutions come in finitely
many two parameter families (the canonical model is that
of Pythagorean triples)

in the (2, 3, 5) case, there are precisely 27 such families (as
proved by J. Edwards, 2004)



Diophantine
problems

Michael
Bennett

Introduction

What we know

Case studies

Back to

xp + yq = zr

where x, y and z are relatively prime integers, and p, q and r
are positive integers with

1

p
+

1

q
+

1

r
< 1.
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Some solutions

1n + 23 = 32,

25 + 72 = 34,

35 + 114 = 1222,

27 + 173 = 712,

73 + 132 = 29,

438 + 962223 = 300429072,

338 + 15490342 = 156133,

177 + 762713 = 210639282,

14143 + 22134592 = 657,

92623 + 153122832 = 1137.
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Conjecture (weak version $0)

There are at most finitely many other solutions.

Conjecture (Beal prize problem $100,000)

Every such solution has min{p, q, r} = 2.

Conjecture (strong version ≥ $100,000)

There are no additional solutions.
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What we know

Theorem (Darmon and Granville) If A,B,C, p, q and r are
fixed positive integers with

1

p
+

1

q
+

1

r
< 1,

then the equation

Axp +Byq = Czr

has at most finitely many solutions in coprime nonzero integers
x, y and z.
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The state of the art (?)

(p, q, r) reference(s)

(n, n, n) Wiles, Taylor-Wiles
(n, n, k), k ∈ {2, 3} Darmon-Merel, Poonen

(2n, 2n, 5) B.
(2, 4, n) Ellenberg, B-Ellenberg-Ng, Bruin
(2, 6, n) B-Chen, Bruin
(2, n, 4) B-Skinner, Bruin
(2, n, 6) BCDY

(3j, 3k, n), j, k ≥ 2 immediate from Kraus
(3, 3, 2n) BCDY
(3, 6, n) BCDY

(2, 2n, k), k ∈ {9, 10, 15} BCDY
(4, 2n, 3) BCDY
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The state of the art : continued

(p, q, r) reference(s)

(3, 3, n)∗ Chen-Siksek, Kraus, Bruin, Dahmen
(2, 2n, 3)∗ Chen, Dahmen, Siksek
(2, 2n, 5)∗ Chen
(2m, 2n, 3)∗ BCDY
(2, 4n, 3)∗ BCDY
(3, 3n, 2)∗ BCDY

(2, 3, n), 6 ≤ n ≤ 10 PSS, Bruin, Brown, Siksek
(3, 4, 5) Siksek-Stoll

(5, 5, 7), (7, 7, 5) Dahmen-Siksek



Diophantine
problems

Michael
Bennett

Introduction

What we know

Case studies

The state of the art : continued

The * here refers to conditional results. For instance, in case
(p, q, r) = (3, 3, n), we have no solutions if either 3 ≤ n ≤ 104,
or n ≡ ±2 modulo 5, or n ≡ ±17 modulo 78, or

n ≡ 51, 103, 105 modulo 106,

or for n (modulo 1296) one of

43, 49, 61, 79, 97, 151, 157, 169, 187, 205, 259, 265, 277, 295,
313, 367, 373, 385, 403, 421, 475, 481, 493, 511, 529, 583,

601, 619, 637, 691, 697, 709, 727, 745, 799, 805, 817, 835, 853,
907, 913, 925, 943, 961, 1015, 1021, 1033, 1051, 1069, 1123,

1129, 1141, 1159, 1177, 1231, 1237, 1249, 1267, 1285.
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Both of these techniques will be discussed this week.
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Open problems (hard edition)

xp − yq = 2, xp − yq = 6,
4

n
=

1

x
+

1

y
+

1

z
,

(x2 − 1)(y2 − 1) = (z2 − 1)2,

x2 − 2 = yn, xn + yn = z5,
xn − 1

x− 1
= yq,
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