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@ N, number of points of N in A,

@ N; = N ¢ counts the number of points between 0 and t =
counting process

@ dN; =3 + point of y 0T = point measure

Usually R is thought as time, but also the DNA strand (point=
position of transcription regulatory elements).Sometimes it's

marked (or multivariate), ie (Ngm))m:l,m,M.
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(Conditional) Intensity
(Conditional) Intensity
t — Am™(t) where A(™)(t)dt represents the probability to have a

point in N(™) at time t conditionally to the past before t (x < t).

An intensity is a predictable process wrt a filtration that defines
"past”. If it exists, fo x)dx is the compensator of N, ie

t
Mt Nt / )\(X)dX
0

is a (local) martingale.
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Multivariate Hawkes processes
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The multivariate Hawkes process(2)

Link with graphical model of local independence (see Didelez
(2008)). Estimating the interaction functions and finding out
which one is zero gives a picture of the synergy between the
different processes (neurons, elements)
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The multivariate Hawkes process(3)

A
(0, A and £ = () + 3> /0 (67 (x)ex < oo} .
r ro ¢

Intensity candidate per mark

GE) = e+, [ g (= u)dNED.
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@ ® = (¢))ren = dictionary in H(Orthonormal family ...) and
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o WM =50 jawmN) and wlmN) = i),

Least-square contrast

M

AGEDY <—2 /0 T\I’Sc"")(t)dNﬁ"”) + /0 T[wf,"')(t)]2dt>.

m=1
to minimize in order to find a good estimate.

since y(F) ~ -2, [V (W ()dt + 3, [[Wi™ (6)]2dt
minimal when \Uscm) = wg’") ~f=s
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to minimize in order to find a good estimate.
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Lasso estimate
4 € argmin, pin{—2a'b + a'Ga + 2d'|a|}

where d, vector with positive coordinates.

Because of the ¢; penalty, the resulting estimator 5 = 5", 3 ¢y
will be sparse (very few non zeros coordinates).

Main point: How to choose d to have a good estimator ?
Quadratic form (norm ?)

M T
=3 / W) (1)2dt.
m=1
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An analytical result

Theorem
Let ¢ > 0. If
- x' Gx
(4 ] |an€R\*A\ W > c,
Q VAeEA, |by— B)\\ < dA, where
by = Yoy Jy WV (0w (2 dt,

then, there exists an abso/ute constant C such that

2
s— ) axda Y (d) g,

|&— 3 g < C inf
acRIN
AEN T.M AeS(a)

where S(a) is the support of a.
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: x' Gx
0 mfxeRLM W 2
Q VAeEA, |by— B)\\ < dA, where

by = Yoy Jy WV (0w (2 dt,
then, there exists an abso/ute constant C such that

2
s— ) axda

AEN

¢,

&~ 52 < C inf
acRIA|

Tt Y (),

.M AES(a)

where S(a) is the support of a.

Oracle inequality (see also Tsybakov (et al.), Bertin, Le Pennec,
Rivoirard (2011))
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One needs to control in probability,
(4 ] ianeR\*/\\ % >
In particular this shows that |f| s is a norm with high

probability on the dictionary.
¢ important for theory, not for practice ....

@ VAeA, [y i wImI(e)(dN™ — Wi (t)dt)| < d,
Choice of d) crucial to have a full data-driven procedure

C.
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Existing exponential inequalities

o (classical, van de Geer (1995))
P (M, > \/2px + Bx/3 and [ HZ\(t)dt < p and sup,<, |H:| < B)
e—X
@ (Dzhaparidze and van Zanten (2001))
P (M, > V20x and [5 H2A(t)dt + J§ HEdN; < 0) < e,
@ (Dzhaparidze and van Zanten (2001), Barlow, Jacka, Yor
(1986), de la Pefia (1999) and Bercu and Touati (2008)) If

symetric (or heavy on the left)
P (MT > \/2¢x and fOT H2dN, < {) <e X,
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One satisfying exponential inequality

Theorem

Let B> 0 andv > w > 0. For every x > 0 and p > 0 such that
> é(p), define
2

A C B?x
V“ZL/ H2dN; + ———
Pop=ow) Jo T p—o(w)

where ¢(u) = exp(u) — 1 — u. Then for any almost surely finite
stopping time T and any € > 0

a B a
IP’(I\/ITz \/2(1—|—6)V#X+?X and w < V¥ <vand sup |Hi < B>

te[0,7]
log(1 + ¢)
inspired by Lipster and Spokoiny (2000)
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