Diophantine	9
problems	

Michael Bennett

Introduction What we know Case studies

Effective methods for Diophantine problems

Michael Bennett

University of British Columbia

BIRS Summer School : June 2012

> Michael Bennett

Introduction What we know Case studies

What are Diophantine equations?

According to Hilbert, a *Diophantine equation* is an equation of the form

$$D(x_1,\ldots,x_m)=0,$$

where D is a polynomial with integer coefficients.

Hilbert's 10th problem : Determination of the solvability of a Diophantine equation. Given a diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: To devise a process according to which it can be determined by a finite number of operations whether the equation is solvable in rational integers.

> Michael Bennett

Introduction What we know Case studies What are Diophantine equations? (take 2)

A few more opinions :

Wikipedia pretty much agrees with Hilbert

Mordell, in his book "Diophantine Equations", never really defines the term (!)

Wolfram states

"A Diophantine equation is an equation in which only integer solutions are allowed".

> Michael Bennett

Introduction

What we know Case studies

Back to Hilbert's 10th problem

Determination of the solvability of a Diophantine equation. Given a diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: To devise a process according to which it can be determined by a finite number of operations whether the equation is solvable in rational integers.

Michael Bennett

Introduction

What we know Case studies

Matiyasevich's Theorem

(building on work of Davis, Putnam and Robinson) is that, in general, no such process exists.

Michael Bennett

Introduction

What we know Case studies

Matiyasevich's Theorem

(building on work of Davis, Putnam and Robinson) is that, in general, no such process exists.

But . . .

Michael Bennett

Introduction

What we know Case studies

Matiyasevich's Theorem

(building on work of Davis, Putnam and Robinson) is that, in general, no such process exists.

But ...

Hilbert's problem is still open over \mathbb{Q} (and over O_K for most number fields)

Michael Bennett

Introduction

What we know Case studies

Matiyasevich's Theorem

(building on work of Davis, Putnam and Robinson) is that, in general, no such process exists.

But . . .

Hilbert's problem is still open over \mathbb{Q} (and over O_K for most number fields)

It is not yet understood what happens if the number of variables is "small"

Michael Bennett

Introduction

What we know Case studies

Perhaps we should simplify (?) things...

- We could try to answer Hilbert's question for plane curves;
 i.e. try to decide whether an equation of the shape
 f(x, y) = 0 has integral or rational solutions.
- We could try to bound the number of such solutions.
- We could try to find an algorithm for explicitly solving such equations.

Michael Bennett

However....

Introduction

- What we know Case studies
- A complete answer to Problem 1 is unavailable no algorithm is known to determine whether a curve has a rational point!
- Problem 2 has some partial answers (Rémond).
- Problem 3 is open, even in the case of genus 2...

Michael Bennett

Introduction

What we know

Case studies

So, what can we prove?

> Michael Bennett

So, what can we prove?

Introduction

What we know Case studies Sticking to curves – let C be a nonsingular algebraic curve of genus g over, say, \mathbb{Q} . Then the set of rational points on C is

> Michael Bennett

So, what can we prove?

Introduction

What we know Case studies Sticking to curves – let C be a nonsingular algebraic curve of genus g over, say, \mathbb{Q} . Then the set of rational points on C is infinite or empty if g = 0 (conic section)

Michael Bennett

Introduction

What we know Case studies Sticking to curves – let C be a nonsingular algebraic curve of genus g over, say, \mathbb{Q} . Then the set of rational points on C is infinite or empty if g = 0 (conic section)

So, what can we prove?

2 empty or C is an elliptic curve, if g = 1 (so that the rational points form a finitely generated abelian group, via Mordell), or

Michael Bennett

Introduction

What we know Case studies Sticking to curves – let C be a nonsingular algebraic curve of genus g over, say, \mathbb{Q} . Then the set of rational points on C is infinite or empty if g = 0 (conic section)

So, what can we prove?

- O empty or C is an elliptic curve, if g=1 (so that the rational points form a finitely generated abelian group, via Mordell), or
- at most finite if g > 1 (Faltings' theorem née Mordell's conjecture).

Michael Bennett

Introduction

What we know

Case studies

So, what can we prove?

Sticking to curves – let C be a nonsingular algebraic curve of genus g over, say, \mathbb{Q} . Then the set of integral points on C is

- ${\color{black} 0}$ infinite or empty, or somewhere in between, if g=0
- 2 at most finite if g > 0 (Siegel's theorem).

> Michael Bennett

A Diversion : Local-Global Principles

millouuction

What we know

Case studies

$$x^{2} + y^{2} = -1,$$

 $x^{2} + y^{2} = 3,$

 and

Consider

$$x^2 + y^2 = 5.$$

> Michael Bennett

A Diversion : Local-Global Principles

Introduction

What we know

Case studies

$$x^{2} + y^{2} = -1,$$

 $x^{2} + y^{2} = 3,$

and

Consider

 $x^2 + y^2 = 5.$

Solutions over $\mathbb{Q} \Longrightarrow$ solutions over \mathbb{R} and \mathbb{Q}_p for all p.

> Michael Bennett

Introduction What we know

Case studies

So we understand curves, right?

The problem is that the theorems of Faltings and Siegel and *ineffective*, in that their proofs do not provide a way to determine the implicit finite set (in case the genus of the curve satisfies g > 1, or g > 0, respectively).

> Michael Bennett

Introduction What we know

So we understand curves, right?

The problem is that the theorems of Faltings and Siegel and *ineffective*, in that their proofs do not provide a way to determine the implicit finite set (in case the genus of the curve satisfies g > 1, or g > 0, respectively).

We are interested in **effective methods** (and not just for curves!).

Michael Bennett

Introduction

What we know

Case studies

A Diversion : Motivation

Why do we study Diophantine equations?

> Michael Bennett

Introduction

What we know

Case studies

A Diversion : Motivation

Why do we study Diophantine equations?They arise "naturally" in other areas of math.

> Michael Bennett

Introduction

What we know

Case studies

A Diversion : Motivation

Why do we study Diophantine equations?

- They arise "naturally" in other areas of math.
- They provide valuable test-cases for theorems and conjectures coming from, say, algebraic geometry.

> Michael Bennett

Introduction

What we know

Case studies

A Diversion : Motivation

Why do we study Diophantine equations?

- They arise "naturally" in other areas of math.
- They provide valuable test-cases for theorems and conjectures coming from, say, algebraic geometry.
- It beats working.

> Michael Bennett

Introduction

What we know

Case studies

Case study : The Ramanujan-Nagell equation

Consider the sequence of integers $2^n - 7$, $n \ge 3$:

 $\mathbf{1}, \mathbf{9}, \mathbf{25}, 57, \mathbf{121}, 249, 505, 1017,$

2041, 4089, 8185, 16377, 32761,

65529, 131065, 262137, 524281,

 $1048569, 2097145, 4194297, \ldots$

> Michael Bennett

Introduction

Case studies

Case study : The Ramanujan-Nagell equation

Consider the sequence of integers $2^n - 7$, $n \ge 3$:

 $\mathbf{1}, \mathbf{9}, \mathbf{25}, 57, \mathbf{121}, 249, 505, 1017,$

2041, 4089, 8185, 16377, **32761**,

65529, 131065, 262137, 524281,

 $1048569, 2097145, 4194297, \ldots$

Ramanujan's Question of 1913 (Journal of the Indian Mathematical Society) : Are the numbers in bold the only squares in the sequence?

> Michael Bennett

Introduction What we know Case studies A Class of Diophantine Equations

This is an example of a

Polynomial-Exponential Equation.

For a fixed, irreducible polynomal f(x) with integer coefficients and degree at least 2, we have

 $P(f(x)) \to \infty,$

where P(m) denotes the greatest prime divisor of an integer m. To quantify this statement for a fixed f(x) can turn out to be quite difficult (linear forms in logarithms).

Michael Bennett

Conjecture proved

Introduction What we know Case studies

In 1959, Chowla, Lewis and Skolem published a proof in the Proceedings of the American Mathematical Society, but....

Michael Bennett

Introduction What we know Case studies

Conjecture proved

In 1959, Chowla, Lewis and Skolem published a proof in the Proceedings of the American Mathematical Society, but....

Earlier that year, Shapiro and Slotnick had published a result that implied the conjecture in the I.B.M. Journal of Research Developments! (more on this later), but...

Michael Bennett

Introduction What we know Case studies

Conjecture proved

In 1959, Chowla, Lewis and Skolem published a proof in the Proceedings of the American Mathematical Society, but....

Earlier that year, Shapiro and Slotnick had published a result that implied the conjecture in the I.B.M. Journal of Research Developments! (more on this later), but...

As pointed out by Schinzel in 1960, he and Browkin had published an equivalent result as early as 1956, but....

> Michael Bennett

Introduction

What we know

Case studies

Conjecture already proved!

In an Elementary Number Theory textbook of 1951, Trygve Nagell has this problem as an exercise for (undergraduate) students . . .

> Michael Bennett

Introduction What we know Case studies

And Credit Goes To ...

Nagell (1948) in a Norwegian journal....

In the years since, there have been no less than fifty papers published on this problem and its generalizations, and at least three surveys written (including one by Helmut Hasse).

> Michael Bennett

Introduction What we know Case studies

Appearances of the Ramanujan-Nagell equation

- Coding Theory
- Differential Algebra
- Classification of Finite Simple Groups
- Design Theory
- Algebraic Geometry

> Michael Bennett

Introduction What we know Case studies

The I.B.M. Journal of Research Developments?

A problem in coding theory:

The sphere $S_e(a)$ of radius e centered at the vector $a \in F_q^N$ is the set

$$S_e(a) = \left\{ x \in F_q^N \mid D(x, a) \le e \right\},\$$

where D(x, a) denotes the Hamming distance between the vectors x and a; i.e. the number of nonzero components in x - a.

> Michael Bennett

Introduction What we know Case studies

Coding theory (continued)

Since there are q-1 ways to change an individual entry, we have

$$|S_e(a)| = \sum_{i=0}^e \binom{N}{i} (q-1)^i.$$

If C is a code in F_q^N with minimum Hamming distance D and we let e=[(D-1)/2], then we obtain the sphere packing bound :

$$|C|\left(\sum_{i=0}^{e} \binom{N}{i} (q-1)^{i}\right) \leq q^{N}$$

Michael Bennett

Introduction What we know Case studies

The sphere packing bound

expresses the fact that spheres of Hamming radius e centered at the codewords of C are disjoint, and the union of these spheres is a subset of F_q^N . An *e*-error correcting code for which equality holds in the sphere-packing bound is called *perfect*.

In such a situation, we have that

$$\sum_{i=0}^{e} \left(\begin{array}{c} N \\ i \end{array} \right) (q-1)^{i} \ \, {\rm divides} \ \, q^{N}.$$

Michael Bennett

Perfect codes

Introduction What we know Case studies

A reasonable place to look for perfect codes, then, is to examine when

$$\sum_{i=0}^{e} \left(\begin{array}{c} N\\ i \end{array}\right) (q-1)^{i}$$

is actually a power of q. In case e = 2, we have

$$\begin{pmatrix} N\\0 \end{pmatrix} + \begin{pmatrix} N\\1 \end{pmatrix} (q-1) + \begin{pmatrix} N\\2 \end{pmatrix} (q-1)^2 = q^k.$$

Michael Bennett

Introduction What we know

Case studies

Some special cases

If q = 3, this is just the Diophantine equation

$$2N^2 + 1 = 3^k$$
.

The solution

$$2 \cdot 11^2 + 1 = 3^5$$

corresponds to the [11, 6, 5] ternary Golay code. This consists of 3^6 codewords of length 11 and minimum distance 5. If q = 2, the equations becomes

$$(2N+1)^2 + 7 = 2^{k+3}.$$

This is what led Shapiro and Slotnick to the Ramanujan-Nagell equation.

> Michael Bennett

Introduction What we know Case studies

An Amazing Code?

So maybe the identity

$$181^2 + 7 = 2^{15}$$

corresponds to a remarkable code! Unfortunately, not – there's more going on here than just the sphere-packing-bound.

In fact, in a series of beautiful papers, beginning in the early 1970's, van Lint, Tietäváinen, and Zinoviev and Leontiev showed that the only perfect multiple-error-correcting codes are the binary and ternary Golay codes, and the binary repetition codes.

Case studies

The Diophantine equations associated to perfect codes are still mostly unsolved; even the equation corresponding to q = p prime and e = 2 is open!

A number of similar questions in coding theory with other metrics have been tackled via Diophantine equations.

> Michael Bennett

Introduction What we know Case studies

Case study 2 : Approximating π

We have

$$3 + \frac{10}{71} < \pi < 3 + \frac{1}{7}$$

(Archimedes), via inscribed and circumscribed 96-gons. Ludolph van Ceulen extended this approach to compute 35 decimal digits of π ; he had

 $3.14159265358979323846264338327950288\ldots$

engraved on his tombstone.

Diophantine Farly

Michael Bennett

Introduction What we know Case studies

Early improvements

Gregory used the Maclaurin series for $\arctan = \tan^{-1}$:

$$\arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

Taking x = 1, this requires about 10,000 terms to get 4 decimal places of accuracy!

Machin used the relation

$$4\arctan\frac{1}{5} - \arctan\frac{1}{239} = \frac{\pi}{4}$$

to get $100\ {\rm digits}$ correctly.

William Shanks (described as "a man of independent means") over slightly more than 20 years used this formula to compute the first 527 digits of π .

problems Michael Bennett

Diophantine

Introduction

What we know

Case studies

The equation
$$m \arctan \frac{1}{x} + n \arctan \frac{1}{y} = k \cdot \frac{\pi}{4}$$
 has the known solutions

and a hattan?

$$\arctan \frac{1}{2} + \arctan \frac{1}{3} = \frac{\pi}{4},$$
$$2 \arctan \frac{1}{2} - \arctan \frac{1}{7} = \frac{\pi}{4},$$
$$2 \arctan \frac{1}{3} + \arctan \frac{1}{7} = \frac{\pi}{4}$$

and

$$4\arctan\frac{1}{5} - \arctan\frac{1}{239} = \frac{\pi}{4}$$

There are, in fact, no others.

How to prove this

Michael Bennett

Notice that

$$a+ib = \sqrt{a^2+b^2} e^{i \arctan(b/a)}$$

what we know

Case studies

so that if we have

$$k \arctan\left(\frac{1}{-1}\right) + m \arctan\frac{1}{x} + n \arctan\frac{1}{y} = 0,$$

then

$$(1-i)^k (x+i)^m (y+i)^n = (1+i)^k (x-i)^m (y-i)^n$$

is real. After a little work, we find that

$$x + i = \epsilon (1 + i)^{\delta} (\alpha + i\beta)^n$$

$$y - i = \epsilon'(1 - i)^{\delta'}(\alpha + i\beta)^m$$

Diophantine problems Michael

Bennett

From which we conclude that

The integers x and y satisfy

$$1 + x^2 = 2^{\delta} A^n$$
 and $1 + y^2 = 2^{\delta'} A^m$,

where A is an integer and $\delta,\delta'\in\{0,1\}.$

The arctan identities mentioned earlier correspond to

$$1 + 2^{2} = 5 \text{ and } 1 + 7^{2} = 2 \cdot 5^{2},$$

$$1 + 2^{2} = 5 \text{ and } 1 + 3^{2} = 2 \cdot 5,$$

$$1 + 3^{2} = 2 \cdot 5 \text{ and } 1 + 7^{2} = 2 \cdot 5^{2},$$

$$1 + 5^{2} = 2 \cdot 13 \text{ and } 1 + 239^{2} = 2 \cdot 13^{4}.$$

What we kno

Case studies

Michael Bennett

Introduction What we know Case studies

Ljunggren's Theorem

Theorem

(Ljunggren, 1942) : If x and y are positive integers satisfying

$$x^2 + 1 = 2y^4,$$

then (x, y) = (1, 1) or (x, y) = (239, 13).

Størmer had earlier handled all other cases of

$$x^2 + 1 = 2^{\delta} A^n.$$

> Michael Bennett

Introduction What we know Case studies Regarding Ljunggren's proof

Mordell : "One cannot imagine a more involved solution One could only wish for a simpler proof".

> Michael Bennett

Introduction What we know Case studies Regarding Ljunggren's proof

Mordell : "One cannot imagine a more involved solution One could only wish for a simpler proof".

Guy : Problem D6 in *Unsolved Problems in Number Theory* is to find an elementary solution.

> Michael Bennett

Introduction What we know

Case studies

Case Study 3 : The Generalized Fermat Equation We consider the equation

 $x^p + y^q = z^r$

where x, y and z are relatively prime integers, and p, q and r are positive integers with

$$\frac{1}{p}+\frac{1}{q}+\frac{1}{r}<1.$$

- $\bullet \ (p,q,r) = (n,n,n)$: Fermat's equation
- y = 1: Catalan's equation
- considered by Beukers, Granville, Tijdeman, Zagier, Beal (and many others)

Michael Bennett

Introduction What we know Case studies

A simple case

$$x^p + y^q = z^r$$

where x, y and z are relatively prime integers, and p, q and r are positive integers with

$$\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 1.$$

- $\bullet \ (p,q,r) = (2,6,3), (2,4,4), (4,4,2), (3,3,3), (2,3,6)$
- ullet each case corresponds to an elliptic curve of rank 0
- the only coprime nonzero solutions is with (p,q,r)=(2,3,6) corresponding to $3^2-2^3=1$

> Michael Bennett

Introduction What we know Case studies

For example :
$$x^3 + y^3 = z^3$$

We write
 $Y = \frac{36(x-y)}{x+y}$ and $X = \frac{12z}{x+y}$,
so that
 $Y^2 = X^3 - 432$.

> Michael Bennett

Introduction What we know Case studies For example : $x^3 + y^3 = z^3$ We write $Y = \frac{36(x-y)}{x+y}$ and $X = \frac{12z}{x+y}$, so that $V^2 = X^3 - 432$ This is 27A in Cremona's tables – it has rank zero and $E(\mathbb{Q}) \simeq \mathbb{Z}/3\mathbb{Z}.$

Diophantine problems Michael

Bennett

A less simple case

$$x^p + y^q = z^r$$

Introduction What we know Case studies where $x,y \mbox{ and } z$ are relatively prime integers, and p,q and r are positive integers with

$$\frac{1}{p} + \frac{1}{q} + \frac{1}{r} > 1.$$

- $\bullet \ (2,2,r), (2,q,2), (2,3,3), (2,3,4), (2,4,3), (2,3,5) \\$
- in each case, the coprime integer solutions come in finitely many two parameter families (the canonical model is that of Pythagorean triples)
- in the (2,3,5) case, there are precisely 27 such families (as proved by J. Edwards, 2004)

> Michael Bennett

Introduction What we know Case studies Back to

$$x^p + y^q = z^r$$

where $\boldsymbol{x}, \boldsymbol{y}$ and \boldsymbol{z} are relatively prime integers, and p, q and r are positive integers with

$$\frac{1}{p} + \frac{1}{q} + \frac{1}{r} < 1.$$

Michael Bennett

Introduction What we kno Case studies

Some solutions

$$1^{n} + 2^{3} = 3^{2},$$

$$2^{5} + 7^{2} = 3^{4},$$

$$3^{5} + 11^{4} = 122^{2},$$

$$2^{7} + 17^{3} = 71^{2},$$

$$7^{3} + 13^{2} = 2^{9},$$

$$43^{8} + 96222^{3} = 30042907^{2},$$

$$33^{8} + 1549034^{2} = 15613^{3},$$

$$17^{7} + 76271^{3} = 21063928^{2},$$

$$1414^{3} + 2213459^{2} = 65^{7},$$

$$2262^{3} + 15312283^{2} = 113^{7}$$

Michael Bennett

Introduction

What we know

Case studies

Conjecture (weak version \$0)

There are at most finitely many other solutions.

Michael Bennett

Introduction What we know Case studies

Conjecture (weak version \$0)

There are at most finitely many other solutions.

Conjecture (Beal prize problem \$100,000)

Every such solution has $\min\{p, q, r\} = 2$.

Michael Bennett

Introduction What we know Case studies

Conjecture (weak version \$0)

There are at most finitely many other solutions.

Conjecture (Beal prize problem \$100,000)

Every such solution has $\min\{p, q, r\} = 2$.

Conjecture (strong version \geq \$100,000)

There are no additional solutions.

> Michael Bennett

Introduction What we know Case studies

What we know

Theorem (Darmon and Granville) If A, B, C, p, q and r are fixed positive integers with

$$\frac{1}{p} + \frac{1}{q} + \frac{1}{r} < 1,$$

then the equation

$$Ax^p + By^q = Cz^r$$

has at most finitely many solutions in coprime nonzero integers x, y and z.

The state of the art (?)

Michael Bennett

Introduction What we know Case studies

reference(s) (p,q,r)(n, n, n)Wiles, Taylor-Wiles $(n, n, k), k \in \{2, 3\}$ Darmon-Merel, Poonen (2n, 2n, 5)B (2, 4, n)Ellenberg, B-Ellenberg-Ng, Bruin (2, 6, n)B-Chen, Bruin (2, n, 4)B-Skinner, Bruin (2, n, 6)BCDY $(3j, 3k, n), j, k \ge 2$ immediate from Kraus (3, 3, 2n)BCDY (3, 6, n)BCDY $(2, 2n, k), k \in \{9, 10, 15\}$ **BCDY** (4, 2n, 3)BCDY

> Michael Bennett

Introduction What we kno Case studies

reference(s) (p,q,r) $(3,3,n)^*$ Chen-Siksek, Kraus, Bruin, Dahmen $(2, 2n, 3)^*$ Chen, Dahmen, Siksek $(2, 2n, 5)^*$ Chen $(2m, 2n, 3)^*$ BCDY $(2, 4n, 3)^*$ **BCDY** $(3, 3n, 2)^*$ BCDY $(2,3,n), 6 \le n \le 10$ PSS, Bruin, Brown, Siksek (3, 4, 5)Siksek-Stoll (5,5,7), (7,7,5)Dahmen-Siksek

The state of the art : continued

Michael Bennett

Introduction What we know Case studies

The state of the art : continued

The * here refers to conditional results. For instance, in case (p,q,r) = (3,3,n), we have no solutions if either $3 \le n \le 10^4$, or $n \equiv \pm 2$ modulo 5, or $n \equiv \pm 17$ modulo 78, or

 $n \equiv 51, 103, 105 \text{ modulo } 106,$

or for n (modulo 1296) one of

 $\begin{array}{l} 43, 49, 61, 79, 97, 151, 157, 169, 187, 205, 259, 265, 277, 295,\\ 313, 367, 373, 385, 403, 421, 475, 481, 493, 511, 529, 583,\\ 601, 619, 637, 691, 697, 709, 727, 745, 799, 805, 817, 835, 853,\\ 907, 913, 925, 943, 961, 1015, 1021, 1033, 1051, 1069, 1123,\\ 1129, 1141, 1159, 1177, 1231, 1237, 1249, 1267, 1285. \end{array}$

> Michael Bennett

Introduction What we know Case studies

Methods of proof

These results have all followed from either

- Chabauty-type techniques, or
- Methods based upon the modularity of certain Galois representations

> Michael Bennett

Introduction What we know Case studies

Methods of proof

These results have all followed from either

- Chabauty-type techniques, or
- Methods based upon the modularity of certain Galois representations

Both of these techniques will be discussed this week.

> Michael Bennett

Introduction What we know Case studies

Open problems (hard edition)

$$\begin{aligned} x^{p} - y^{q} &= 2, \quad x^{p} - y^{q} = 6, \quad \frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}, \\ (x^{2} - 1)(y^{2} - 1) &= (z^{2} - 1)^{2}, \\ x^{2} - 2 &= y^{n}, \quad x^{n} + y^{n} = z^{5}, \quad \frac{x^{n} - 1}{x - 1} = y^{q}, \end{aligned}$$