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 Deterministic and stochastic causes
 Demographic stochasticity

 random births & deaths: within-individual scale

 Environmental stochasticity
 random births & deaths: population scale

 Demographic heterogeneity
 vital rates (birth/death): between-individual scale

 Sex ratio stochasticity
 random: male or female?

*

*
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 Intrinsic mean time to extinction
(Grimm & Wissel 2004, Oikos 105: 501-511) 
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 Tribolium castaneum (red flour beetle)
 Same life history as Ricker’s fish
 Cannibalism
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Model R α kD kE ∆AIC 

Poisson (dem stoch) 2.5 0.0036   336 

Negative binomial (dem het) 2.6 0.0037 0.15  18 

Negative binomial (env stoch) 2.7 0.0038  2.0 56 

Negative binomial-gamma 2.6 0.0037 0.26 29.2 5 

Poisson-binomial (sex) 2.7 0.0038   87 

NB-binomial (dem het) 2.6 0.0037 0.39  17 

NB-binomial (env stoch) 2.8 0.0038  13.1 10 

NB-binomial-gamma (all) 2.6 0.0037 1.15 26.6 0 

 

 

Demographic
heterogeneity
mistaken for
environmental
stochasticity

Demographic
heterogeneity

Environmental
stochasticity

Small k value
= big variance



 Many species could be at much higher risk than we 
thought! 

 ... because simpler models can wrongly conclude that 
environmental stochasticity dominates, whereas 
demographic variance has higher extinction risk (for 
the same variance in abundance)

 Important to include all stochasticity



Melbourne B. A. & Hastings A. (2008).

Extinction risk depends strongly on factors contributing to 
stochasticity.

Nature 454: 100-103.
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 Stochasticity (→ variance in speed)
 Population growth & dispersal
 Demographic, environmental, genetic

 Repeat an invasion: different
 Nature: one realization

 Real invasions can't be repeated
 Many times, identical conditions
 Laboratory microcosms



Flour beetle:
Tribolium
castaneum

4 cm



Hole

Tunnel

4 cm



 Discrete time (35 day cycle)



 Discrete time (35 day cycle)
1) Adults lay eggs (24 hr)
 Fences installed; adults removed



 Discrete time (35 day cycle)
1) Adults lay eggs (24 hr)
 Fences installed; adults removed

2) Larvae grow
 Adults emerge (ca day 30)



 Discrete time (35 day cycle)
1) Adults lay eggs (24 hr)
 Fences installed; adults removed

2) Larvae grow
 Adults emerge (ca day 30)

3) Adults disperse (48 hr)
 Census after dispersal



 30 landscapes
 Constant

environment
 13 generations
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 Individual based derivation
 Predict mean, variance, & prob dist

Nx(t+1) = growth + migration



Survive cannibalism & DI mortality

( )βPoi~eggs i

Adult i

Random
search

( ) ( )tN
s

xemp α−−= 1 Bernoulli



( )βPoi~eggs i

( )( )tN
i

xeRS α−Poi~

( )mR −= 1β

( )
( )

∑=+
tN

i
ix

x

StN 1

Patch scale:

Adult i

Sum up survivors over all adultsPoisson Ricker( ) ( )( )tN
x

xeRtN α−Poi~

Survive cannibalism & DI mortality

( ) ( )tN
s

xemp α−−= 1 BernoulliRandom
search



Model Dem stoch 
(Birth, Surv)
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 Poisson diffusion
 individuals have same D

 Poisson-gamma diffusion
 individuals have different D
 longer tail

xy
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Landscapes started
with 20 individuals

Stochastic spatial model fit
R, α, D common
R, α, D unique
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 Variance in spread rates between multiple realizations 
very high

 Not entirely explained by stochastic population 
processes

 Founder effects seem to be important – test 
experimentally
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 Spartina alterniflora
 Native to eastern US (and Gulf)
 Invasive in western U.S.
 2 sites

 S.F. Bay – replacing native
 Willapa Bay – invading bare ground





Willapa National Wildlife Refuge



Aerial photos courtesy of Washington State DNR



Aerial photos courtesy of Washington State DNR







• Spatially-explicit Stochastic Simulation

– Consequences of an Allee effect
– Compare to analytic model to justify use of latter 

in designing control strategies

• Analytical Non Spatial Model

– Finding Optimal Control Strategies

Models



Davis, Taylor, Civille and Strong. 2004  Journal of Ecology 92

Field Results: Allee effect
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•One square km

•Parameterized from 

•GIS maps 
(Civille) 

•Field data 
(Davis, Taylor,  
Civille, 
Grevstad)

•Run for 100 years, 
time step 1 year

•Clones have low 
seed production

•Meadows have high 
seed production



Allee Effect Slows Invasion

Taylor, Davis, Civille, Grevstad and Hastings. Ecology 2004

503520



Seedling Area 1+ = +

Meadow Area 1+ η= +

Clone Area 1+ (1 )η= + −

Parameters are 
dependent on 
density and 
numbers of 
individuals.

: FECUNDITY OF CLONES

: FECUNDITY OF MEADOWS

: GROWTH RATE OF CLONES

: GROWTH RATE OF MEADOWS

η : MERGE RATE OF CLONES INTO MEADOWS
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 How much Spartina needs to be removed every year to 
eradicate invasion within 10 years

 Is it better to prioritize removal of fast growing but low 
seed producing clones or is it better to prioritize removal 
of slow-growing but high seed producing meadows?



 Tt < MAX     = Total area removed in year t
 0 ≤ Xt ≤ 1 = fraction of Tt that was meadows
 0 ≤(1- Xt) ≤ 1 = fraction of Tt that was clones

1 1) ( )(1 η+ − −= + −

1 η+ = + −



1. Eradicate invasion in one square km region within 10 years

2. Minimize Cost X Risk of colonizing other sites

Total area removed 
in 10 years

Total seed production during 10 
years



Age of Invasion (years)
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Taylor and Hastings. Journal of Applied Ecology 2004
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 Density independent
 Three classes – seedlings,juveniles and adults

 Express model in terms of area occupied
 If the model were nonlinear this would become a 

dynamic programming problem –
 Difficult numerical problem – cannot really get a 

solution
 So, can we simplify in this case?

(Hastings, Hall and Taylor, TPB in press)



Population = size without control – contribution of removed



 One year ahead?
 The class that contributes the most area (normalized by 

‘cost’) should be removed first

 “Infinitely” far ahead?
 The class that has the highest reproductive values 

(normalized by ‘cost’) should be removed first

 Therefore do intermediate case, finite time 
horizon, which becomes a linear programming 
problem (from previous slide)







 Optimal approach is time dependent
 May be much more effective

 Cost of waiting
 Overall cost of control can be much less when started 

earlier

 Since a LP problem solution is always at a vertex –
focus on a single class unless budget large enough 
to remove an entire class, then add one more class



 Dependence on habitat
 Spatial extent
 Dependence on tidal height





 Allee effect slows down invasion considerably

 Best control strategy is to remove clones first if 
budget is low or if minimizing for cost only

 If minimizing for risk and budget is high, 
removing meadows first is best strategy

 Meadow first strategy is risky especially if budgets 
for future years are unpredictable.



 Willapa Bay
 Analysis of aerial photographs

 SF Bay
 Remote sensing data







 Initial steps 
 (orthorectify, etc.)

 With aid of GIS software, identify clones
 By hand

 Match up successive years









 Low resolution, high bandwidth data
 Identify components by ‘spectral signature’

 Ground truthing
 Choose number of components to identify

 Mud
 Water
 Spartina
 Other vegetation

(Rosso, P. H., Ustin, S. L. & (2005) 
International Journal of Remote Sensing 26: 5169 –
5191)



Picture is an Aviris image (pixel size, 17x17 m approx.) of Coyote 
Creek area marsh, in the southern tip of San Francisco Bay. Image 
is from August 1999.

Colors indicate the percentage of each component, Spartina (red), 
Salicornia (green) and water (blue), present at each pixel as 
determined by a spectral unmixing approach. The unmixing was 
done on the basis of eight endmembers (reference spectra). Five 
plant species, water and open mud.



 Willapa
 High resolution, low 

bandwidth
 High accuracy
 Labor intensive
 Data expensive
 Works well with 

invasion into bare mud

 SF Bay
 Low resolution, high 

bandwidth
 Lower accuracy
 After difficult initial 

steps, easier to 
implement

 Can handle multiple 
types
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