Research interests - Greg Muller

The geometry of cluster algebras. For a (complex) cluster algebra \mathcal{A} , the affine scheme $X := Spec(\mathcal{A})$ has many interesting properties. Each cluster determines an embedding of an algebraic torus, and the union of these tori determines an open subscheme X' (called the *cluster manifold* in [GSV03]) whose ring of global functions is the upper cluster algebra \mathcal{U} . I am interested in the complement $X_d := X - X'$, about which very little seems to be known in general. For fixed \mathcal{A} , several basic questions are already non-trivial, even when \mathcal{A} is finite-type:

- Is X_d empty?
- Is X_d smooth in X?
- What is the codimension of X_d in X?
- Does the Poisson structure on X' (as defined in [GSV03]) extend to X_d ? For acyclic \mathcal{A} , this was shown to be true in [Mul].

Cluster algebras of surfaces and skein algebras. Given an oriented surface Σ (possibly with boundary $\partial \Sigma$) with a finite collection of marked points M, there are two related algebras associated to Σ .¹ The first is the cluster algebra $\mathcal{A}(\Sigma)$ of Σ , as defined in [GSV05] and [FST08] (and also the upper cluster algebra $\mathcal{U}(\Sigma)$). The second is the *Kauffman skein algebra* $\mathsf{Sk}(\Sigma)$, an algebra of formal products of arcs and loops together with a local relation (the definition involves a parameter q).² When q = 1, there are natural inclusions

$$\mathcal{A}(\Sigma) \subseteq \mathsf{Sk}^o(\Sigma) \subseteq \mathcal{U}(\Sigma)$$

where $\mathsf{Sk}^{o}(\Sigma)$ is a certain localization of $\mathsf{Sk}(\Sigma)$. When $M \subset \partial \Sigma$, I can show that $\mathsf{Sk}^{o}(\Sigma) = \mathcal{U}(\Sigma)$, and there is evidence that this is true for general M.

Cluster algebras of surfaces and character algebras. Following [FG06], one may define decorated local systems on Σ , by taking an $SL_2(\mathbb{C})$ local system on Σ and adding extra data at the M. To this moduli problem, one can associate an affine character scheme $Char(\Sigma)$ (which is the schemification of the moduli stack). For $M \subset \partial \Sigma$, it is possible to (non-canonically)³ identify the ring of functions $\mathcal{O}Char(\Sigma)$ with the skein algebra $Sk(\Sigma)$; and so a localization of $\mathcal{O}Char(\Sigma)$ may be identified with $\mathcal{U}(\Sigma)$. This provides a regular version of a birational result obtained in [FG06]. This work is joint with Peter Samuelson.

References

- [FG06] Vladimir Fock and Alexander Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. (2006), no. 103, 1–211. MR 2233852 (2009k:32011)
- [FST08] Sergey Fomin, Michael Shapiro, and Dylan Thurston, Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math. 201 (2008), no. 1, 83–146. MR 2448067 (2010b:57032)
- [GSV03] Michael Gekhtman, Michael Shapiro, and Alek Vainshtein, Cluster algebras and Poisson geometry, Mosc. Math. J. 3 (2003), no. 3, 899–934, 1199, {Dedicated to Vladimir Igorevich Arnold on the occasion of his 65th birthday}. MR 2078567 (2005i:53104)
- [GSV05] _____, Cluster algebras and Weil-Petersson forms, Duke Math. J. 127 (2005), no. 2, 291–311. MR 2130414 (2006d:53103)

[Mul] Greg Muller, The Weil Petersson form on an acyclic cluster variety., preprint, arxiv: 1103.2341.

¹We assume there are 'enough' points in M.

²When there are marked points not on the boundary, it is also necessary to add tagged arcs, as in [FST08].

³This identification may be made canonical by replacing decorated local systems with *twisted decorated local systems*.