BIRS, Meeting on Cluster Algebras
September 5-10, 2011, Banff, Canada

Continuous Cluster Categories

Gordana Todorov, Northeastern University, Boston, MA
Joint work with Kiyoshi Igusa, Brandeis Iniversity
Motivation: Continuous cluster categories of type \mathbf{A} are uncountably infinite categories with cluster structures, where the clusters correspond to ideal geodesic triangulations of the hyperbolic plane in one case, or clusters of the cluster categories of type $\mathbf{A}_{\mathbf{n}}$ in the other case. (The hyperbolic plane is the universal cover of once punctured surfaces.)

We define $\mathcal{A}_{\mathbb{R}}$ to be the category of k-representations of the real line \mathbb{R}, where k is a field. For each $a<b \in \mathbb{R}$ we denote by $V_{(a, b]}$ the special representation: $V_{(a, b]}(x)=k, \forall x \in(a, b]$ and $V_{(a, b]}(y) \rightarrow V_{(a, b]}(x)$ is 1_{k} for all $a<x<y \leq b$. We also define the full subcategory $\mathcal{B} \subset \mathcal{A}_{\mathbb{R}}$ to be additively generated by the indecomposable objects $\left\{V_{(a, b]} \mid a<0<b\right\}$.

A particularly nice correspondence between indecomposable objects of \mathcal{B} and points in \mathbb{R}^{2} is obtained by:

$$
V_{(a, b]} \leftrightarrow M(x, y) \quad \text { where } \quad(x, y)=(-\ln (-a), \ln (b))
$$

and we will use this correspondence to identify the k-representations of \mathbb{R} with points in the plane \mathbb{R}^{2}.

For a positive real number $c \in \mathbb{R}$, we define the full subcategory $\mathcal{B}_{\geq c} \subset \mathcal{B}$ by defining the indecomposable objects of $\left(\mathcal{B}_{\geq c}\right)$ as $\{M(x, y) \in \mathcal{B}||x-y| \geq c\}$. The continuous derived category \mathcal{D}_{c} is defined using "two way $\mathcal{B}_{\geq c}$-approximations" in \mathcal{B} and defining triangulated structure on $\mathcal{D}_{c}:=\mathcal{B} / \mathcal{B}_{\geq c}$.

For each positive real number $d \in \mathbb{R}$ we define functor $F_{d}: \mathcal{D}_{c} \rightarrow \mathcal{D}_{c}$ by $F_{d}(M(x, y))=M(y+d, x+d)$ which can be used to define a triangulated automorphism of the doubled derived category $\mathcal{D}_{c}^{(2)}$. Using the functor F_{d} the orbit category of $\mathcal{D}_{c}^{(2)}$ is defined and denoted by $\mathcal{C}_{(c, d)}:=\mathcal{D}_{c}^{(2)} / F_{d}$. With these definitions we have the following results.

Theorem: The orbit category $\mathcal{C}_{(c, d)}$ is triangulated if $c \leq d$.
Theorem: The orbit category $\mathcal{C}_{(c, d)}$ has a cluster structure if and only if either $c=d$ or $c=\frac{n+1}{n+3} d$ for some positive integer n.

Relation between continuous cluster category and ideal triangulation of hyperbolic plane by geodesics is obtained in the case $c=d=\pi$. To each representation $M(x, y) \in \mathcal{C}_{(\pi, \pi)}$ we associate geodesic starting at angle x and ending at $y+\pi$. With this correspondence, each cluster in the continuous cluster category $\mathcal{C}_{(\pi, \pi)}$ corresponds to an ideal triangulation of the hyperbolic plane.

Objects of $\mathcal{C}_{(c, \pi)}$ can also be viewed as representations of the circle S^{1}.

