Spatial population dynamics and control

Broad overview

- Aspects of stochasticity at a single location (with Brett Melbourne)
- Stochastic spatial spread (with Brett Melbourne)
- Control of invasive species (with Caz Taylor, Richard Hall, Julie Blackwood, Chris Costello, Rebecca Epanchin-Niell plus others for experimental/field aspects)

New stochastic Ricker models: extinction risk could be higher

Brett Melbourne
University of Colorado Boulder

Alan Hastings
University of California Davis

Extinction

- Deterministic and stochastic causes
- Demographic stochasticity
random births \& deaths: within-individual scale
- Environmental stochasticity
random births \& deaths: population scale
- Demographic heterogeneity
vital rates (birth/death): between-individual scale
- Sex ratio stochasticity
random: male or female?

Random search

$$
S_{i} \sim \operatorname{Poi}\left(R e^{-\alpha N_{t}}\right)
$$

Ricker (1954)
Fisheries model

Sum up survivors over all adults

$$
R=\beta(1-m)
$$

$$
N_{t+1}=\sum_{i}^{N_{t}} S_{i} \sim \operatorname{Poi}\left(N_{t} R e^{-a N_{t}}\right)
$$

(sum of Poissons is Poisson)
Model for demographic stochasticity

All models have mean: $\quad N_{t+1}=N_{t} R e^{-\alpha N_{t}}$

Stochastic production functions

Variance in N_{t+1}

Extinction times

- Intrinsic mean time to extinction (Grimm \& Wissel 2004, Oikos 105: 501-511)

Extinction times

Extinction times

Fitting models to data

Likelihoods:

Poisson Ricker (demographic stochasticity)

$$
\operatorname{Pr}\left(N_{t+1}=n_{t+1} \mid \theta, N_{t}=n_{t}\right)=\frac{e^{-\mu} \mu^{n_{t+1}}}{n_{t+1}!}, \quad \mu=n_{t} R e^{-a m_{t}}
$$

NBBg Ricker (all sources of stochasticity)

$$
\begin{gathered}
\int_{R_{E}=0}^{\infty} G\left(R_{E} \sum_{F=0}^{n_{1}}\binom{n_{t}}{F} z^{E}(1-z)^{n_{t}-F}\binom{n_{t+1}+F k_{D}-1}{F k_{D}-1}\left(\frac{\lambda}{F k_{D}+\lambda}\right)^{n_{t+1}}\left(\frac{F k_{D}}{F k_{D}+\lambda}\right)^{F_{k_{D}}}\right. \\
G\left(R_{E}\right)=R_{E}^{k_{E}-1} \exp \left(-\frac{R_{E} k_{E}}{R}\right)\left(\frac{k_{E}}{R}\right)^{k_{E}} \frac{1}{\Gamma\left(k_{E}\right)}, \quad \lambda=F \frac{R_{E}}{z} e^{- \text {em }}
\end{gathered}
$$

Experiment

- Tribolium castaneum (red flour beetle)
- Same life history as Ricker's fish
- Cannibalism

Experimental data

Model comparison

Conclusion

- Many species could be at much higher risk than we thought!
- ... because simpler models can wrongly conclude that environmental stochasticity dominates, whereas demographic variance has higher extinction risk (for the same variance in abundance)
- Important to include all stochasticity

Melbourne B. A. \& Hastings A. (2008).
Extinction risk depends strongly on factors contributing to stochasticity.

Nature 454: 100-103.

Assistants
Michelle Gibson, Dylan Hodgkiss, Claire Koenig, Tom McCabe, Devan Paulus, David Smith, Nancy Tcheou, Roselia Villalobos, Motoki Wu

Stochastic dynamics of invasive spread

Brett Melbourne \& Alan Hastings
University of California, Davis

Stochastic spread

- Stochasticity (\rightarrow variance in speed)
- Population growth \& dispersal
- Demographic, environmental, genetic
- Repeat an invasion: different
- Nature: one realization
- Real invasions can't be repeated
- Many times, identical conditions
- Laboratory microcosms

Experiment

 4 cm

Flour beetle: Tribolium castaneum

Experiment

4 cm

Lifecycle in laboratory

- Discrete time (35 day cycle)

Lifecycle in laboratory

- Discrete time (35 day cycle)

1) Adults lay eggs (24 hr)

- Fences installed; adults removed

Lifecycle in laboratory

- Discrete time (35 day cycle)

1) Adults lay eggs (24 hr)

- Fences installed; adults removed

2) Larvae grow

- Adults emerge (ca day 30)

Lifecycle in laboratory

- Discrete time (35 day cycle)

1) Adults lay eggs (24 hr)

- Fences installed; adults removed

2) Larvae grow

- Adults emerge (ca day 30)

3) Adults disperse (48 hr)

Census after dispersal

Experiment

- 30 landscapes
- Constant environment
- 13 generations

Spatio-

 temporal dynamics

Mechanistic stochastic models

- Individual based derivation
- Predict mean, variance, \& prob dist

$$
N_{x}(t+1)=\text { growth }+ \text { migration }
$$

Growth (birth, surv) in a patch

Survive cannibalism \& DI mortality

Growth (birth, surv) in a patch

Survive cannibalism \& DI mortality

Patch scale:
$N_{x}(t+1)=\sum_{i}^{N_{x}(t)} S_{i} \sim \operatorname{Poni}\left(A D_{x}(t)\right)$ Ruvor S^{N} o $\left.(t)\right)$ aill cisistis Ricker

Stochastic Ricker models

Model	Dem stoch (Birth, Surv)	Sex	Env stoch	Dem het
Poisson				
Neg bin				
Neg bin (Density Dep.)				
Neg bin-gamma				
Poisson-binomial				
Neg bin-binomial				
Neg bin-binomial (DD)				
Neg bin-binomial-gamma				

Stochastic spatial model

Patch scale growth

Number surviving is

Stochastic spatial model

Migration from patch y to x
$M_{y \rightarrow x} \sim \operatorname{Poi}\left(p_{y \rightarrow x} N_{y}(t) R e^{-\alpha N_{y}(t)}\right)$

Stochastic spatial model

$$
\begin{aligned}
& \text { Landscape scale } \\
& N_{x}(t+1)=\sum_{y} M_{y \rightarrow x} \sim \operatorname{Poi}\left(\begin{array}{l}
\text { Sum contributions } \\
\text { tronpall padah }(t s) R \\
y
\end{array} e^{-\alpha N_{y}(t)}\right)
\end{aligned}
$$

$M_{y \rightarrow x} \sim \operatorname{Poi}\left(p_{y \rightarrow x} N_{y}(t) R e^{-a N_{y}(t)}\right)$
Other Picker models work the same way

$p_{y \rightarrow x}$ (individuals)

- Poisson diffusion
- individuals have same D
- Poisson-gamma diffusion
individuals have different D
- longer tail

Variance in spread

 rates

Variance in spread rates

 Stochastic modelDem stoch
Sex
Env stoch
Dem het
Pois diffusion

Founder effects?

Landscapes started with 20 individuals

Stochastic spatial model fit
R, α, D common
R, α, D unique

Variance in spread rates

Stochastic process + founder effects

Conclusion

- Variance in spread rates between muitiple realizations very high
- Not entirely explained by stochastic population processes
- Founder effects seem to be important - test experimentally

Acknowledgments

Assistants:
Claire Koenig David Smith Roselia Villatobos Motoki Wu.

NSF Biological Invasions IGERT DGE 0114432
NSF DEB 0516150

Problem

- Spartina alterniflora
- Native to eastern US (and Gulf)
- Invasive in western U.S.
- 2 sites
S.F. Bay - replacing native

Willapa Bay - invading bare ground

Aerial photos courtesy of Washington State DNR

Aerial photos courtesy of Washington State DNR

Models

- Spatially-explicit Stochastic Simulation
- Consequences of an Allee effect
- Compare to analytic model to justify use of latter in designing control strategies
- Analytical Non Spatial Model
- Finding Optimal Control Strategies

Field Results: Allee effect

Low density plants set < 10 X the seed

Spatially-explicit simulation model

- One square km
- Parameterized from
-GIS maps (Civille)
-Field data
(Davis, Taylor, Civille,
Grevstad)
-Run for 100 years, time step 1 year
- Clones have low seed production
- Meadows have high seed production

Allee Effect Slows Invasion

Taylor, Davis, Civille, Grevstad and Hastings. Ecology 2004

Analytical Non-spatial Model

Seedling Area

Clone Area

$$
+(1-\eta)
$$

Meadow Area

$$
+\overline{\overline{1}} \boldsymbol{\eta}
$$

: FECUNDITY OF CLONES

Parameters are dependent on density and numbers of individuals.

: FECUNDITY OF MEADOWS
: GROWTH RATE OF CLONES
: GROWTH RATE OF MEADOWS
η
: MERGE RATE OF CLONES INTO MEADOWS

Analytical model predicts same dynamics as simulation model

Control of Spartina

Control questions

- How much Spartina needs to be removed every year to eradicate invasion within 10 years
- Is it better to prioritize removal of fast growing but low seed producing clones or is it better to prioritize removal of slow-growing but high seed producing meadows?

Control Strategy

- $\mathrm{T}_{\mathrm{t}}<$ MAX $=$ Total area removed in year t
- $\mathrm{o} \leq \mathrm{X}_{\mathrm{t}} \leq 1 \quad=$ fraction of T_{t} that was meadows
- $\mathrm{o} \leq\left(1-\mathrm{X}_{\mathrm{t}}\right) \leq 1=$ fraction of T_{t} that was clones

$$
\begin{array}{ccc}
+1 & +(1-\boldsymbol{\eta}) & -(1- \\
=\boldsymbol{\eta} & + & -
\end{array}
$$

Control Objectives

Eradicate invasion in one square km region within 10 years Minimize Cost X Risk of colonizing other sites

Total area removed in 10 years

Minimum Removal needed to Eradicate within 10 years

Equivalent of 1520\% of initial invasion has to be removed annually

Optimal Control Strategies

Low Budget Clones First

High Budget Meadows First

Switch Control Strategies

Low Budget
Meadow First

High Budget Clones First

Summary

	Low Budget	High Budget
Minimize Cost Only	Clones First	Clones First
Minimize Risk Only	Clones First	Meadows First
Minimize Cost and Risk	Clones First	Meadows First
No Allee Effect	Clones First	Clones First

Linear control model

- Density independent
- Three classes - seedlings,juveniles and adults
- Express model in terms of area occupied
- If the model were nonlinear this would become a dynamic programming problem -

Difficult numerical problem - cannot really get a solution

- So, can we simplify in this case?
(Hastings, Hall and Taylor, TPB in press)

$$
N_{t+1}=L N_{t}
$$

$$
N_{t+1}=L\left(N_{t}-H_{t+1}\right) .
$$

$$
N_{T}=L^{T} N_{0}-\sum_{i=1}^{T} L^{T+1-i} H_{i}
$$

Population $=$ size without control - contribution of removed

What classes should be removed?

- One year ahead?
- The class that contributes the most area (normalized by 'cost') should be removed first
" "Infinitely" far ahead?
The class that has the highest reproductive values (normalized by 'cost') should be removed first
- Therefore do intermediate case, finite time horizon, which becomes a linear programming problem (from previous slide)

Population size as a function of time and the annual budget allocated to control, when the objective is to minimize the population within 10 years subject to budget
constraint.

The fraction of each stage class (green for isolates, red for meadows) removed
by control in each year under the optimal control strategy.

Initial conclusions

- Optimal approach is time dependent
- May be much more effective
- Cost of waiting
- Overall cost of control can be much less when started earlier
- Since a LP problem solution is always at a vertex focus on a single class unless budget large enough to remove an entire class, then add one more class

'Easy' extensions

- Dependence on habitat
- Spatial extent
- Dependence on tidal height

Damage (Hall and Hastings, JTB)

Conclusions

- Allee effect slows down invasion considerably
- Best control strategy is to remove clones first if budget is low or if minimizing for cost only
- If minimizing for risk and budget is high, removing meadows first is best strategy
- Meadow first strategy is risky especially if budgets for future years are unpredictable.

Where's the data?

- Willapa Bay
- Analysis of aerial photographs
- SF Bay
- Remote sensing data

Approach in Willapa Bay

- Initial steps
- (orthorectify, etc.)
- With aid of GIS software, identify clones
- By hand
- Match up successive years

Approach in SF Bay

- Low resolution, high bandwidth data
- Identify components by 'spectral signature'

Ground truthing

- Choose number of components to identify

Mud
Water
Spartina
Other vegetation
(Rosso, P. H., Ustin, S. L. \& (2005)
International Journal of Remote Sensing 26: 5169 5191)

Picture is an Aviris image (pixel size, $17 \times 17 \mathrm{~m}$ approx.) of Coyote Creek area marsh, in the southern tip of San Francisco Bay. Image is from August 1999.
Colors indicate the percentage of each component, Spartina (red), Salicornia (green) and water (blue), present at each pixel as determined by a spectral unmixing approach. The unmixing was done on the basis of eight endmembers (reference spectra). Five plant species, water and open mud.

Comparison of approaches

- Willapa
- High resolution, low bandwidth
- High accuracy
- Labor intensive
- Data expensive
- Works well with invasion into bare mud
- SF Bay

Low resolution, high bandwidth
Lower accuracy
After difficult initial steps, easier to implement
Can handle multiple types

