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Homogeneous Environment - Constant Coefficients

Logistic equation (ODE)

ut = u(a− u)

where a > 0 constant: carrying capacity.
With spatial variables (PDE){

ut = d∆u + u(a− u) in Ω× (0,T ),
∂νu = 0 on ∂Ω× (0,T ),

where d > 0, u = u(x , t) and Ω: bounded smooth domain in RN ;

∆ =
N∑

i=1

∂2

∂x2
i

; ∂ν =
∂

∂ν
, and ν is the unit outer normal on ∂Ω.

Fact: The unique steady state (s.s.) u ≡ a is globally asymptotically
stable.
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Heterogeneous Environment

In a heterogeneous environment m(x) ≥ 0, nonconstant{
ut = d∆u + u(m(x)− u) in Ω× (0,T ),
∂νu = 0 on ∂Ω× (0,T ).

Fact: For every d > 0, there exists unique positive s.s. denoted by θd .
Moreover, θd is globally asymptotically stable.

Observe that [Lou, 2006]

0 = d
∫

Ω
|∇θd |2
θ2

d
+
∫

Ω m −
∫

Ω θd

⇒
∫

Ω
θd >

∫
Ω

m(x) ∀d > 0, since θd 6≡ const .
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i.e. the total population is always greater than the total carrying
capacity!

Moreover,
∫

Ω θd →
∫

Ω m(x) as d → 0 or∞, since

θd →

{
m as d → 0,
m := 1

|Ω|
∫

Ω m as d →∞.

Open: What is the value
maxd>0

∫
Ω θd? Where is

maxd>0
∫

Ω θd assumed?
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Lotka-Volterra Competition

Lotka-Volterra competition system (ODE):{
Ut = U(a1 − b1U − c1V ) in (0,T ),
Vt = V (a2 − b2U − c2V ) in (0,T ).

ai : carrying capacity / intrinsic growth rate;
b1, c2: intra-specific competition;
b2, c1: inter-specific competition
are all positive constants.
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Slower diffuser always prevails!

Consider the following Lotka-Volterra system
Ut = d1∆U + U(m(x)− U − V ) in Ω× (0,T )
Vt = d2∆V + V (m(x)− U − V ) in Ω× (0,T )
∂νU = ∂νV = 0 on ∂Ω× (0,T )
U(x ,0) = U0(x) ≥ 0,V (x ,0) = V0(x) ≥ 0 in Ω.

If d1 < d2, then (U,V )→ (θd1 ,0) as t →∞ regardless of U0,V0.
(as long as U0 6≡ 0,V0 6≡ 0) [Dockery, Hutson, Mischaikow and
Pernarowski (1998)]
”Slower diffuser always prevails!”
”Degenerate” case: d1 = d2.
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Slower diffuser always prevails!
Theorem (DHMP)
If d1 < d2, then (θd1 ,0) is globally asymp. stable, while (0, θd2) is
unstable.

Open Problem: If there are 3 or more competing species involved,
it is NOT KNOWN if the slowest diffuser would prevail.
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Slower diffuser always prevails!

The proof consists of two steps:
(i) (θd1 ,0) is asymp. stable and (0, θd2 ) is unstable.
(ii) There is no other nonnegative s.s. than (0,0).

(This step works for general n species.)

To conclude from theory of monotone flow that (θd1 ,0) is globally
asymp. stable. (Existence of connecting orbit.)
[This requires n = 2 (2 species, 2× 2 system)]
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Homogeneous Environment - Constant Coefficients

Lotka-Volterra competition-diffusion system in homogeneous
environment:

Ut = d1∆U + U(a1 − b1U − c1V ) in Ω× (0,T )
Vt = d2∆V + V (a2 − b2U − c2V ) in Ω× (0,T )
∂νU = ∂νV = 0 on ∂Ω× (0,T )

ai : intrinsic growth rate;

b1, c2: intra-specific competition;
b2, c1: inter-specific competition
are all positive constants
Weak competition: b1

b2
> a1

a2
> c1

c2
.
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Homogeneous Environment - Constant Coefficients

Weak competition : b1
b2
> a1

a2
> c1

c2
.

Four constant steady states: (0,0), (a1
b1
,0), (0, a2

c2
), and

(U∗,V ∗) = (a1c2−a2c1
b1c2−b2c1

, b1a2−b2a1
b1c2−b2c1

)
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Homogeneous Environment - Constant Coefficients

(U∗,V ∗) is globally asymptotically stable in [U > 0,V > 0]. (No
nontrivial co-existence steady states.)

Proof.
Lyapunov functional [S.-B. Hsu (1977)]

E(U,V )(t) =∫
Ω

[
b2

(
U − U∗ − U∗ log

U
U∗

)
+ c1

(
V − V ∗ − V ∗ log

V
V ∗

)]
dx

Then d
dt E(U,V )(t) ≤ 0 ∀t ≥ 0 and ” = ” holds only when

U = U∗,V = V ∗.

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion July, 2011 11 / 37



Homogeneous Environment - Constant Coefficients

(U∗,V ∗) is globally asymptotically stable in [U > 0,V > 0]. (No
nontrivial co-existence steady states.)

Proof.
Lyapunov functional [S.-B. Hsu (1977)]

E(U,V )(t) =∫
Ω

[
b2

(
U − U∗ − U∗ log

U
U∗

)
+ c1

(
V − V ∗ − V ∗ log

V
V ∗

)]
dx

Then d
dt E(U,V )(t) ≤ 0 ∀t ≥ 0 and ” = ” holds only when

U = U∗,V = V ∗.

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion July, 2011 11 / 37



Heterogeneous Environment

Consider 0 < b, c < 1 (weak competition)

(1)


d1∆U + U(m(x)− U − cV ) = 0 in Ω
d2∆V + V (m(x)− bU − V ) = 0 in Ω
∂νU = ∂νV = 0 on ∂Ω

Theorem (Lou (2006))
There exists b∗ < 1 such that for all b > b∗, there exists c∗ ≤ 1 small
such that if c < c∗, (θd1 ,0) is globally asymp. stable for some d1 < d2.

Here

b∗ = inf
d>0

∫
Ω

m
/∫

Ω
θd

In particular, for some 0 < b, c < 1 and d1,d2, U will wipe out V , and
coexistence is no longer possible even when the competition is weak!
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b < b∗ ⇒ (θd1 ,0) unstable (regardless of d1,d2, c)

b > b∗ ⇒ (θd1 ,0) stable for d1 ∈ (d ,d) and d2 > 1/λ(m − bθd1)

b > b∗, c small, for above d1,d2 ⇒ no co-existence
(0, θd2) unstable if d1 < d2 (independent of b, c)
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Recent Progress [Lam and Ni]
Consider

(1)


d1∆U + U(m(x)− U − cV ) = 0 in Ω
d2∆V + V (m(x)− bU − V ) = 0 in Ω
∂νU = ∂νV = 0 on ∂Ω

(I) For any ε, ∃δ(ε) > 0 s.t. for 1− δ < b < 1, 0 ≤ c ≤ 1, ε < d1 < 1/ε
and d2 ≥ d1 + ε, (θd1 ,0) is globally asymp. stable.

Remark: Interesting that c could be bigger than b in (I).

(II) For 0 < b, c < 1, ∃ε > 0 s.t. if |d1 − d2| < ε then ∃ unique positive
s.s. (Ũ, Ṽ ). Moreover, (Ũ, Ṽ ) is globally asymp. stable; and if
d1,d2 → d > 0, then

(Ũ, Ṽ )→ 1
1− bc

(
1− c
1− b

)
θd .
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and d2 ≥ d1 + ε, (θd1 ,0) is globally asymp. stable.

Remark: Interesting that c could be bigger than b in (I).

(II) For 0 < b, c < 1, ∃ε > 0 s.t. if |d1 − d2| < ε then ∃ unique positive
s.s. (Ũ, Ṽ ). Moreover, (Ũ, Ṽ ) is globally asymp. stable; and if
d1,d2 → d > 0, then

(Ũ, Ṽ )→ 1
1− bc

(
1− c
1− b

)
θd .
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Globally Stable Coexistence S.S.
The region shaded blue represent the (d1,d2) for which there exists a
unique coexistence s.s. which is globally asymp. stable.)
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Discussions: Fitness in terms of Diffusion Rate

Return to the single species{
ut = d∆u + u(m(x)− u) in Ω× (0,T ),
∂νu = 0 on ∂Ω× (0,T ).

We define the ”total fitness” of the unique s.s. θd as follows:

F (d) =

∫
Ω
|θd −m|

Conjecture: F(d) is monotonically increasing in d > 0.

Recall that b∗ = infd>0 m/θd .

Question: Is b∗ bounded below by a positive constant indep of m?
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Discussions: Slower diffuser always prevails?
Consider a special case

(2)


Ut = d1∆U + U(m(x)− U − bV ) in Ω× (0,T )
Vt = d2∆V + V (m(x)− bU − V ) in Ω× (0,T )
∂νU = ∂νV = 0 on ∂Ω× (0,T )
U(x ,0) = U0(x) ≥ 0,V (x ,0) = V0(x) ≥ 0 in Ω

where b = 1− δ close to 1. [Lam-Ni] indicates, U does not seem to
fare better as d1 decreases from d2 to 0.
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Directed movements

In reality, few species move completely randomly. It is plausible that
diffusion combined with directed movement will help the species
maximize its chances of survival.

Strategies?
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Directed movements

Consider the following Lotka-Volterra competition system proposed by
[Cantrell, Cosner and Lou (2006)] based on an earlier single equation
model of [Belgacem and Cosner (1995)].

(3)


Ut = ∇ · (d1∇U − αU∇m) + U(m(x)− U − V ) in Ω× (0,T )
Vt = d2∆V + V (m(x)− U − V ) in Ω× (0,T )
d1∂νU − αU∂νm = ∂νV = 0 on ∂Ω× (0,T )
U(x ,0) = U0(x) ≥ 0,V (x ,0) = V0(x) ≥ 0 in Ω,

where

∇· - divergence operator, ∇ - gradient operator.
U is assumed to be ”smarter” while V still disperses randomly.
α ≥ 0 measures the strength of ”directed” movement of U.
No-flux boundary conditions imposed.
How will U and V compete?
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Advection-Mediated Coexistence

When d1 < d2, the ”slower diffuser” U always wipes out V while it
is not much smarter than V (when α > 0 is small) [Cantrell,
Cosner and Lou (2006)].

V always survives when U becomes ”too smart” (when α large).

Theorem ([Cantrell, Cosner and Lou, (2007)])
Assume
(a) {critical points of m } has measure 0;
(b) ∃x0 ∈ Ω s.t. m(x0) = maxΩ m is a strict local max.
⇒ ∀d1,d2, (3) has a stable coexistence s.s. (Uα,Vα), Uα > 0,Vα > 0
for every α large.

Shape of (Uα,Vα)?
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A Conjecture

In [Cantrell, Cosner and Lou (2007)], it is shown that whenever the set
of critical points of m is of measure zero, then ∀ s.s. (Uα,Vα) of (3),

Uα → 0 in L2 and Vα → θd2 in C1+β as α→∞.

Conjecture ([Cantrell, Cosner and Lou (2007)])
(3) has a unique coexistence s.s. (Uα,Vα) which is globally asymp.
stable, and, as α→∞, Uα concentrates at all local maximum points of
m(x) in Ω.
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In [X. Chen and Lou (2008)], important progress on the conjecture was
made when m has a unique non-degenerate global maximum point.

Theorem (X. Chen and Lou (2008))

Suppose that m has a unique critical point x0 on Ω which is a
non-degenerate global max point, x0 ∈ Ω and ∂νm ≤ 0 on ∂Ω. Then,
as α→∞,

(i) Vα → θd2 in C1+β(Ω) and

(ii) ‖Uαe
α

2d1
(x−x0)T D2m(x0)(x−x0) − 2N/2[m(x0)− θd2(x0)]‖L∞(Ω) → 0.

The factor 2N/2[m(x0)− θd2(x0)] > 0 comes from

Uα(x) ∼ e
α

2d1
(x−x0)T D2m(x0)(x−x0) at x0,

the integral constraint
∫

Ω Uα(m − Uα − Vα) = 0.
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For general m, the profile of Uα in the Conjecture has been determined
in the case N = 1.
Ω = (−1,1), Σ = {all positive local maximum points of m in Ω}

Theorem ([Lam and Ni (2010)])
Suppose Σ ⊆ (−1,1) with xm′(x) ≤ 0 at x = ±1, and that all critical
points of m are non-degenerate. Let (Uα,Vα) be a positive s.s. of (3).
Then as α→∞,

(i) Vα → θd2 in C1+β(Ω),
(ii) for any x0 ∈ Σ and any r > 0 small∥∥∥∥Uα −max{

√
2(m − θd2)(x0),0}e

α
2d1

m′′(x0)(x−x0)2
∥∥∥∥

L∞(Br (x0))

→ 0;

(iii) for any compact subset K of [−1,1] \ Σ, Uα → 0 in K
uniformly and exponentially.

It turns out that the Conjecture needs to be modified slightly.
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Directed movements
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Directed movements
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Directed movements

U will NOT survive at those local max. pts. of m where m ≤ θd2 !
i.e. local max pts. of m could be traps for U if m is less than or
equal to θd2 there!
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Higher dimensional case
Recently, a new argument that works for higher dimensions is found.
Recall Σ = {positive local max. pts. of m(x) in Ω}

Theorem ([Lam (2011b)])
Assume Σ ⊆ Ω with ∂νm ≤ 0 on ∂Ω, and that all critical points of m are
non-degenerate. Moreover, assume ∆m(x0) > 0 whenever x0 is a
saddle point of m. Let (Uα,Vα) be a positive s.s. of (3).

Then as α→∞,
(i) Vα → θd2 in C1+β(Ω) for any β ∈ (0,1);
(ii) for any x0 ∈ Σ and any r > 0 small∥∥∥Uα −max{2N/2(m − θd2)(x0),0}e

α
2d1

(x−x0)T D2m(x0)(x−x0)
∥∥∥

L∞(Br (x0))
→ 0;

(iii) for any compact subset K of Ω \ Σ, Uα → 0 in K uniformly and
exponentially.

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion July, 2011 29 / 37



Higher dimensional case
Recently, a new argument that works for higher dimensions is found.
Recall Σ = {positive local max. pts. of m(x) in Ω}

Theorem ([Lam (2011b)])
Assume Σ ⊆ Ω with ∂νm ≤ 0 on ∂Ω, and that all critical points of m are
non-degenerate.

Moreover, assume ∆m(x0) > 0 whenever x0 is a
saddle point of m. Let (Uα,Vα) be a positive s.s. of (3).

Then as α→∞,
(i) Vα → θd2 in C1+β(Ω) for any β ∈ (0,1);
(ii) for any x0 ∈ Σ and any r > 0 small∥∥∥Uα −max{2N/2(m − θd2)(x0),0}e

α
2d1

(x−x0)T D2m(x0)(x−x0)
∥∥∥

L∞(Br (x0))
→ 0;

(iii) for any compact subset K of Ω \ Σ, Uα → 0 in K uniformly and
exponentially.

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion July, 2011 29 / 37



Higher dimensional case
Recently, a new argument that works for higher dimensions is found.
Recall Σ = {positive local max. pts. of m(x) in Ω}

Theorem ([Lam (2011b)])
Assume Σ ⊆ Ω with ∂νm ≤ 0 on ∂Ω, and that all critical points of m are
non-degenerate. Moreover, assume ∆m(x0) > 0 whenever x0 is a
saddle point of m. Let (Uα,Vα) be a positive s.s. of (3).

Then as α→∞,

(i) Vα → θd2 in C1+β(Ω) for any β ∈ (0,1);
(ii) for any x0 ∈ Σ and any r > 0 small∥∥∥Uα −max{2N/2(m − θd2)(x0),0}e

α
2d1

(x−x0)T D2m(x0)(x−x0)
∥∥∥

L∞(Br (x0))
→ 0;

(iii) for any compact subset K of Ω \ Σ, Uα → 0 in K uniformly and
exponentially.

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion July, 2011 29 / 37



Higher dimensional case
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Higher dimensional case

The proof has two main ingredients.

L∞ estimate on Uα independent of α.
A Liouville-type theorem concerning the limiting problem near
local max of m.
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A Liouville-type theorem
Theorem (Lam)

Let B be a symmetric positive-definite N × N matrix and
0 < σ ∈ L∞loc(RN) such that for some R0 > 0,

σ2 = e−yT By for all y ∈ RN \ BR0(0),

then every nonnegative weak solution w to

(4) ∇·(σ2∇w) = 0 in RN ,

is a constant.

In our original problem, at each local maximum point x0, rescale
x = x0 +

√
d1/αy and w = e

α
d1

[m(x0)−m(x)]Uα, the problem
becomes

∇·(e
α
d1

[m(x)−m(x0)]∇w)+U(m−U−V )
d1

α
= 0→ ∇·(e

1
2 yT D2m(x0)y∇w) = 0
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A Liouville-type theorem
Theorem (Lam)

Let B be a symmetric positive-definite N × N matrix and
0 < σ ∈ L∞loc(RN) such that for some R0 > 0,

σ2 = e−yT By for all y ∈ RN \ BR0(0),

then every nonnegative weak solution w to

(4) ∇·(σ2∇w) = 0 in RN ,

is a constant.

No extra conditions on w is imposed except w ∈W 1,2
loc (RN)

In general, some kind of asymptotic behavior is needed for this
kind of result to hold; e.g. it is proved in [Berestycki, Caffarelli and
Nirenberg (1997)] that weak solution of (4) is a constant if∫

BR
σ2w2 ≤ O(R2).
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Concluding Remarks

In fact, the following more general equation is considered
Ut = ∇ · [d1∇U − αU∇p] + U(m − U − V ) in Ω× (0,T ),
Vt = d2∆V + V (m − U − V ) in Ω× (0,T ),
∂νU − αU∂νp = ∂νV = 0 on ∂Ω× (0,T ).

where p(x) = χ(m(x)) for some increasing function χ.

In particular, the different roles played by p and m are understood
more clearly.
Roughly speaking, p is responsible for the shape of the
concentrated peaks, while the values of m on Σ determines the
height of those peaks.
General m?

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion July, 2011 33 / 37



Concluding Remarks

In fact, the following more general equation is considered
Ut = ∇ · [d1∇U − αU∇p] + U(m − U − V ) in Ω× (0,T ),
Vt = d2∆V + V (m − U − V ) in Ω× (0,T ),
∂νU − αU∂νp = ∂νV = 0 on ∂Ω× (0,T ).

where p(x) = χ(m(x)) for some increasing function χ.

In particular, the different roles played by p and m are understood
more clearly.

Roughly speaking, p is responsible for the shape of the
concentrated peaks, while the values of m on Σ determines the
height of those peaks.
General m?

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion July, 2011 33 / 37



Concluding Remarks

In fact, the following more general equation is considered
Ut = ∇ · [d1∇U − αU∇p] + U(m − U − V ) in Ω× (0,T ),
Vt = d2∆V + V (m − U − V ) in Ω× (0,T ),
∂νU − αU∂νp = ∂νV = 0 on ∂Ω× (0,T ).

where p(x) = χ(m(x)) for some increasing function χ.

In particular, the different roles played by p and m are understood
more clearly.
Roughly speaking, p is responsible for the shape of the
concentrated peaks, while the values of m on Σ determines the
height of those peaks.

General m?

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion July, 2011 33 / 37



Concluding Remarks

In fact, the following more general equation is considered
Ut = ∇ · [d1∇U − αU∇p] + U(m − U − V ) in Ω× (0,T ),
Vt = d2∆V + V (m − U − V ) in Ω× (0,T ),
∂νU − αU∂νp = ∂νV = 0 on ∂Ω× (0,T ).

where p(x) = χ(m(x)) for some increasing function χ.

In particular, the different roles played by p and m are understood
more clearly.
Roughly speaking, p is responsible for the shape of the
concentrated peaks, while the values of m on Σ determines the
height of those peaks.
General m?

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion July, 2011 33 / 37



Dropping the Hypothesis on m

Question: What if we drop the assumption that the set of critical points
of m is of measure 0 ?

Example [Lam and Ni]: For α large, (3) has at least one stable positive
s.s. (Uα,Vα). By passing to a subsequence if necessary, any (Uα,Vα)
must converge to (U0,V0) which satisfies

d1U ′′ + U(1− U − V ) = 0 in (−1
2 ,

1
2),

d2V ′′ + V (m(x)− U − V ) = 0 in (−1,1),

U ′(±1
2) = 0,V ′(±1) = 0.

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion July, 2011 34 / 37



Dropping the Hypothesis on m

Question: What if we drop the assumption that the set of critical points
of m is of measure 0 ?

Example [Lam and Ni]: For α large, (3) has at least one stable positive
s.s. (Uα,Vα). By passing to a subsequence if necessary, any (Uα,Vα)
must converge to (U0,V0) which satisfies

d1U ′′ + U(1− U − V ) = 0 in (−1
2 ,

1
2),

d2V ′′ + V (m(x)− U − V ) = 0 in (−1,1),

U ′(±1
2) = 0,V ′(±1) = 0.

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion July, 2011 34 / 37



Dropping the Hypothesis on m

Question: What if we drop the assumption that the set of critical points
of m is of measure 0 ?

Example [Lam and Ni]: For α large, (3) has at least one stable positive
s.s. (Uα,Vα). By passing to a subsequence if necessary, any (Uα,Vα)
must converge to (U0,V0) which satisfies

d1U ′′ + U(1− U − V ) = 0 in (−1
2 ,

1
2),

d2V ′′ + V (m(x)− U − V ) = 0 in (−1,1),

U ′(±1
2) = 0,V ′(±1) = 0.

Wei-Ming Ni (ECNU and Minnesota) Mathematics of Diffusion July, 2011 34 / 37



Related results

The dynamics of the following system has been studied in [Chen,
Hambrock and Lou (2009)](m has single interior peak) and
[Bezuglyy and Lou (2009)](m has multi-peaks case).

Ut = ∇ · (d1∇U − αU∇m) + (m − U − V )U in Ω× (0,∞),
Vt = ∇ · (d2∇V − βV∇m) + (m − U − V )V in Ω× (0,∞),
d1∂νU − αU∂νm = d2∂νV − βV∂νm = 0 on ∂Ω× (0,∞).

In particular, it is proved in some cases that U actually goes
extinct when V has a fixed large biased movement.
Biologically: Selection is against excessive directed-movement.
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Related results

In [Cantrell, Cosner and Lou (2009)], a single equation of u
incorporating biased movement and population pressure (or
self-diffusion) is considered.{

ut = ∇ · [d∇u − αu∇(m − u)] + u(m − u) in Ω× (0,T ),
d1∂νu − αu∂ν(m − u) = 0 on ∂Ω× (0,T ).

Apart from random diffusion, u moves up the gradient of ”fitness”
(m − u), and tends to match the carrying capacity m(x) perfectly.
The dispersal term can also be written as
∆(d1u + αu2/2)− αu∇m, representing a nonlinear form of
diffusion which avoids crowding.
It is proved that the unique s.s. approaches m+ as α→∞.
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Future directions

What is the best strategy for survival/competition?


Ut = ∇ · [d1∇U − αU∇F (x ,U,V )] + UF (x ,U,V ) in Ω× (0,T ),

Vt = ∇ · [d2∇V − βV∇F̃ (x ,U,V )] + VF (x ,U,V ) in Ω× (0,T ),
with no-flux boundary conditions.

U tends to optimize the fitness/available resources.
Question: Will U wipe V out if α is large?
Cross-diffusion?– Yaping Wu and her group, Yotsutani and his
group
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