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The geometry of cluster algebras. For a (complex) cluster algebra A, the affine scheme X := Spec(A)

has many interesting properties. Each cluster determines an embedding of an algebraic torus, and the union

of these tori determines an open subscheme X ′ (called the cluster manifold in [GSV03]) whose ring of global

functions is the upper cluster algebra U . I am interested in the complement Xd := X − X ′, about which

very little seems to be known in general. For fixed A, several basic questions are already non-trivial, even

when A is finite-type:

• Is Xd empty?

• Is Xd smooth in X?

• What is the codimension of Xd in X?

• Does the Poisson structure on X ′ (as defined in [GSV03]) extend to Xd? For acyclic A, this was

shown to be true in [Mul].

Cluster algebras of surfaces and skein algebras. Given an oriented surface Σ (possibly with bound-

ary ∂Σ) with a finite collection of marked points M , there are two related algebras associated to Σ.1 The

first is the cluster algebra A(Σ) of Σ, as defined in [GSV05] and [FST08] (and also the upper cluster al-

gebra U(Σ)). The second is the Kauffman skein algebra Sk(Σ), an algebra of formal products of arcs and

loops together with a local relation (the definition involves a parameter q).2 When q = 1, there are natural

inclusions

A(Σ) ⊆ Sko(Σ) ⊆ U(Σ)

where Sko(Σ) is a certain localization of Sk(Σ). When M ⊂ ∂Σ, I can show that Sko(Σ) = U(Σ), and there

is evidence that this is true for general M .

Cluster algebras of surfaces and character algebras. Following [FG06], one may define decorated

local systems on Σ, by taking an SL2(C) local system on Σ and adding extra data at the M . To this moduli

problem, one can associate an affine character scheme Char(Σ) (which is the schemification of the moduli

stack). For M ⊂ ∂Σ, it is possible to (non-canonically)3 identify the ring of functions OChar(Σ) with the

skein algebra Sk(Σ); and so a localization of OChar(Σ) may be identified with U(Σ). This provides a regular

version of a birational result obtained in [FG06]. This work is joint with Peter Samuelson.
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1We assume there are ‘enough’ points in M .
2When there are marked points not on the boundary, it is also necessary to add tagged arcs, as in [FST08].
3This identification may be made canonical by replacing decorated local systems with twisted decorated local systems.
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