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1. Introduction

Let Wn be a sequence of random variables of interest.

I Aim: Estimate P(Wn ≥ x).

I Questions:

1 What is the limiting distribution of Wn?

2 Suppose that Wn
d.→ Y . It is a common practice to use P(Y ≥ x)

to approximate P(Wn ≥ x). What is the error of approximation?

Absolute error: Berry-Esseen type bound

|P(Wn ≥ x)− P(Y ≥ x)| = error

Relative error: Cramér type moderate deviation

P(Wn ≥ x)

P(Y ≥ x)
= 1 + error



I Our focus:

1 Identify the limiting distribution of Wn;
2 Estimate the relative error, especially, what is the largest possible

an such that
P(Wn ≥ x)

P(Y ≥ x)
→ 1

holds uniformly in x ∈ [0, an].



In many applications, P(Y ≥ x) itself is very small. Only when
the relative error is small, can P(Wn ≥ x) be approximated by
P(Y ≥ x);

Multiple hypothesis tests

Consider the problem of testing simultaneously m (null)
hypotheses, H1,H2, · · · ,Hm, of which m0, are true. Let R be the
number of hypotheses rejected. Table below summarizes the test
results

Declared Declared Total
non-significant significant

True null hypotheses U V m0
Non-true null hypotheses T S m− m0

Total m− R R m



The proportion of errors committed by falsely rejecting null
hypotheses: V/R

False discovery rate (FDR): E(V/R)

Benjamini-Hochberg FDR controlling procedure:
Assume P-values are p1, p2, . . . , pm. Let
p(1) ≤ p(2) ≤ · · · ≤ p(m) be the ordered p-values, and denote by
H(i) the null hypothesis corresponding to p(i). Let

k = max{i : p(i) ≤
i
m
α}

where 0 < α < 1. Then reject all H(i), for 1 ≤ i ≤ k.

If the test statistics are independent, then E(V/R) ≤ α.



I P-values are usually unknown, need to be estimated.

I Question: (Fan, Hall, Yao (2007))
How large m can be before the accuracy of the estimated P-values
becomes poor?

I Korosok-Ma (2007), Fan, Hall, Yao (2007), Liu and Shao (2009),
Shao (2010):

Let Tn,i be the test statistic for Hi. Assume that the true P-value
is pi = P(Tn,i ≥ tn,i) and that there exist an,i and functions fi such
that

max
1≤i≤m

sup
0≤x≤an,i

|P(Tn,i ≥ x)

fi(x)
− 1| = o(1)

as n→∞. If m ≤ α/(2 max1≤i≤m fi(an,i)), then the FDR is
controlled at level α when it is based on the estimated P-values
p̂i = fi(tn,i).



I How to identify the limiting distribution and estimate the relative
error?

Two approaches:

Classical and standard method: Fourier transform.

It works well when Wn is a sum of independent random
variables, however, it may be very difficult to apply for Wn under
dependence structure.

Stein’s method (1972):
A totally different approach. It works not only for independent
variables but also for dependent variables. It can also give
bounds for accuracy of approximation.





2. Stein’s method: normal approximation

Let Z ∼ N(0, 1), and let Cbd be the set of continuous and piecewise
continuously differential functions f : R→ R with E|f ′(Z)| <∞.
Stein’s method rests on the following observation.

Stein’s identity:
W ∼ N(0, 1) if and only if

Ef ′(W)− EWf (W) = 0

for any f ∈ Cbd.



Stein’s equation:

f ′(w)− wf (w) = I{w≤z} − Φ(z).

where z ∈ R is fixed.

Solution to the equation:

fz(w) = ew2/2
∫ w

−∞
[I{x≤z} − Φ(z)]e−x2/2dx

= −ew2/2
∫ ∞

w
[I{x≤z} − Φ(z)]e−x2/2dx

=


√

2πew2/2Φ(w)[1− Φ(z)] if w ≤ z,

√
2πew2/2Φ(z)[1− Φ(w)] if w ≥ z.



The general Stein equation:

Let h be a real valued measurable function with E|h(Z)| <∞.

f ′(w)− wf (w) = h(w)− Eh(Z).

The solution f = fh is given by

fh(w) = ew2/2
∫ w

−∞
[h(x)− Eh(Z)]e−x2/2dx

= −ew2/2
∫ ∞

w
[h(x)− Eh(Z)]e−x2/2dx.



I Basic properties of the Stein solution:

If h is bounded, then

‖fh‖ ≤ 2‖h‖, ‖f ′h‖ ≤ 4‖h‖.

If h is absolutely continuous, then

‖fh‖ ≤ 2‖h′‖, ‖f ′h‖ ≤ ‖h′‖, ‖f ′′h ‖ ≤ 2‖h′‖.



I Main idea of Stein’s approach:

Suppose that W := Wn is the variable of interest and our goal is to
estimate

Eh(W)− Eh(Z).

By Stein’s equation, we have

Eh(W)− Eh(Z) = Ef ′(W)− EWf (W)

A key step in Stein’s approach is to write EWf (W) as close as
possible to Ef ′(W).



Suppose that there exist K̂(t) and R such that the following general
Stein’s identity holds

EWf (W) = E
∫ ∞
−∞

f ′(W + t)K̂(t)dt + ERf (W).

Then

Eh(W)− Eh(Z) = Ef ′h(W)− EWfh(W)

= E
∫ ∞
−∞

(f ′h(W)− f ′h(W + t))K̂(t)dt

+Ef ′h(W)(1− K̂1)− ERfh(W),

where K̂1 = E
( ∫∞
−∞ K̂(t)dt | W

)
. In particular, if ‖h′‖ <∞, then

|Eh(W)− Eh(Z)| ≤ 2‖h′‖
(

E
∫
|tK̂(t)|dt + E|1− K̂1|+ E|R|

)
.



I Stein’s method has been applied to

Normal approximation:

1 Stein (1972, 1986): Uniform Berry-Esseen inequality for i.i.d.
random variables

2 Chen and Shao (2001): Non-uniform Berry-Esseen inequality for
independent random variables

3 Chen and Shao (2004): Uniform and non-uniform Berry-Esseen
inequality under local dependence

4 Chen and Shao (2007): Uniform and non-uniform Berry-Esseen
inequality for non-linear statistics

5 Bolthausen (1984), Bolthausen and Götze (1993), Bladi and
Rinott (1989), Rinott and Rotar (1997), Goldstein and Reinert
(1997), Chatterjee (2008), ...

6 Chen, L.H.Y, Goldstein, L. and Shao (2010). Normal
Approximation by Stein’s Method. Springer.



Non-normal approximation:
1 Poisson approximation: Chen (1975), Arratia, Goldstein and

Gordon (1989), Barbour, Holst and Janson (1992), Chatterjee,
Diaconis and Meckes (2005), ...

2 Compound Poisson approximation: Barbour, Chen and Loh
(1992), Erhardsson (2003), ...

3 Poisson process approximation: Xia (2003), ...
4 Peccati (2009): Malliavin calculus
5 Chatterjee (2007, 2008, 2009): Concentration inequality, strong

approximation, random matrix theory, ...



3. Stein’s Method: beyond the normal approximation

Let Y be a random variable with pdf p(y). Assume that
p(−∞) = p(∞) = 0 and p is differentiable. Observe that

E
{(f (Y)p(Y)

)′
p(Y)

}
=

∫
(f (y)p(y))′dy = 0



I Stein’s identity and equation (Stein, Diaconis, Holmes, Reinert
(2004)):

Stein’s identity:

Ef ′(Y) + Ef (Y)p′(Y)/p(Y) = 0.

Stein’s equation:

f ′(y) + f (y)p′(y)/p(y) = h(y)− Eh(Y)

Stein’s solution:

f (y) = 1/p(y)

∫ y

−∞
(h(t)− Eh(Y))p(t)dt

= −1/p(y)

∫ ∞
y

(h(t)− Eh(Y))p(t)dt.



Properties of the solution (Chatterjee and Shao (2011)):

Let h be a measurable function and fh be the Stein’s solution.
Under some regular conditions on p

‖fh‖ ≤ C‖h‖, ‖f ′h‖ ≤ C‖h‖,

‖fh‖ ≤ C‖h′‖, ‖f ′h‖ ≤ C‖h′‖, ‖f ′′h ‖ ≤ C‖h′‖



I Identify the limiting distribution

Let W := Wn be the random variable of interest. Our goal is to
identify the limiting distribution of Wn with an error of approximation.

Exchangeable pair approach:

Let (W,W∗) be an exchangeable pair. Assume that

E(W −W∗ | W) = g(W) + r(W)

Let

G(t) =

∫ t

0
g(s)ds and p(t) = c1e−c0G(t),

where c0 > 0 and c1 = 1/
∫∞
−∞ e−c0G(t)dt.



Let Y have pdf p(y) and ∆ = W −W∗.

Chatterjee and Shao (2011): Under some regular conditions on g

Assume that c0E|r| → 0, c0E|∆|3 → 0 and

c0E(∆2|W)
p.−→ 2.

Then
W d.−→ Y .

If |∆| ≤ δ, then

|P(W ≥ x)− P(Y ≥ x)|

= O(1)
(

E|1− (c0/2)E(∆2|W)|+ c0δ
3 + δ + c0E|r(W)|

)
.



I Application to the Curie-Weiss model at the critical temperature

The Curie-Weiss model of ferromagnetic interaction is a simple
statistical mechanical model of spin systems.

Let σ = (σ1, σ2, · · · , σn) ∈ {−1, 1}n. The joint density function of σ
is given by

A−1
β exp(β

∑
1≤i<j≤n

σiσj / n),

where β is called the inverse of temperature.
Let β = 1 and

W =
1

n3/4

n∑
i=1

σi

Ellis and Newman (1978):

W d.−→ Y,

where Y has pdf c e−y4/12.



Chatterjee and Shao (2011):

|P(W ≥ x)− P(Y ≥ x)| = O(n−1/2)

by constructing an exchangeable pair (W,W∗) such that

E(W −W∗|W) =
1
3

n−3/2W3 + O(n−2),

E((W −W∗)2|W) = 2n−3/2 + O(n−2),

|W∗ −W| = O(n−3/4).



4. Cramér type moderate deviations

Let Wn be a sequence of random variables of interest. Assume that

Wn
d.−→ N(0, 1).

Our goal is to estimate the relative error

P(Wn ≥ x)

1− Φ(x)
= 1 + error



I Classical Cramér moderate deviation

Let X1,X2, · · · ,Xn be independent identically distributed (i.i.d.)
random variables with EXi = 0 and σ2 = EX2

i <∞. Let

Wn =

∑n
i=1 Xi

σ
√

n

If Eet0
√
|X1| <∞ for t0 > 0, then

P(Wn ≥ x)

1− Φ(x)
→ 1

uniformly in x ∈ [0, o(n1/6)). Moreover,

P(Wn ≥ x)

1− Φ(x)
= 1 + O(1)

(1 + x3)√
n

for x ∈ [0,O(n1/6)).



I A Cramér type moderate deviation under Stein’s identity

Theorem (Chen, Fang, Shao (2009))
Let W = Wn. Assume that there exist a constant δ and random
functions K̂(t) ≥ 0 and R such that

EWf (W) = E
∫
|t|≤δ

f ′(W + t)K̂(t)dt + E(Rf (W))

for all nice function f . Let D =
∫
|t|≤δ K̂(t)dt. If there exist constants

d0, δ1, δ2 such that

E(D|W) ≤ d0,

|E(D|W)− 1| ≤ δ1(1 + |W|), |E(R | W)| ≤ δ2(1 + |W|).

Then
P(W ≥ x)

1− Φ(x)
= 1 + O(1)d3

0(1 + x3)
(
δ + δ1 + δ2

)
for 0 ≤ x ≤ d−1

0 min
(
δ−1/3, δ

−1/3
1 , δ

−1/3
2

)
.



A special case: zero-bias approach

Goldstein and Reiner (1997): For any W with EW = 0 and
EW2 = 1, there exists a random variable ∆ such that

EWf (W) = Ef ′(W + ∆).

for any nice function f .

We can take δ1 = δ2 = 0 in the above general theorem. If
|∆| ≤ δ, then

P(W ≥ x)

1− Φ(x)
= 1 + O(1)δ(1 + x3)

for 0 ≤ x ≤ δ−1/3.



Applications

Combinatorial central limit theorem

Let {aij}n
i,j=1 be an array of real numbers satisfying

∑n
j=1 aij = 0

for all i. Set c0 = maxi,j |aij| and W =
∑n

i=1 aiπ(i)/σ, where π is
a uniform random permutation of {1, 2, · · · , n} and
σ2 = E(

∑n
i=1 aiπ(i))

2.

It is proved in Goldstein (2005) that there exists a random
variable |∆| ≤ 8c0/σ such that EWf (W) = Ef ′(W + ∆).
Therefore,

P(W ≥ x)

1− Φ(x)
= 1 + O(1)(1 + x3)c0/σ

for 0 ≤ x ≤ (σ/c0)1/3.



Binary expansion of a random integer

Let X be an integer uniformly chosen from {0, 1, · · · , n}. Let k
be such that 2k−1 < n ≤ 2k. Write the binary expansion of X as

X =

k∑
i=1

Xi2k−i

and let S = X1 + · · ·+ Xk be the number of ones in the binary
expansion of X. Put W = (S− k/2)/

√
k/4. Then

P(W ≥ x)

1− Φ(x)
= 1 + O(1)(1 + x3)/

√
k

for 0 ≤ x ≤ k1/6.



Cuire-Weiss model

Let σ = (σ1, σ2, · · · , σn) ∈ {−1, 1}n. Recall the joint density
function of σ is given by

A−1
β exp(β

∑
1≤i<j≤n

σiσj /n).

Let

W =

n∑
i=1

σi/B, where B2 = Var(

n∑
i=1

σi).

Ellis and Newman (1978): the limiting distribution of W is
normal when 0 < β < 1.
Chen, Fang and Shao (2009): For 0 < β < 1

P(W ≥ x)

1− Φ(x)
= 1 + O(1)(1 + x3)/

√
n

for 0 ≤ x ≤ n1/6.



5. Cramér type moderate deviation for Studentized
U-statistics

Let X,X1,X2, . . . ,Xn be i.i.d random variables, and let h(x, y) be a
symmetric kernel, i.e., h(x, y) = h(y, x). θ = Eh(X1,X2).

U-statistic (Hoeffding (1948)):

Un =
2

n(n− 1)

∑
1≤i<j≤n

h(Xi,Xj)

The standardized U-statistic:
√

n
2σ1

(Un − θ).

where σ2
1 := Var(g(X)) > 0 and g(x) = E(h(x,X)).



Studentized U-statistic:

Tn =

√
n

2 s1
(Un − θ),

where

s2
1 =

(n− 1)

(n− 2)2

n∑
i=1

 1
n− 1

∑
j6=i

h(Xi,Xj)− Un

2

.

Hoeffding’s decomposition: (assume θ = 0)

Tn =
Wn + D1

Vn(1 + D2)1/2 ,

where

Wn =

n∑
i=1

ξi, ξi = g(Xi)/(σ1
√

n), V2
n =

n∑
i=1

ξ2
i ,

D1 and D2 are small.



Berry-Esseen bounds: Callaert and Veraverbeke (1981), Zhao
(1983), Wang, Jing and Zhao (2000), ...

Cramér type moderate deviations: Vandemaele and Veraverbeke
(1985), Wang (1998), Lai, Shao and Wang (2009)



I Lai, Shao and Wang (2009):
Assume that σ1 > 0 and E|h(X1,X2)|3 <∞. If

h2(x1, x2) ≤ c0(σ2
1 + g2(x1) + g2(x2))

for some c0 > 0, then

P(Tn ≥ x)

1− Φ(x)
→ 1

holds uniformly in x ∈ [0, o(n1/6)).

Conjecture:

P(Tn ≥ x)

1− Φ(x)
= 1 + O(1)

(1 + x)3
√

n

for x ∈ [0, o(n1/6)).

I Shao and Zhou (2011): The conjecture is true. Similar result holds
for h(x1, x2, · · · , xm).



6. Cramér type deviations for Studentized non-linear
statistics

Let ξ1, ..., ξn be independent random variables with Eξi = 0 and
Eξ2

i <∞ satisfying
n∑

i=1

Eξ2
i = 1.

Let

Wn =

n∑
i=1

ξi, V2
n =

n∑
i=1

ξ2
i

and D1,D2 be measurable functions of {ξi, 1 ≤ i ≤ n}.

Assume
Tn =

Wn + D1

Vn(1 + D2)1/2 .



Theorem (Shao and Zhou (2011))
There is an absolute constant A > 1 such that

eO(1)∆n,x
(
1− ARn,x

)
≤ P(Tn ≥ x)

1− Φ(x)

and

P(Tn ≥ x) ≤
(
1− Φ(x)

)
eO(1)∆n,x(1 + ARn,x

)
+P
(
|D1|/Vn > 1/(2x)

)
+ P

(
|D2| > 1/(2x2)

)
for all x > 1 satisfying

∆n,x ≤ (1 + x)2/A, x2 max
1≤i≤n

Eξ2
i ≤ 1,



where

∆n,x = x2
n∑

i=1

Eξ2
i I(x|ξi| > 1) + x3

n∑
i=1

E|ξi|3I(x|ξi| ≤ 1),

Rn,x = I−1
n,0

{
xE(|D1|+ x|D2|)e

∑n
j=1(xξj−x2ξ2

j /2)

+x
n∑

i=1

E(|ξi(D1 − D(i)
1 )|+ x|ξi(D2 − D(i)

2 )|)e
∑n

j 6=i(xξj−x2ξ2
j /2)

}
,

In,0 =

n∏
i=1

Eexξi−x2ξ2
i /2,

and D(i)
1 and D(i)

2 are any random variables that don’t depend on ξi.



I Main idea of the proof

Observe that

1 + s/2− s2/2 ≤ (1 + s)1/2 ≤ 1 + s/2, s ≥ −1,

Vn(1 + D2)1/2 ≥ (1 + V2
n − 1)1/2(1−min(1, |D2|))

≥ V2
n/2 + 1/2− (V2

n − 1)2 − 2|D2|

and

Vn(1 + D2)1/2 ≤ (1 + D2)/2 + V2
n/2 = V2

n/2 + 1/2 + D2/2.

Therefore for any x ≥ 0,

{Tn ≥ x} ⊂ {xWn − x2V2
n/2 ≥ x2/2− x(x(V2

n − 1)2 + D1 + 2x|D2|)}

{Tn ≥ x} ⊃ {xWn − x2V2
n/2 ≥ x2/2 + x(xD2/2− D1)}.



Then, use the conjugate method and apply the following randomized
concentration inequality.

Theorem (Shao and Zhou (2011))

Let ∆1 and ∆2 be any measurable functions of {ξi, 1 ≤ i ≤ n}. Then

P(∆1 ≤ Wn ≤ ∆2)

≤ 21(β2 + β3) + 6E|∆2 −∆1|

+4
n∑

i=1

{E|ξi(∆1 −∆
(i)
1 )|+ E|ξi(∆−∆

(i)
2 )|}

where

β2 =

n∑
i=1

Eξ2
i I{|ξi| > 1}, β3 =

n∑
i=1

E|ξi|3I{|ξi| ≤ 1},

∆
(i)
1 and ∆

(i)
2 are any random variables that don’t depend on ξi.



Conclusion

Stein’s method is a powerful tool for normal and non-normal
approximation. It can be applied to obtain Berry-Esseen type bounds
as well as Cramér type moderate deviations. The method is of
unlimited usefulness.
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THANK YOU!


