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1. Introduction

Population growth model with nonlocal dispersal

∂u

∂t
= ν

[ ∫
IRN

κ(y − x)(u(t, y)− u(t, x))dy
]

+ uf (x , u) (1)

t ∈ IR, x ∈ IRN

u(t, x) – population density

κ(z) ≥ 0, κ(0) > 0,
∫
IRN κ(z)dz = 1

ν
[ ∫

IRN κ(y − x)(u(t, y)− u(t, x))dy
]

– nonlocal dispersal

ν – nonlocal dispersal rate

f (x , u) – growth rate

f (x + piei, u) = f (x , u) (pi > 0) – spatial periodicity

f (x , u) < 0 for u � 1, fu(x , u) < 0 for u ≥ 0
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1. Introduction

Random dispersal counterpart

∂u(t, x)

∂t
= ν∆u(t, x) + u(t, x)f (x , u) (1)′

If κ(z) = 1
δN
κ̃( zδ ), κ̃(z) = κ̃(−z), suppκ̃ = {z ∈ IRN | ‖z‖ < 1}

ν

∫
IRN

κ(y − x)[u(y)− u(x)]dy
]

= ν

∫
IRN

κ̃(z)
[
u(x + δz)− u(x)

]
dz

= ν

∫
IRN

κ̃(z)

δ(∇u(x) · z) +
δ2

2

n∑
i ,j=1

uxixj (x)zizj + O(δ3)

 dz

=
(νδ2

2N

∫
IRN

κ̃(z)‖z‖2 dz
)

∆u(x) + O(δ3)

If 0 < δ � 1, expect (1) has similar dynamics as (1)
′

However, the solutions of (1)
′
have smoothness and compactness

properties, while the solutions of (1) have no such properties
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1. Introduction

Central problems

• Stability of u ≡ 0

• Existence of spatially periodic positive stationary solution
u∗(·) (if u ≡ 0 is unstable)

• How fast does the population spread into the region where
there is no population initially (if u ≡ 0 is unstable)?
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1. Introduction

• Existence of traveling wave solutions connecting 0 and a
positive stationary solution u∗(·) (if u ≡ 0 is unstable and
u∗(·) exists)
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1. Introduction

The problems are well understood in the random dispersal case
∂u
∂t = ν∆u + uf (x , u), x ∈ IRN (1)′

fu(x , u) < 0 for u > 0, f (x , u) < 0 for u � 1

u ≡ 0 is linearly unstable

=⇒
• ∃! spatially periodic positive stationary solution u = u∗(x)

• ∀ξ ∈ SN−1, ∃ a spreading speed c∗(ξ) in the direction of ξ

• ∀ξ ∈ SN−1, c ≥ c∗(ξ), ∃ a traveling wave solution u(t, x)
propagating in the direction of ξ with speed c and connecting
u∗(·) and 0

Fisher (1937), Kolmogorov, Petrowsky, Piscunov (1937),
Aronson, Weinberger (1975, 1978), H. Weinberger (1982,
2002), M.A. Lewis, B. Li, H. Weinberger (2002), H.
Berestycki, F. Hamel, L. Roques (2004, 2005), J.Nolen, J. Xin
(2005), L. Xing, X.-Q. Zhao( 2007, 2009), Grgoire Nadin
(2009), ...

Wenxian Shen, Auburn University Nonlocal Dispersals in Spatially Periodic Media



1. Introduction

The problems are not well studied in the nonlocal dispersal case

A basic tool to study the problems:

Spectral theory, in particular, principal eigenvalue theory of
nonlocal dispersal operators

{
ν[
∫
IRN κ(y − x)v(y)dy − v(x)] + a(x)v(x) = λv(x)

v(x + piei) = v(x)
(2)

a(x + piei) = a(x)

If a(x) ≡constant, by the Krein-Rutman theorem, (2) has a
principal eigenvalue

However, in general, principal eigenvalue theory of nonlocal
dispersal operators needs to be developed
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2. Principal Eigenvalues of Nonlocal Dispersal Operators

Definition 2.1.

Xp = {u ∈ C (IRN , IR) | u(x + piei) = u(x)}

Consider

ν[

∫
IRN

κ(y − x)v(y)dy − v(x)] + a(x)v(x) = λv(x), v ∈ Xp

or
ν[K − I ]v + a(·)v = λv , v ∈ Xp (EV )

Kv =
∫
IRN κ(y − x)v(y)dy , a(·) ∈ Xp

σ(ν[K − I ] + a(·)I ) be the spectrum of ν[K − I ] + a(·)I
λ(ν, a) ∈ IR is called a principal eigenvalue of (EV) if

λ(ν, a) is an algebraically simple eigenvalue of ν[K− I ] + a(·)I
with a positive eigenfunction φ ∈ Xp

and for any µ ∈ σ(ν[K − I ] + a(·)I ), Re(µ) < λ(ν, a)
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2. Principal Eigenvalue of Nonlocal Dispersal Operators

Question:

• Does λ(ν, a) exists?

λ0(ν, a) = max{Reµ |µ ∈ σ(ν[K − I ] + a(·)I )}.
λ0(ν, a) ∈ σ(ν[K − I ] + a(·)I )
λ(ν, a) = λ0(ν, a) if λ(ν, a) exists

• Is λ0(ν, a) the principal eigenvalue (P.E.) of ν[K − I ] + a(·)I?
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2. Principal Eigenvalues of Nonlocal Dispersal Operators

Theorem 2.1 (Necessary and sufficient conditions).

a(·) ∈ Xp

amax = maxx∈IRN a(x)

amin = minx∈IRN a(x)

• P. E. λ(ν, a) of ν[K − I ] + a(·)I exists

or λ0(ν, a) is the P. E. of ν[K − I ] + a(·)I

⇐⇒

λ0(ν, a) > −ν + amax
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2. Principal Eigenvalues of Nonlocal Dispersal Operators

Theorem 2.2 (Sufficient conditions).

(1) If κ(z) = 1
δN
κ̃( zδ ), where supp(κ̃) = {z | ‖z‖ < 1}, then

∃δ0 > 0 s. t. the P. E. λ(ν, a) of ν[K− I ] + a(·)I exists for all
0 < δ < δ0.

(2) If amax − amin < ν, then the P. E. λ(ν, a) of ν[K − I ] + a(·)I
exists.

(3) If a(·) is CN and all the partial derivatives of a(x) up to order
N − 1 at x0 are zero, where a(x0) = amax, then the P. E.
λ(ν, a) of ν[K − I ] + a(·)I exists for all δ > 0.
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2. Principal Eigenvalues of Nonlocal Dispersal Operators

Biological interpretation

The P. E. of ν[Kδ − I ] + a(·)I exists in the following cases

• the nonlocal dispersal is “nearly” local (κ(z) = 1
δN
κ̃( zδ ) and

0 < δ � 1)

• the periodic habitat is “nearly globally” homogeneous (i.e.
amax − amin < ν)

• the periodic habitat is “nearly” homogeneous in a region
where it is most conducive to the population growth (i.e. the
partial derivatives of a(x) up to order N − 1 are zero at some
x0 with a(x0) = amax, which is always satisfied when a(·) is
C 1 and N = 1 or 2)
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2. Principal Eigenvalues of Nonlocal Dispersal Operators

Remarks.

• If δ is not small and the periodic habitat is not of the
homogeneity mentioned above, the principal eigenvalue of
ν[Kδ − I ] + a(·)I may not exist

which reveals some essential difference between local and
nonlocal dispersal operators

• For any a(·) ∈ Xp, ∃an(·) ∈ Xp, which are CN and “nearly”
homogeneous in a region where it is most conducive to the
population growth, such that an(x)→ a(x) as n→∞ in Xp.

• If an(·), a(·) ∈ Xp and an(x)→ a(x) in Xp, then
λ0(an)→ λ0(a).

• A similar result as Theorem 2.2 (3) is obtained by J. Coville
(2010)

• V. Hutson, S. Martinez, K. Mischaikow, and G. T. Vickers
(2003) obtained the existence of P. E. for the case N = 1
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2. Principal Eigenvalues of Nonlocal Dispersal Operators

Theorem 2.3 (Effects of spatial variations).

a(·) ∈ Xp, a(x + piei) = a(x)

ā = 1
p1p2···pN

∫ p1
0

∫ p2
0 · · ·

∫ pN
0 a(x)dx

• λ0(ν, a) ≥ λ0(ν, ā)(= ā)

• λ0(ν, a) = λ0(ν, ā) ⇐⇒ a(x) ≡ ā
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2. Principal Eigenvalues of Nonlocal Dispersal Operators

Theorem 2.4 (Effects of dispersal rates).

κ(z) = κ(−z)

• ν1 < ν2 =⇒ λ0(ν1, a) > λ0(ν2, a)

• λ0(ν0, a) is P. E. =⇒ λ0(ν, a) is P. E. for ν ≥ ν0
• λ0(ν, a) is P. E. for ν � 1
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2. Principal Eigenvalues of Nonlocal Dispersal Operators

Problems.

• ν1 < ν2 =⇒ λ0(ν1, a) > λ0(ν2, a) for general κ(·)?

• a∗(x) is the (Schwarz) Steiner periodic rearrangement =⇒
λ0(ν, a∗) ≥ λ0(ν, a)?

• If κ(z) = 1
δN
κ̃( zδ ), put λ0(δ, ν, a) = λ0(ν, a)

δ1 < δ2 =⇒ λ0(δ1, ν, a) ≥ λ0(δ2, ν, a)?

λ0(δ0, ν, a) is the P.E. =⇒ λ0(δ, ν, a) is the P.E. for δ < δ0?
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2. Principal Eigenvalues of Nonlocal Dispersal Operators

Problems.
• Principal eigenvalue theory for nonlocal dispersal operators with
“Dirichlet type” boundary condition:

ν[

∫
D
κ(y − x)v(y)dy − v(x)] + a(x)v(x) = λv(x), x ∈ D̄

C. Cortazar, M. Elgueta, and J. D. Rossi (2009) obtained some
relation between

v →
∫
D
κ(y − x)v(y)dy − v(x)

and

v → ∆v with v = 0 on ∂D
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2. Principal Eigenvalues of Nonlocal Dispersal Operators

Problems.
• Principal eigenvalue theory for nonlocal dispersal operators with
“Neumann type” boundary condition:

ν

∫
D
κ(y − x)[v(y)− v(x)]dy + a(x)v(x) = λv(x), x ∈ D̄

C. Cortazar, M. Elgueta, J. D. Rossi, and N. Wolanski (2007)
obtained some relation between

u →
∫
D
κ(y − x)(v(y)− v(x))dy

and

v → ∆v with
∂v

∂n
= 0 on ∂D
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3. Spatially Periodic Stationary Solutions of KPP
Equations

Monostablility assumptions

∂u

∂t
= ν[

∫
IRN

[
κ(y − x)(u(t, y)− u(t, x))dy

]
+ uf (x , u) (1)

f (x + piei, u) = f (x , u), pi > 0 (i = 1, 2, · · · ,N

(H1) u ≡ 0 is linearly unstable, i.e., λ0(ν, f (·, 0)) > 0

(H2) fu(x , u) < 0 for x ∈ IRN , u ≥ 0, f (x , u) < 0 for x ∈ IRN ,
u � 1 (e.g. f (x , u) = r(x)− u)
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3. Spatially Periodic Stationary Solutions of KPP
Equations

Basic properties

∂u

∂t
= ν[

∫
IRN

[
κ(y − x)(u(t, y)− u(t, x))dy

]
+ uf (x , u) (1)

X = Cb
unif(IR

N , IR)

∀u0 ∈ X , (1) has a unique (local) solution u(t, x ; u0)(∈ X )
with u(0, x ; u0) = u0(x)

If u0 ≥ 0, then u(t, x ; u0) exists for all t ≥ 0 and
u(t, x ; u0) ≥ 0 for t ≥ 0.

If u0 ∈ Xp and u0 ≥ 0, then u(t, ·; u0) ∈ Xp for t ≥ 0
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3. Spatially Periodic Stationary Solutions of KPP
Equations

Theorem 3.1. Assume (H1) and (H2). There is a unique spatially
periodic positive stationary solution u = u∗(x) of (1) which is
asymptotically stable with respect to any u0 ∈ Xp with u0(x) ≥ 0,
u0(x) 6≡ 0.

Works on the existence and uniqueness of u∗(·): V. Hutson, S.
Martinez, K. Mischaikow, G. T. Vickers (2004); P.W. Bates and
Guanyu Zhao (2007); C.-Y. Kao, Y. Lou, and W. Shen (2010); J.
Coville (2010)
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3. Spatially Periodic Stationary Solutions of KPP
Equations

Idea of proof.
(H1) =⇒ ∃ a0(·) ∈ Xp with a0(x) ≤ f (x , 0), λ0(ν, a0) > 0 and
λ0(ν, a0) is the principal eigenvalue of ν[K − I ] + a0(·)I .
Let φ0(·) ∈ Xp be a positive principal eigenfunction of
ν[K − I ] + a0(·)I and 0 < ε� 1.
Then u = εφ0 is a subsolution of (1) =⇒ u(t, ·; εφ0) increases as t
increases

(H2) =⇒ u ≡ M is a supersolution of (1) for M � 1 =⇒
u(t, ·;M) decreases increases as t increases
=⇒ u∗(x) := limt→∞ u(t, x ;M) ≥ u∗(x) := limt→∞ u(t, x ; εφ0) ≥
εφ0(x) > 0

Prove u∗(x) = u∗(x) and u∗ ∈ Xp.
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3. Spatially Periodic Stationary Solutions of KPP
Equations

Remarks. Let f̄ (u) := 1
p1p2···pN

∫ p1
0

∫ p2
0 · · ·

∫ pN
0 f (x , u)dx

• f̄ (0) > 0 =⇒ (H1), i.e., u ≡ 0 is unstable

• u ≡ 0 is linearly unstable solution of

∂u

∂t
= ν[

∫
D
κ(y − x)u(y)dy − u(x)] + uf̄ (u)

=⇒
u ≡ 0 is linearly unstable solution of (1), but not the viceversa
Hence spatial variation favors the population persistence

• Theorem 3.1 requires λ0(ν, f (·, 0)) > 0, but it is not necessary
λ0(ν, f (·, 0)) is the P. E. of ν[K − I ] + f (·, 0)I
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4. Spatial Spreading Speeds of KPP Equations

Definition 4.1. Assume (H1) and (H2). Given ξ ∈ SN−1, let

X+(ξ) = {u ∈ X | u ≥ 0, lim inf
x ·ξ→−∞

u(x) > 0, u(x) = 0 for x ·ξ � 1}

c∗(ξ) ∈ IR is called the spreading speed of (1) in the direction of
ξ if for any u0 ∈ X+(ξ),

lim sup
x ·ξ≥c ′ t,t→∞

u(t, x ; u0) = 0 ∀c ′ > c∗(ξ)

lim inf
x ·ξ≤c ′′ t,t→∞

|u(t, x ; u0)− u∗(x)| = 0 ∀c ′′ < c∗(ξ)
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4. Spatial Spreading Speeds of KPP Equations

Theorem 4.1. Assume (H1) and (H2).

(1) For given ξ ∈ SN−1, c∗(ξ) exists

(2)

c∗(ξ) = inf
µ>0

λ0(ν, a, ξ, µ)

µ
,

λ0(ν, a, ξ, µ) = max{Reµ |µ ∈ σ(ν[Kξ,µ − I ] + a(·)I ),

(Kξ,µu)(x) =
∫
IRN e−µ(y−x)·ξκ(y − x)u(y)dy for u ∈ Xp,

a(x) = f (x , 0)

(3) If κ(z) = κ(−z), c∗(ξ) = c∗(−ξ)
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4. Spatial Spreading Speeds of KPP Equations

(4) For any u0 ∈ X with u0 ≥ 0, u0(x) > 0 for ‖x‖ = O(1),
u0(x) = 0 for ‖x‖ � 1,

lim‖x‖≥c ′ t,t→∞ u(t, x ; u0) = 0 if c
′
> supξ∈SN−1 c∗(ξ)

lim‖x‖≤c ′′ t,t→∞[u(t, x ; u0)− u∗(x)] = 0 if

0 < c
′′
< infξ∈SN−1 c∗(ξ)
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4. Spatial Spreading Speeds of KPP Equations

(5)
c∗(ξ) ≥ ĉ∗(ξ) ∀ξ ∈ SN−1

and c∗(ξ) = ĉ∗(ξ) for some ξ ∈ SN−1 iff f (x , 0) ≡ f̂ (0)
(provided f̂ (0) > 0), ĉ∗(ξ) be the spreading speed of

ut = ν[

∫
IRN

κ(y − x)u(t, y)dy − u(t, x)] + uf̂ (u)

in the direction of ξ ∈ SN−1,

f̂ (u) = 1
p1p2···pN

∫ p1
0

∫ p2
0 · · ·

∫ pN
0 f (x , u)dx

Spatial variation speeds up the spatial spreading!
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4. Spatial Spreading Speeds of KPP Equations

(6) Write c∗(ξ) as c∗(ν, ξ) to indicate the dependence of the
spreading speed on the dispersal rate ν

f (x , u) ≡ f (u) =⇒ c∗(ν, ξ) increases as ν increases

(7) If κ(z) = 1
δN
κ̃( zδ ), write c∗(ξ) as c∗(δ, ξ) to indicate the

dependence of the spreading speed on the dispersal distance δ

f (x , u) ≡ f (u) =⇒ c∗(δ, ξ) increases as δ increases
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4. Spatial Spreading Speeds of KPP Equations

Remarks and problems.

• Whether c∗(ν, ξ) increases as ν increases in general?

• Whether c∗(δ, ξ) increases as δ increases in general?

• Theorem 4.1 requires λ0(ν, f (·, 0)) > 0, but it is not necessary
λ0(ν, f (·, 0)) is the P. E. of ν[K − I ] + f (·, 0)I
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5. Traveling Wave Solutions of KPP Equations

Definition 5.1. Assume (H1) and (H2).

A solution u(t, x) is called a traveling wave solution of (1)
in the direction of ξ ∈ SN−1 with speed c if

u(t, x) = φ(x − ctξ, ctξ)

for some φ(x , z) satisfying that φ(x , z) ≥ 0, φ(·, z) ∈ X ,
φ(x , ·) ∈ Xp,

limx ·ξ→−∞[φ(x , z)− u∗(x + z)] = 0, limx ·ξ→∞ φ(x , z) = 0
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5. Traveling Wave Solutions of KPP Equations

Equivalent definition

Assume u(t, x) = φ(x − ctξ, ctξ) is a T. W. solution.

Let ψ(x , z) = φ(x , z − x). Then

u(t, x) = ψ(x − ctξ, x)

ψ(x , ·) ∈ Xp, ψ(x , z) ≥ 0

limx ·ξ→−∞[ψ(x , z)− u∗(z)] = 0, limx ·ξ→∞ ψ(x , z) = 0

We can also define a T. W. solution to be a solution of the
form u(t, x) = ψ(x − ctξ, x)

ψ(x , ·) ∈ Xp, ψ(x , z) ≥ 0

limx ·ξ→−∞[ψ(x , z)− u∗(z)] = 0, limx ·ξ→∞ ψ(x , z) = 0
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5. Traveling Wave Solutions of KPP Equations

Theorem 5.1. Assume (H1) and (H2). Additionally, assume
supp(κ) is compact and λ0(ν, f (·, 0), µ, ξ) is P.E.

(1) (Nonexistence) For given ξ ∈ SN−1, there is no T. W. in the
direction of ξ with speed c < c∗(ξ).

(2) (Existence) For any ξ ∈ SN−1 and c > c∗(ξ),
∃φ(·, ·) ∈ C (IRN × IRN , IR+) such that
u(t, x) = φ(x − ctξ, ctξ) is a T. W. of (1).

(3) (Uniqueness) For given ξ ∈ SN−1 and c > c∗(ξ), if
u = φ̃(x − ctξ, ctξ) is also a traveling wave solution of (1)

and limx ·ξ→∞
φ̃(x ,z)
φ(x ,z) = 1, then φ̃(x , z) ≡ φ(x , z).
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5. Traveling Wave Solutions of KPP Equations

(4) (Stability) For given ξ ∈ SN−1, c > c∗(ξ), and
u0 ∈ Cb

unif(IR
N , IR+) with lim infx ·ξ→−∞ u0(x) > 0 and

limx ·ξ→∞
u0(x)
φ(x ,0) = 1, then

lim
t→∞

sup
x∈IRN

∣∣∣ u(t, x , u0)

φ(x − ctξ, ctξ)
− 1
∣∣ = 0.
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5. Traveling Wave Solutions of KPP Equations

Remarks and problems

• supp(κ) is compact is a technical assumption

• In a recent work of J. Coville, J. Dávila, S. Mart́ınez, under
the same conditions of Theorem 5.1, the authors showed the
existence of T. W. for any c ≥ c∗(ξ)

• The uniqueness and stability of T. W. in the direction of ξ
with speed c = c∗(ξ) have not been studied

• It is open whether T. W. exists if λ0(ν, f (·, 0), ξ, µ) is not P. E.
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6. Other Related Works

KPP equations in locally spatially inhomogeneous media

∂u

∂t
= ν[

∫
IRN

κ(y−x)u(t, y)dy−u(t, x)]+uf (x , u), x ∈ IRN (3)

fu(x , u) < 0 for u ≥ 0, f (x , u) < 0 for u � 1
f (x , u) = f0(u) for ‖x‖ � 1
f0(0) > 0 (hence ∃!u∗0 > 0 s. t. f0(u∗0) = 0)
=⇒
• (3) has a unique positive stationary solution u∗(·) with

lim
‖x‖→∞

u∗(x) = u∗0

• ∀ξ ∈ SN−1, (3) has a spreading speed c∗(ξ) in the direction of ξ
and c∗(ξ) = c∗0 (ξ), c∗0 (ξ) is the spreading speed of

∂u

∂t
= ν[

∫
IRN

κ(y − x)u(t, y)dy − u(t, x)] + uf0(u), x ∈ IRN
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6. Other Related Works

Competition system with nonlocal dispersal

∂u
∂t = ν1[

∫
D κ(y − x)u(t, y)dy − u(t, x)]

+u(a1(x)− b1(x)u − c1(x)v), x ∈ IRN

∂v
∂t = ν2[

∫
D κ(y − x)v(t, y)dy − v(t, x)]

+v(a2(x)− b2(x)u − c2(x)v), x ∈ IRN

(4)

aj(x + piei) = ai (x), bj(x + piei) = bj(x), cj(x + piei) = cj(x)

Consider (4) in Xp × Xp

• Which species can invade when rare?

• When both species can coexist?

(Georg Hetzer, Tung Nguyen, Wenxian Shen)

Wenxian Shen, Auburn University Nonlocal Dispersals in Spatially Periodic Media



6. Other Related Works

Random dispersal vs nonlocal dispersal
∂u
∂t = ν∆u + u(a(x)− u − v), x ∈ IRN ,

∂v
∂t =

∫
IRN κ(y − x)v(t, y)dy − v + v(a(x)− u − v), x ∈ IRN

(5)
a(x + p + iei) = a(x)

Consider (5) in Xp × Xp

• Which species can invade when rare?

(Chiu-Yen Kao, Yuan Lou, and Wenxian Shen)

Wenxian Shen, Auburn University Nonlocal Dispersals in Spatially Periodic Media



6. Other Related Works

Evolution of mixed dispersal


∂u
∂t = ν1

[
τ1∆u + (1− τ1)Ku

]
+ u [a(x)− u − v ] , x ∈ IRN ,

∂v
∂t = ν2

[
τ2∆v + (1− τ2)Kv

]
+ v [a(x)− u − v ] , x ∈ IRN ,

(6)
a(x + piei) = a(x)

Consider (6) in Xp × Xp

• Which species can invade when rare?

• When both species can coexist?

(Chiu-Yen Kao, Yuan Lou, and Wenxian Shen)

Wenxian Shen, Auburn University Nonlocal Dispersals in Spatially Periodic Media
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