Some Recent Progress in Spatially Inhomogeneous Lotka-Volterra Competition-Diffusion Systems

Wei-Ming Ni

East China Normal University and University of Minnesota
July, 2011

Homogeneous Environment - Constant Coefficients

Homogeneous Environment - Constant Coefficients

 Logistic equation (ODE)$$
u_{t}=u(a-u)
$$

where $a>0$ constant: carrying capacity.

Homogeneous Environment - Constant Coefficients

 Logistic equation (ODE)$$
u_{t}=u(a-u)
$$

where $a>0$ constant: carrying capacity. With spatial variables (PDE)

$$
\begin{cases}u_{t}=d \Delta u+u(a-u) & \text { in } \Omega \times(0, T) \\ \partial_{\nu} u=0 & \text { on } \partial \Omega \times(0, T)\end{cases}
$$

where $d>0, u=u(x, t)$ and Ω : bounded smooth domain in \mathbb{R}^{N};
$\Delta=\sum_{i=1}^{N} \frac{\partial^{2}}{\partial x_{i}^{2}} ; \partial_{\nu}=\frac{\partial}{\partial \nu}$, and ν is the unit outer normal on $\partial \Omega$.

Homogeneous Environment - Constant Coefficients

 Logistic equation (ODE)$$
u_{t}=u(a-u)
$$

where $a>0$ constant: carrying capacity. With spatial variables (PDE)

$$
\begin{cases}u_{t}=d \Delta u+u(a-u) & \text { in } \Omega \times(0, T) \\ \partial_{\nu} u=0 & \text { on } \partial \Omega \times(0, T)\end{cases}
$$

where $d>0, u=u(x, t)$ and Ω : bounded smooth domain in \mathbb{R}^{N};
$\Delta=\sum_{i=1}^{N} \frac{\partial^{2}}{\partial x_{i}^{2}} ; \partial_{\nu}=\frac{\partial}{\partial \nu}$, and ν is the unit outer normal on $\partial \Omega$.
Fact: The unique steady state (s.s.) $u \equiv a$ is globally asymptotically stable.

Heterogeneous Environment

In a heterogeneous environment $m(x) \geq 0$, nonconstant

$$
\begin{cases}u_{t}=d \Delta u+u(m(x)-u) & \text { in } \Omega \times(0, T), \\ \partial_{\nu} u=0 & \text { on } \partial \Omega \times(0, T) .\end{cases}
$$

Heterogeneous Environment

In a heterogeneous environment $m(x) \geq 0$, nonconstant

$$
\begin{cases}u_{t}=d \Delta u+u(m(x)-u) & \text { in } \Omega \times(0, T) \\ \partial_{\nu} u=0 & \text { on } \partial \Omega \times(0, T)\end{cases}
$$

Fact: For every $d>0$, there exists unique positive s.s. denoted by θ_{d}. Moreover, θ_{d} is globally asymptotically stable.

Heterogeneous Environment

In a heterogeneous environment $m(x) \geq 0$, nonconstant

$$
\begin{cases}u_{t}=d \Delta u+u(m(x)-u) & \text { in } \Omega \times(0, T), \\ \partial_{\nu} u=0 & \text { on } \partial \Omega \times(0, T) .\end{cases}
$$

Fact: For every $d>0$, there exists unique positive s.s. denoted by θ_{d}. Moreover, θ_{d} is globally asymptotically stable.

- Observe that [Lou, 2006]

$$
\begin{aligned}
0 & =d \int_{\Omega} \frac{\left|\nabla \theta_{d}\right|^{2}}{\theta_{d}^{2}}+\int_{\Omega} m-\int_{\Omega} \theta_{d} \\
& \Rightarrow \int_{\Omega} \theta_{d}>\int_{\Omega} m(x) \quad \forall d>0, \text { since } \theta_{d} \not \equiv \text { const } .
\end{aligned}
$$

i.e. the total population is always greater than the total carrying capacity!
i.e. the total population is always greater than the total carrying capacity!

Moreover, $\int_{\Omega} \theta_{d} \rightarrow \int_{\Omega} m(x)$ as $d \rightarrow 0$ or ∞, since

$$
\theta_{d} \rightarrow \begin{cases}m & \text { as } d \rightarrow 0 \\ \bar{m}:=\frac{1}{|\Omega|} \int_{\Omega} m & \text { as } d \rightarrow \infty\end{cases}
$$

i.e. the total population is always greater than the total carrying capacity!

Moreover, $\int_{\Omega} \theta_{d} \rightarrow \int_{\Omega} m(x)$ as $d \rightarrow 0$ or ∞, since

$$
\theta_{d} \rightarrow \begin{cases}m & \text { as } d \rightarrow 0 \\ \bar{m}:=\frac{1}{|\Omega|} \int_{\Omega} m & \text { as } d \rightarrow \infty\end{cases}
$$

Open: What is the value $\max _{d>0} \int_{\Omega} \theta_{d}$?
i.e. the total population is always greater than the total carrying capacity!

Moreover, $\int_{\Omega} \theta_{d} \rightarrow \int_{\Omega} m(x)$ as $d \rightarrow 0$ or ∞, since

$$
\theta_{d} \rightarrow \begin{cases}m & \text { as } d \rightarrow 0 \\ \bar{m}:=\frac{1}{|\Omega|} \int_{\Omega} m & \text { as } d \rightarrow \infty\end{cases}
$$

Open: What is the value $\max _{d>0} \int_{\Omega} \theta_{d}$? Where is $\max _{d>0} \int_{\Omega} \theta_{d}$ assumed?
i.e. the total population is always greater than the total carrying capacity!

Moreover, $\int_{\Omega} \theta_{d} \rightarrow \int_{\Omega} m(x)$ as $d \rightarrow 0$ or ∞, since

$$
\theta_{d} \rightarrow \begin{cases}m & \text { as } d \rightarrow 0 \\ \bar{m}:=\frac{1}{|\Omega|} \int_{\Omega} m & \text { as } d \rightarrow \infty\end{cases}
$$

Open: What is the value $\max _{d>0} \int_{\Omega} \theta_{d}$? Where is $\max _{d>0} \int_{\Omega} \theta_{d}$ assumed?

Lotka-Volterra Competition

Lotka-Volterra competition system (ODE):

$$
\begin{cases}U_{t}=U\left(a_{1}-b_{1} U-c_{1} V\right) & \text { in }(0, T) \\ V_{t}=V\left(a_{2}-b_{2} U-c_{2} V\right) & \text { in }(0, T)\end{cases}
$$

- a_{i} : carrying capacity / intrinsic growth rate;
- b_{1}, c_{2} : intra-specific competition;
- b_{2}, c_{1} : inter-specific competition are all positive constants.

Slower diffuser always prevails!

Consider the following Lotka-Volterra system

$$
\begin{cases}U_{t}=d_{1} \Delta U+U(m(x)-U-V) & \text { in } \Omega> \\ V_{t}=d_{2} \Delta V+V(m(x)-U-V) & \text { in } \Omega \\ \partial_{\nu} U=\partial_{\nu} V=0 & \text { on } \partial S \\ U(x, 0)=U_{0}(x) \geq 0, V(x, 0)=V_{0}(x) \geq 0 & \text { in } \Omega\end{cases}
$$

Slower diffuser always prevails!

Consider the following Lotka-Volterra system

$$
\begin{cases}U_{t}=d_{1} \Delta U+U(m(x)-U-V) & \text { in } \Omega> \\ V_{t}=d_{2} \Delta V+V(m(x)-U-V) & \text { in } \Omega> \\ \partial_{\nu} U=\partial_{\nu} V=0 & \text { on } \partial S \\ U(x, 0)=U_{0}(x) \geq 0, V(x, 0)=V_{0}(x) \geq 0 & \text { in } \Omega\end{cases}
$$

- If $d_{1}<d_{2}$, then $(U, V) \rightarrow\left(\theta_{d_{1}}, 0\right)$ as $t \rightarrow \infty$ regardless of U_{0}, V_{0}. (as long as $U_{0} \not \equiv 0, V_{0} \not \equiv 0$) [Dockery, Hutson, Mischaikow and Pernarowski (1998)]

Slower diffuser always prevails!

Consider the following Lotka-Volterra system

$$
\begin{cases}U_{t}=d_{1} \Delta U+U(m(x)-U-V) & \text { in } \Omega \\ V_{t}=d_{2} \Delta V+V(m(x)-U-V) & \text { in } \Omega \\ \partial_{\nu} U=\partial_{\nu} V=0 & \text { on } \partial S \\ U(x, 0)=U_{0}(x) \geq 0, V(x, 0)=V_{0}(x) \geq 0 & \text { in } \Omega\end{cases}
$$

- If $d_{1}<d_{2}$, then $(U, V) \rightarrow\left(\theta_{d_{1}}, 0\right)$ as $t \rightarrow \infty$ regardless of U_{0}, V_{0}. (as long as $U_{0} \not \equiv 0, V_{0} \not \equiv 0$) [Dockery, Hutson, Mischaikow and Pernarowski (1998)]
- "Slower diffuser always prevails!"

Slower diffuser always prevails!

Consider the following Lotka-Volterra system

$$
\begin{cases}U_{t}=d_{1} \Delta U+U(m(x)-U-V) & \text { in } \Omega> \\ V_{t}=d_{2} \Delta V+V(m(x)-U-V) & \text { in } \Omega> \\ \partial_{\nu} U=\partial_{\nu} V=0 & \text { on } \partial S \\ U(x, 0)=U_{0}(x) \geq 0, V(x, 0)=V_{0}(x) \geq 0 & \text { in } \Omega\end{cases}
$$

- If $d_{1}<d_{2}$, then $(U, V) \rightarrow\left(\theta_{d_{1}}, 0\right)$ as $t \rightarrow \infty$ regardless of U_{0}, V_{0}. (as long as $U_{0} \not \equiv 0, V_{0} \not \equiv 0$) [Dockery, Hutson, Mischaikow and Pernarowski (1998)]
- "Slower diffuser always prevails!"
- "Degenerate" case: $d_{1}=d_{2}$.

Slower diffuser always prevails!

Theorem (DHMP)
If $d_{1}<d_{2}$, then $\left(\theta_{d_{1}}, 0\right)$ is globally asymp. stable, while $\left(0, \theta_{d_{2}}\right)$ is unstable.

Slower diffuser always prevails!

Theorem (DHMP)
If $d_{1}<d_{2}$, then $\left(\theta_{d_{1}}, 0\right)$ is globally asymp. stable, while $\left(0, \theta_{d_{2}}\right)$ is unstable.

Slower diffuser always prevails!

Theorem (DHMP)
If $d_{1}<d_{2}$, then $\left(\theta_{d_{1}}, 0\right)$ is globally asymp. stable, while $\left(0, \theta_{d_{2}}\right)$ is unstable.

- Open Problem: If there are 3 or more competing species involved, it is NOT KNOWN if the slowest diffuser would prevail.

Slower diffuser always prevails!

The proof consists of two steps:

- (i) $\left(\theta_{d_{1}}, 0\right)$ is asymp. stable and $\left(0, \theta_{d_{2}}\right)$ is unstable.
(ii) There is no other nonnegative s.s. than $(0,0)$.
(This step works for general n species.)

Slower diffuser always prevails!

The proof consists of two steps:

- (i) $\left(\theta_{d_{1}}, 0\right)$ is asymp. stable and ($0, \theta_{d_{2}}$) is unstable.
(ii) There is no other nonnegative s.s. than $(0,0)$.
(This step works for general n species.)
- To conclude from theory of monotone flow that $\left(\theta_{d_{1}}, 0\right)$ is globally asymp. stable. (Existence of connecting orbit.)
[This requires $n=2$ (2 species, 2×2 system)]

Homogeneous Environment - Constant Coefficients

Lotka-Volterra competition-diffusion system in homogeneous environment:

$$
\begin{cases}U_{t}=d_{1} \Delta U+U\left(a_{1}-b_{1} U-c_{1} V\right) & \text { in } \Omega \times(0, T) \\ V_{t}=d_{2} \Delta V+V\left(a_{2}-b_{2} U-c_{2} V\right) & \text { in } \Omega \times(0, T) \\ \partial_{\nu} U=\partial_{\nu} V=0 & \text { on } \partial \Omega \times(0, T)\end{cases}
$$

- a_{i} : intrinsic growth rate;

Homogeneous Environment - Constant Coefficients

Lotka-Volterra competition-diffusion system in homogeneous environment:

$$
\begin{cases}U_{t}=d_{1} \Delta U+U\left(a_{1}-b_{1} U-c_{1} V\right) & \text { in } \Omega \times(0, T) \\ V_{t}=d_{2} \Delta V+V\left(a_{2}-b_{2} U-c_{2} V\right) & \text { in } \Omega \times(0, T) \\ \partial_{\nu} U=\partial_{\nu} V=0 & \text { on } \partial \Omega \times(0, T)\end{cases}
$$

- a_{i} : intrinsic growth rate;
- b_{1}, c_{2} : intra-specific competition;

Homogeneous Environment - Constant Coefficients

Lotka-Volterra competition-diffusion system in homogeneous environment:

$$
\begin{cases}U_{t}=d_{1} \Delta U+U\left(a_{1}-b_{1} U-c_{1} V\right) & \text { in } \Omega \times(0, T) \\ V_{t}=d_{2} \Delta V+V\left(a_{2}-b_{2} U-c_{2} V\right) & \text { in } \Omega \times(0, T) \\ \partial_{\nu} U=\partial_{\nu} V=0 & \text { on } \partial \Omega \times(0, T)\end{cases}
$$

- a_{i} : intrinsic growth rate;
- b_{1}, c_{2} : intra-specific competition;
- b_{2}, c_{1} : inter-specific competition

Homogeneous Environment - Constant Coefficients

Lotka-Volterra competition-diffusion system in homogeneous environment:

$$
\begin{cases}U_{t}=d_{1} \Delta U+U\left(a_{1}-b_{1} U-c_{1} V\right) & \text { in } \Omega \times(0, T) \\ V_{t}=d_{2} \Delta V+V\left(a_{2}-b_{2} U-c_{2} V\right) & \text { in } \Omega \times(0, T) \\ \partial_{\nu} U=\partial_{\nu} V=0 & \text { on } \partial \Omega \times(0, T)\end{cases}
$$

- a_{i} : intrinsic growth rate;
- b_{1}, c_{2} : intra-specific competition;
- b_{2}, c_{1} : inter-specific competition are all positive constants

Homogeneous Environment - Constant Coefficients

Lotka-Volterra competition-diffusion system in homogeneous environment:

$$
\begin{cases}U_{t}=d_{1} \Delta U+U\left(a_{1}-b_{1} U-c_{1} V\right) & \text { in } \Omega \times(0, T) \\ V_{t}=d_{2} \Delta V+V\left(a_{2}-b_{2} U-c_{2} V\right) & \text { in } \Omega \times(0, T) \\ \partial_{\nu} U=\partial_{\nu} V=0 & \text { on } \partial \Omega \times(0, T)\end{cases}
$$

- a_{i} : intrinsic growth rate;
- b_{1}, c_{2} : intra-specific competition;
- b_{2}, c_{1} : inter-specific competition are all positive constants
- Weak competition:

Homogeneous Environment - Constant Coefficients

Lotka-Volterra competition-diffusion system in homogeneous environment:

$$
\begin{cases}U_{t}=d_{1} \Delta U+U\left(a_{1}-b_{1} U-c_{1} V\right) & \text { in } \Omega \times(0, T) \\ V_{t}=d_{2} \Delta V+V\left(a_{2}-b_{2} U-c_{2} V\right) & \text { in } \Omega \times(0, T) \\ \partial_{\nu} U=\partial_{\nu} V=0 & \text { on } \partial \Omega \times(0, T)\end{cases}
$$

- a_{i} : intrinsic growth rate;
- b_{1}, c_{2} : intra-specific competition;
- b_{2}, c_{1} : inter-specific competition are all positive constants
- Weak competition: $\frac{b_{1}}{b_{2}}>\frac{a_{1}}{a_{2}}>\frac{c_{1}}{c_{2}}$.

Homogeneous Environment - Constant Coefficients

Weak competition : $\frac{b_{1}}{b_{2}}>\frac{a_{1}}{a_{2}}>\frac{c_{1}}{c_{2}}$.

Homogeneous Environment - Constant Coefficients

Weak competition : $\frac{b_{1}}{b_{2}}>\frac{a_{1}}{a_{2}}>\frac{c_{1}}{c_{2}}$.

Four constant steady states: $(0,0),\left(\frac{a_{1}}{b_{1}}, 0\right),\left(0, \frac{a_{2}}{c_{2}}\right)$, and $\left(U^{*}, V^{*}\right)=\left(\frac{a_{1} c_{2}-a_{2} c_{1}}{b_{1} c_{2}-b_{2} c_{1}}, \frac{b_{1} a_{2}-b_{2} a_{1}}{b_{1} c_{2}-b_{2} c_{1}}\right)$

Homogeneous Environment - Constant Coefficients

- $\left(U^{*}, V^{*}\right)$ is globally asymptotically stable in $[U>0, V>0]$. (No nontrivial co-existence steady states.)

Homogeneous Environment - Constant Coefficients

- $\left(U^{*}, V^{*}\right)$ is globally asymptotically stable in $[U>0, V>0]$. (No nontrivial co-existence steady states.)

Proof.

Lyapunov functional [S.-B. Hsu (1977)]

$$
\begin{aligned}
& E(U, V)(t)= \\
& \int_{\Omega}\left[b_{2}\left(U-U^{*}-U^{*} \log \frac{U}{U^{*}}\right)+c_{1}\left(V-V^{*}-V^{*} \log \frac{V}{V^{*}}\right)\right] d x
\end{aligned}
$$

Then $\frac{d}{d t} E(U, V)(t) \leq 0 \forall t \geq 0$ and " $=$ " holds only when $U=U^{*}, V=V^{*}$.

Heterogeneous Environment

Consider $0<b, c<1$ (weak competition)

$$
\text { (1) } \begin{cases}d_{1} \Delta U+U(m(x)-U-c V)=0 & \text { in } \Omega \\ d_{2} \Delta V+V(m(x)-b U-V)=0 & \text { in } \Omega \\ \partial_{\nu} U=\partial_{\nu} V=0 & \text { on } \partial \Omega\end{cases}
$$

Theorem (Lou (2006))

There exists $b_{*}<1$ such that for all $b>b_{*}$, there exists $c^{*} \leq 1$ small such that if $c<c^{*},\left(\theta_{d_{1}}, 0\right)$ is globally asymp. stable for some $d_{1}<d_{2}$.

Heterogeneous Environment

Consider $0<b, c<1$ (weak competition)
(1) $\begin{cases}d_{1} \Delta U+U(m(x)-U-c V)=0 & \text { in } \Omega \\ d_{2} \Delta V+V(m(x)-b U-V)=0 & \text { in } \Omega \\ \partial_{\nu} U=\partial_{\nu} V=0 & \text { on } \partial \Omega\end{cases}$

Theorem (Lou (2006))

There exists $b_{*}<1$ such that for all $b>b_{*}$, there exists $c^{*} \leq 1$ small such that if $c<c^{*},\left(\theta_{d_{1}}, 0\right)$ is globally asymp. stable for some $d_{1}<d_{2}$.

Here

$$
b_{*}=\inf _{d>0} \int_{\Omega} m / \int_{\Omega} \theta_{d}
$$

In particular, for some $0<b, c<1$ and d_{1}, d_{2}, U will wipe out V, and coexistence is no longer possible even when the competition is weak!

- $b<b_{*} \Rightarrow\left(\theta_{d_{1}}, 0\right)$ unstable (regardless of d_{1}, d_{2}, c)
- $b<b_{*} \Rightarrow\left(\theta_{d_{1}}, 0\right)$ unstable (regardless of d_{1}, d_{2}, c)
- $b>b_{*} \Rightarrow\left(\theta_{d_{1}}, 0\right)$ stable for $d_{1} \in(\underline{d}, \bar{d})$ and $d_{2}>1 / \lambda\left(m-b \theta_{d_{1}}\right)$
- $b<b_{*} \Rightarrow\left(\theta_{d_{1}}, 0\right)$ unstable (regardless of $\left.d_{1}, d_{2}, c\right)$
- $b>b_{*} \Rightarrow\left(\theta_{d_{1}}, 0\right)$ stable for $d_{1} \in(\underline{d}, \bar{d})$ and $d_{2}>1 / \lambda\left(m-b \theta_{d_{1}}\right)$

- $b<b_{*} \Rightarrow\left(\theta_{d_{1}}, 0\right)$ unstable (regardless of $\left.d_{1}, d_{2}, c\right)$
- $b>b_{*} \Rightarrow\left(\theta_{d_{1}}, 0\right)$ stable for $d_{1} \in(\underline{d}, \bar{d})$ and $d_{2}>1 / \lambda\left(m-b \theta_{d_{1}}\right)$

- $b>b_{*}, c$ small, for above $d_{1}, d_{2} \Rightarrow$ no co-existence
- $b<b_{*} \Rightarrow\left(\theta_{d_{1}}, 0\right)$ unstable (regardless of $\left.d_{1}, d_{2}, c\right)$
- $b>b_{*} \Rightarrow\left(\theta_{d_{1}}, 0\right)$ stable for $d_{1} \in(\underline{d}, \bar{d})$ and $d_{2}>1 / \lambda\left(m-b \theta_{d_{1}}\right)$

- $b>b_{*}, c$ small, for above $d_{1}, d_{2} \Rightarrow$ no co-existence
- $\left(0, \theta_{d_{2}}\right)$ unstable if $d_{1}<d_{2}$ (independent of b, c)

Recent Progress [Lam and Ni]

Consider
(1) $\begin{cases}d_{1} \Delta U+U(m(x)-U-c V)=0 & \text { in } \Omega \\ d_{2} \Delta V+V(m(x)-b U-V)=0 & \text { in } \Omega \\ \partial_{\nu} U=\partial_{\nu} V=0 & \text { on } \partial \Omega\end{cases}$

Recent Progress [Lam and Ni]

Consider

(1) $\begin{cases}d_{1} \Delta U+U(m(x)-U-c V)=0 & \text { in } \Omega \\ d_{2} \Delta V+V(m(x)-b U-V)=0 & \text { in } \Omega \\ \partial_{\nu} U=\partial_{\nu} V=0 & \text { on } \partial \Omega\end{cases}$
(I) For any ϵ, $\exists \delta(\epsilon)>0$ s.t. for $1-\delta<b<1,0 \leq c \leq 1, \epsilon<d_{1}<1 / \epsilon$ and $d_{2} \geq d_{1}+\epsilon,\left(\theta_{d_{1}}, 0\right)$ is globally asymp. stable.

Recent Progress [Lam and Ni]

Consider
(1) $\begin{cases}d_{1} \Delta U+U(m(x)-U-c V)=0 & \text { in } \Omega \\ d_{2} \Delta V+V(m(x)-b U-V)=0 & \text { in } \Omega \\ \partial_{\nu} U=\partial_{\nu} V=0 & \text { on } \partial \Omega\end{cases}$
(I) For any ϵ, $\exists \delta(\epsilon)>0$ s.t. for $1-\delta<b<1,0 \leq c \leq 1, \epsilon<d_{1}<1 / \epsilon$ and $d_{2} \geq d_{1}+\epsilon,\left(\theta_{d_{1}}, 0\right)$ is globally asymp. stable.
Remark: Interesting that c could be bigger than b in (I).

Recent Progress [Lam and Ni]

Consider

$$
\text { (1) } \begin{cases}d_{1} \Delta U+U(m(x)-U-c V)=0 & \text { in } \Omega \\ d_{2} \Delta V+V(m(x)-b U-V)=0 & \text { in } \Omega \\ \partial_{\nu} U=\partial_{\nu} V=0 & \text { on } \partial \Omega\end{cases}
$$

(I) For any ϵ, $\exists \delta(\epsilon)>0$ s.t. for $1-\delta<b<1,0 \leq c \leq 1, \epsilon<d_{1}<1 / \epsilon$ and $d_{2} \geq d_{1}+\epsilon,\left(\theta_{d_{1}}, 0\right)$ is globally asymp. stable.

Remark: Interesting that c could be bigger than b in (I).
(II) For $0<b, c<1, \exists \epsilon>0$ s.t. if $\left|d_{1}-d_{2}\right|<\epsilon$ then \exists unique positive s.s. ($\tilde{U}, \tilde{V})$. Moreover, (\tilde{U}, \tilde{V}) is globally asymp. stable; and if $d_{1}, d_{2} \rightarrow d>0$, then

$$
(\tilde{U}, \tilde{V}) \rightarrow \frac{1}{1-b c}\binom{1-c}{1-b} \theta_{d}
$$

Globally Stable Coexistence S.S.

The region shaded blue represent the $\left(d_{1}, d_{2}\right)$ for which there exists a unique coexistence s.s. which is globally asymp. stable.)

Discussions: Fitness in terms of Diffusion Rate

Return to the single species

$$
\begin{cases}u_{t}=d \Delta u+u(m(x)-u) & \text { in } \Omega \times(0, T), \\ \partial_{\nu} u=0 & \text { on } \partial \Omega \times(0, T) .\end{cases}
$$

Discussions: Fitness in terms of Diffusion Rate

Return to the single species

$$
\begin{cases}u_{t}=d \Delta u+u(m(x)-u) & \text { in } \Omega \times(0, T), \\ \partial_{\nu} u=0 & \text { on } \partial \Omega \times(0, T) .\end{cases}
$$

- We define the "total fitness" of the unique s.s. θ_{d} as follows:

$$
F(d)=\int_{\Omega}\left|\theta_{d}-m\right|
$$

Conjecture: $\mathrm{F}(\mathrm{d})$ is monotonically increasing in $d>0$.

Discussions: Fitness in terms of Diffusion Rate

Return to the single species

$$
\begin{cases}u_{t}=d \Delta u+u(m(x)-u) & \text { in } \Omega \times(0, T), \\ \partial_{\nu} u=0 & \text { on } \partial \Omega \times(0, T) .\end{cases}
$$

- We define the "total fitness" of the unique s.s. θ_{d} as follows:

$$
F(d)=\int_{\Omega}\left|\theta_{d}-m\right|
$$

Conjecture: $\mathrm{F}(\mathrm{d})$ is monotonically increasing in $d>0$.

- Recall that $b_{*}=\inf _{d>0} \bar{m} / \overline{\theta_{d}}$.

Question: Is b_{*} bounded below by a positive constant indep of m ?

Discussions: Slower diffuser always prevails?

Consider a special case

```
(2)
\[
\begin{cases}U_{t}=d_{1} \Delta U+U(m(x)-U-b V) & \text { in } \Omega \times(0, T) \\ V_{t}=d_{2} \Delta V+V(m(x)-b U-V) & \text { in } \Omega \times(0, T) \\ \partial_{\nu} U=\partial_{\nu} V=0 & \text { on } \partial \Omega \times(0, T \\ U(x, 0)=U_{0}(x) \geq 0, V(x, 0)=V_{0}(x) \geq 0 & \text { in } \Omega\end{cases}
\]
```

where $b=1-\delta$ close to 1 . [Lam-Ni] indicates, U does not seem to fare better as d_{1} decreases from d_{2} to 0 .

Discussions: Slower diffuser always prevails?

Consider a special case

```
(2)
\[
\begin{cases}U_{t}=d_{1} \Delta U+U(m(x)-U-b V) & \text { in } \Omega \times(0, T) \\ V_{t}=d_{2} \Delta V+V(m(x)-b U-V) & \text { in } \Omega \times(0, T) \\ \partial_{\nu} U=\partial_{\nu} V=0 & \text { on } \partial \Omega \times(0,7 \\ U(x, 0)=U_{0}(x) \geq 0, V(x, 0)=V_{0}(x) \geq 0 & \text { in } \Omega\end{cases}
\]
```

where $b=1-\delta$ close to 1 . [Lam-Ni] indicates, U does not seem to fare better as d_{1} decreases from d_{2} to 0 .

Directed movements

In reality, few species move completely randomly. It is plausible that diffusion combined with directed movement will help the species maximize its chances of survival.

Directed movements

In reality, few species move completely randomly. It is plausible that diffusion combined with directed movement will help the species maximize its chances of survival.

Strategies?

Directed movements

Consider the following Lotka-Volterra competition system proposed by [Cantrell, Cosner and Lou (2006)] based on an earlier single equation model of [Belgacem and Cosner (1995)].
(3) $\begin{cases}U_{t}=\nabla \cdot\left(d_{1} \nabla U-\alpha U \nabla m\right)+U(m(x)-U-V) & \text { in } \Omega \times(0, T) \\ V_{t}=d_{2} \Delta V+V(m(x)-U-V) & \text { in } \Omega \times(0, T) \\ d_{1} \partial_{\nu} U-\alpha U \partial_{\nu} m=\partial_{\nu} V=0 & \text { in } \partial \Omega \times(0, T) \\ U(x, 0)=U_{0}(x) \geq 0, V(x, 0)=V_{0}(x) \geq 0 & \text { in } \Omega,\end{cases}$
where

Directed movements

Consider the following Lotka-Volterra competition system proposed by [Cantrell, Cosner and Lou (2006)] based on an earlier single equation model of [Belgacem and Cosner (1995)].
(3) $\begin{cases}U_{t}=\nabla \cdot\left(d_{1} \nabla U-\alpha U \nabla m\right)+U(m(x)-U-V) & \text { in } \Omega \times(0, T) \\ V_{t}=d_{2} \Delta V+V(m(x)-U-V) & \text { in } \Omega \times(0, T) \\ d_{1} \partial_{\nu} U-\alpha U \partial_{\nu} m=\partial_{\nu} V=0 & \text { on } \partial \Omega \times(0, T) \\ U(x, 0)=U_{0}(x) \geq 0, V(x, 0)=V_{0}(x) \geq 0 & \text { in } \Omega,\end{cases}$
where

- ∇ - divergence operator, ∇ - gradient operator.
- U is assumed to be "smarter" while V still disperses randomly.
- $\alpha \geq 0$ measures the strength of "directed" movement of U.
- No-flux boundary conditions imposed.

Directed movements

Consider the following Lotka-Volterra competition system proposed by [Cantrell, Cosner and Lou (2006)] based on an earlier single equation model of [Belgacem and Cosner (1995)].

$$
\begin{cases}U_{t}=\nabla \cdot\left(d_{1} \nabla U-\alpha U \nabla m\right)+U(m(x)-U-V) & \text { in } \Omega \times(0, T) \\ V_{t}=d_{2} \Delta V+V(m(x)-U-V) & \text { in } \Omega \times(0, T) \tag{3}\\ d_{1} \partial_{\nu} U-\alpha U \partial_{\nu} m=\partial_{\nu} V=0 & \text { on } \partial \Omega \times(0, T) \\ U(x, 0)=U_{0}(x) \geq 0, V(x, 0)=V_{0}(x) \geq 0 & \text { in } \Omega,\end{cases}
$$

where

- ∇ - - divergence operator, ∇ - gradient operator.
- U is assumed to be "smarter" while V still disperses randomly.
- $\alpha \geq 0$ measures the strength of "directed" movement of U.
- No-flux boundary conditions imposed.
- How will U and V compete?

Advection-Mediated Coexistence

- When $d_{1}<d_{2}$, the "slower diffuser" U always wipes out V while it is not much smarter than V (when $\alpha>0$ is small) [Cantrell, Cosner and Lou (2006)].

Advection-Mediated Coexistence

- When $d_{1}<d_{2}$, the "slower diffuser" U always wipes out V while it is not much smarter than V (when $\alpha>0$ is small) [Cantrell, Cosner and Lou (2006)].
- V always survives when U becomes "too smart" (when α large).

Advection-Mediated Coexistence

- When $d_{1}<d_{2}$, the "slower diffuser" U always wipes out V while it is not much smarter than V (when $\alpha>0$ is small) [Cantrell, Cosner and Lou (2006)].
- V always survives when U becomes "too smart" (when α large).

Theorem ([Cantrell, Cosner and Lou, (2007)])

Assume
(a) $\{$ critical points of $m\}$ has measure 0 ;
(b) $\exists x_{0} \in \bar{\Omega}$ s.t. $m\left(x_{0}\right)=\max _{\bar{\Omega}} m$ is a strict local max.
$\Rightarrow \forall d_{1}, d_{2}$, (3) has a stable coexistence s.s. $\left(U_{\alpha}, V_{\alpha}\right), U_{\alpha}>0, V_{\alpha}>0$ for every α large.

Advection-Mediated Coexistence

- When $d_{1}<d_{2}$, the "slower diffuser" U always wipes out V while it is not much smarter than V (when $\alpha>0$ is small) [Cantrell, Cosner and Lou (2006)].
- V always survives when U becomes "too smart" (when α large).

Theorem ([Cantrell, Cosner and Lou, (2007)])

Assume
(a) $\{$ critical points of $m\}$ has measure 0 ;
(b) $\exists x_{0} \in \bar{\Omega}$ s.t. $m\left(x_{0}\right)=\max _{\bar{\Omega}} m$ is a strict local max.
$\Rightarrow \forall d_{1}, d_{2}$, (3) has a stable coexistence s.s. $\left(U_{\alpha}, V_{\alpha}\right), U_{\alpha}>0, V_{\alpha}>0$ for every α large.

- Shape of $\left(U_{\alpha}, V_{\alpha}\right)$?

A Conjecture

In [Cantrell, Cosner and Lou (2007)], it is shown that whenever the set of critical points of m is of measure zero, then \forall s.s. (U_{α}, V_{α}) of (3),

$$
U_{\alpha} \rightarrow 0 \text { in } L^{2} \text { and } V_{\alpha} \rightarrow \theta_{d_{2}} \text { in } C^{1+\beta} \text { as } \alpha \rightarrow \infty .
$$

A Conjecture

In [Cantrell, Cosner and Lou (2007)], it is shown that whenever the set of critical points of m is of measure zero, then \forall s.s. $\left(U_{\alpha}, V_{\alpha}\right)$ of (3),

$$
U_{\alpha} \rightarrow 0 \text { in } L^{2} \text { and } V_{\alpha} \rightarrow \theta_{d_{2}} \text { in } C^{1+\beta} \text { as } \alpha \rightarrow \infty .
$$

Conjecture ([Cantrell, Cosner and Lou (2007)])

(3) has a unique coexistence s.s. $\left(U_{\alpha}, V_{\alpha}\right)$ which is globally asymp. stable, and, as $\alpha \rightarrow \infty, U_{\alpha}$ concentrates at all local maximum points of $m(x)$ in $\bar{\Omega}$.

In [X. Chen and Lou (2008)], important progress on the conjecture was made when m has a unique non-degenerate global maximum point.

Theorem (X. Chen and Lou (2008))
Suppose that m has a unique critical point x_{0} on $\bar{\Omega}$ which is a non-degenerate global max point, $x_{0} \in \Omega$ and $\partial_{\nu} m \leq 0$ on $\partial \Omega$. Then, as $\alpha \rightarrow \infty$,

In [X. Chen and Lou (2008)], important progress on the conjecture was made when m has a unique non-degenerate global maximum point.

Theorem (X. Chen and Lou (2008))

Suppose that m has a unique critical point x_{0} on $\bar{\Omega}$ which is a non-degenerate global max point, $x_{0} \in \Omega$ and $\partial_{\nu} m \leq 0$ on $\partial \Omega$. Then, as $\alpha \rightarrow \infty$,
(i) $V_{\alpha} \rightarrow \theta_{d_{2}}$ in $C^{1+\beta}(\bar{\Omega})$ and
(ii) $\left\|U_{\alpha} e^{\frac{\alpha}{2 d_{1}}\left(x-x_{0}\right)^{\top} D^{2} m\left(x_{0}\right)\left(x-x_{0}\right)}-2^{N / 2}\left[m\left(x_{0}\right)-\theta_{d_{2}}\left(x_{0}\right)\right]\right\|_{L \infty}(\Omega) \rightarrow 0$.

In [X. Chen and Lou (2008)], important progress on the conjecture was made when m has a unique non-degenerate global maximum point.

Theorem (X. Chen and Lou (2008))

Suppose that m has a unique critical point x_{0} on $\bar{\Omega}$ which is a non-degenerate global max point, $x_{0} \in \Omega$ and $\partial_{\nu} m \leq 0$ on $\partial \Omega$. Then, as $\alpha \rightarrow \infty$,
(i) $V_{\alpha} \rightarrow \theta_{d_{2}}$ in $C^{1+\beta}(\bar{\Omega})$ and
(ii) $\left\|U_{\alpha} e^{\frac{\alpha}{2 d_{1}}}\left(x-x_{0}\right)^{\top} D^{2} m\left(x_{0}\right)\left(x-x_{0}\right)-2^{N / 2}\left[m\left(x_{0}\right)-\theta_{d_{2}}\left(x_{0}\right)\right]\right\|_{L \infty(\Omega)} \rightarrow 0$.

The factor $2^{N / 2}\left[m\left(x_{0}\right)-\theta_{d_{2}}\left(x_{0}\right)\right]>0$ comes from

In [X. Chen and Lou (2008)], important progress on the conjecture was made when m has a unique non-degenerate global maximum point.

Theorem (X. Chen and Lou (2008))

Suppose that m has a unique critical point x_{0} on $\bar{\Omega}$ which is a non-degenerate global max point, $x_{0} \in \Omega$ and $\partial_{\nu} m \leq 0$ on $\partial \Omega$. Then, as $\alpha \rightarrow \infty$,
(i) $V_{\alpha} \rightarrow \theta_{d_{2}}$ in $C^{1+\beta}(\bar{\Omega})$ and
(ii) $\left\|U_{\alpha} e^{\frac{\alpha}{2 d_{1}}}\left(x-x_{0}\right)^{\top} D^{2} m\left(x_{0}\right)\left(x-x_{0}\right)-2^{N / 2}\left[m\left(x_{0}\right)-\theta_{d_{2}}\left(x_{0}\right)\right]\right\|_{L \infty(\Omega)} \rightarrow 0$.

The factor $2^{N / 2}\left[m\left(x_{0}\right)-\theta_{d_{2}}\left(x_{0}\right)\right]>0$ comes from

- $U_{\alpha}(x) \sim e^{\frac{\alpha}{2 d_{1}}\left(x-x_{0}\right)^{T} D^{2} m\left(x_{0}\right)\left(x-x_{0}\right)}$ at x_{0},

In [X. Chen and Lou (2008)], important progress on the conjecture was made when m has a unique non-degenerate global maximum point.

Theorem (X. Chen and Lou (2008))

Suppose that m has a unique critical point x_{0} on $\bar{\Omega}$ which is a non-degenerate global max point, $x_{0} \in \Omega$ and $\partial_{\nu} m \leq 0$ on $\partial \Omega$. Then, as $\alpha \rightarrow \infty$,
(i) $V_{\alpha} \rightarrow \theta_{d_{2}}$ in $C^{1+\beta}(\bar{\Omega})$ and
(ii) $\left\|U_{\alpha} e^{\frac{\alpha}{\alpha_{1}}\left(x-x_{0}\right)^{\top} D^{2} m\left(x_{0}\right)\left(x-x_{0}\right)}-2^{N / 2}\left[m\left(x_{0}\right)-\theta_{d_{2}}\left(x_{0}\right)\right]\right\|_{L \infty(\Omega)} \rightarrow 0$.

The factor $2^{N / 2}\left[m\left(x_{0}\right)-\theta_{d_{2}}\left(x_{0}\right)\right]>0$ comes from

- $U_{\alpha}(x) \sim e^{\frac{\alpha}{2 d_{1}}\left(x-x_{0}\right)^{\top} D^{2} m\left(x_{0}\right)\left(x-x_{0}\right)}$ at x_{0},
- the integral constraint $\int_{\Omega} U_{\alpha}\left(m-U_{\alpha}-V_{\alpha}\right)=0$.

For general m, the profile of U_{α} in the Conjecture has been determined in the case $N=1$.
$\Omega=(-1,1), \Sigma=\{$ all positive local maximum points of m in $\bar{\Omega}\}$
Theorem ([Lam and Ni (2010)])
Suppose $\Sigma \subseteq(-1,1)$ with $x m^{\prime}(x) \leq 0$ at $x= \pm 1$, and that all critical points of m are non-degenerate. Let $\left(U_{\alpha}, V_{\alpha}\right)$ be a positive s.s. of (3). Then as $\alpha \rightarrow \infty$,

For general m, the profile of U_{α} in the Conjecture has been determined in the case $N=1$.
$\Omega=(-1,1), \Sigma=\{$ all positive local maximum points of m in $\bar{\Omega}\}$

Theorem ([Lam and Ni (2010)])

Suppose $\Sigma \subseteq(-1,1)$ with $x m^{\prime}(x) \leq 0$ at $x= \pm 1$, and that all critical points of m are non-degenerate. Let $\left(U_{\alpha}, V_{\alpha}\right)$ be a positive s.s. of (3).
Then as $\alpha \rightarrow \infty$,
(i) $V_{\alpha} \rightarrow \theta_{d_{2}}$ in $C^{1+\beta}(\bar{\Omega})$,

For general m, the profile of U_{α} in the Conjecture has been determined in the case $N=1$.
$\Omega=(-1,1), \Sigma=\{$ all positive local maximum points of m in $\bar{\Omega}\}$

Theorem ([Lam and Ni (2010)])

Suppose $\Sigma \subseteq(-1,1)$ with $x m^{\prime}(x) \leq 0$ at $x= \pm 1$, and that all critical points of m are non-degenerate. Let $\left(U_{\alpha}, V_{\alpha}\right)$ be a positive s.s. of (3). Then as $\alpha \rightarrow \infty$,
(i) $V_{\alpha} \rightarrow \theta_{d_{2}}$ in $C^{1+\beta}(\bar{\Omega})$,
(ii) for any $x_{0} \in \Sigma$ and any $r>0$ small

$$
\left\|U_{\alpha}-\max \left\{\sqrt{2}\left(m-\theta_{d_{2}}\right)\left(x_{0}\right), 0\right\} e^{\frac{\alpha}{2 d_{1}} m^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}}\right\|_{L \infty\left(B_{r}\left(x_{0}\right)\right)} \rightarrow 0
$$

For general m, the profile of U_{α} in the Conjecture has been determined in the case $N=1$.
$\Omega=(-1,1), \Sigma=\{$ all positive local maximum points of m in $\bar{\Omega}\}$

Theorem ([Lam and Ni (2010)])

Suppose $\Sigma \subseteq(-1,1)$ with $x m^{\prime}(x) \leq 0$ at $x= \pm 1$, and that all critical points of m are non-degenerate. Let $\left(U_{\alpha}, V_{\alpha}\right)$ be a positive s.s. of (3). Then as $\alpha \rightarrow \infty$,
(i) $V_{\alpha} \rightarrow \theta_{d_{2}}$ in $C^{1+\beta}(\bar{\Omega})$,
(ii) for any $x_{0} \in \Sigma$ and any $r>0$ small

$$
\left\|U_{\alpha}-\max \left\{\sqrt{2}\left(m-\theta_{d_{2}}\right)\left(x_{0}\right), 0\right\} e^{\frac{\alpha}{2 d_{1}} m^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}}\right\|_{L^{\infty}\left(B_{r}\left(x_{0}\right)\right)} \rightarrow 0 ;
$$

(iii) for any compact subset K of $[-1,1] \backslash \Sigma, \quad U_{\alpha} \rightarrow 0 \quad$ in K uniformly and exponentially.

For general m, the profile of U_{α} in the Conjecture has been determined in the case $N=1$.
$\Omega=(-1,1), \Sigma=\{$ all positive local maximum points of m in $\bar{\Omega}\}$

Theorem ([Lam and Ni (2010)])

Suppose $\Sigma \subseteq(-1,1)$ with $x m^{\prime}(x) \leq 0$ at $x= \pm 1$, and that all critical points of m are non-degenerate. Let $\left(U_{\alpha}, V_{\alpha}\right)$ be a positive s.s. of (3).
Then as $\alpha \rightarrow \infty$,
(i) $V_{\alpha} \rightarrow \theta_{d_{2}}$ in $C^{1+\beta}(\bar{\Omega})$,
(ii) for any $x_{0} \in \Sigma$ and any $r>0$ small

$$
\left\|U_{\alpha}-\max \left\{\sqrt{2}\left(m-\theta_{d_{2}}\right)\left(x_{0}\right), 0\right\} e^{\frac{\alpha}{2 d_{1}} m^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}}\right\|_{L^{\infty}\left(B_{r}\left(x_{0}\right)\right)} \rightarrow 0 ;
$$

(iii) for any compact subset K of $[-1,1] \backslash \Sigma, \quad U_{\alpha} \rightarrow 0 \quad$ in K uniformly and exponentially.

It turns out that the Conjecture needs to be modified slightly.

Directed movements

- U will NOT survive at those local max. pts. of m where $m \leq \theta_{d_{2}}$!
- i.e. local max pts. of m could be traps for U if m is less than or equal to $\theta_{d_{2}}$ there!

Higher dimensional case

Recently, a new argument that works for higher dimensions is found. Recall $\Sigma=\{$ positive local max. pts. of $m(x)$ in $\bar{\Omega}\}$

Higher dimensional case

Recently, a new argument that works for higher dimensions is found. Recall $\Sigma=\{$ positive local max. pts. of $m(x)$ in $\bar{\Omega}\}$

Theorem ([Lam (2011b)])
Assume $\Sigma \subseteq \Omega$ with $\partial_{\nu} m \leq 0$ on $\partial \Omega$, and that all critical points of m are non-degenerate.

Higher dimensional case

Recently, a new argument that works for higher dimensions is found. Recall $\Sigma=\{$ positive local max. pts. of $m(x)$ in $\bar{\Omega}\}$

Theorem ([Lam (2011b)])

Assume $\Sigma \subseteq \Omega$ with $\partial_{\nu} m \leq 0$ on $\partial \Omega$, and that all critical points of m are non-degenerate. Moreover, assume $\Delta m\left(x_{0}\right)>0$ whenever x_{0} is a saddle point of m. Let $\left(U_{\alpha}, V_{\alpha}\right)$ be a positive s.s. of (3).
Then as $\alpha \rightarrow \infty$,

Higher dimensional case

Recently, a new argument that works for higher dimensions is found. Recall $\Sigma=\{$ positive local max. pts. of $m(x)$ in $\bar{\Omega}\}$

Theorem ([Lam (2011b)])

Assume $\Sigma \subseteq \Omega$ with $\partial_{\nu} m \leq 0$ on $\partial \Omega$, and that all critical points of m are non-degenerate. Moreover, assume $\Delta m\left(x_{0}\right)>0$ whenever x_{0} is a saddle point of m. Let $\left(U_{\alpha}, V_{\alpha}\right)$ be a positive s.s. of (3).

Then as $\alpha \rightarrow \infty$,
(i) $V_{\alpha} \rightarrow \theta_{d_{2}}$ in $C^{1+\beta}(\bar{\Omega})$ for any $\beta \in(0,1)$;
(ii) for any $x_{0} \in \Sigma$ and any $r>0$ small
$\left\|U_{\alpha}-\max \left\{2^{N / 2}\left(m-\theta_{d_{2}}\right)\left(x_{0}\right), 0\right\} e^{\frac{\alpha}{2 d_{1}}\left(x-x_{0}\right)^{T} D^{2} m\left(x_{0}\right)\left(x-x_{0}\right)}\right\|_{L^{\infty}\left(B_{r}\left(x_{0}\right)\right)} \rightarrow 0$;
(iii) for any compact subset K of $\Omega \backslash \Sigma, U_{\alpha} \rightarrow 0$ in K uniformly and exponentially.

Higher dimensional case

The proof has two main ingredients.

Higher dimensional case

The proof has two main ingredients.

- L^{∞} estimate on U_{α} independent of α.

Higher dimensional case

The proof has two main ingredients.

- L^{∞} estimate on U_{α} independent of α.
- A Liouville-type theorem concerning the limiting problem near local max of m.

A Liouville-type theorem

Theorem (Lam)
Let B be a symmetric positive-definite $N \times N$ matrix and $0<\sigma \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{N}\right)$ such that for some $R_{0}>0$,

$$
\sigma^{2}=e^{-y^{\top} B y} \quad \text { for all } y \in R^{N} \backslash B_{R_{0}}(0),
$$

then every nonnegative weak solution w to

$$
\begin{equation*}
\nabla \cdot\left(\sigma^{2} \nabla w\right)=0 \text { in } R^{N}, \tag{4}
\end{equation*}
$$

is a constant.

A Liouville-type theorem

Theorem (Lam)

Let B be a symmetric positive-definite $N \times N$ matrix and $0<\sigma \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{N}\right)$ such that for some $R_{0}>0$,

$$
\sigma^{2}=e^{-y^{\top} B y} \quad \text { for all } y \in R^{N} \backslash B_{R_{0}}(0),
$$

then every nonnegative weak solution w to

$$
\begin{equation*}
\nabla \cdot\left(\sigma^{2} \nabla w\right)=0 \text { in } R^{N}, \tag{4}
\end{equation*}
$$

is a constant.

- In our original problem, at each local maximum point x_{0}, rescale
$x=x_{0}+\sqrt{d_{1} / \alpha} y$ and $w=e^{\frac{\alpha}{d_{1}}\left[m\left(x_{0}\right)-m(x)\right]} U_{\alpha}$, the problem becomes
$\nabla \cdot\left(e^{\frac{\alpha}{d_{1}}\left[m(x)-m\left(x_{0}\right)\right]} \nabla w\right)+U(m-U-V) \frac{d_{1}}{\alpha}=0 \rightarrow \nabla \cdot\left(e^{\frac{1}{2} y^{\top} D^{2} m\left(x_{0}\right) y} \nabla w\right)=0$

A Liouville-type theorem

Theorem (Lam)

Let B be a symmetric positive-definite $N \times N$ matrix and $0<\sigma \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{N}\right)$ such that for some $R_{0}>0$,

$$
\sigma^{2}=e^{-y^{\top} B y} \quad \text { for all } y \in R^{N} \backslash B_{R_{0}}(0),
$$

then every nonnegative weak solution w to

$$
\begin{equation*}
\nabla \cdot\left(\sigma^{2} \nabla w\right)=0 \text { in } R^{N}, \tag{4}
\end{equation*}
$$

is a constant.

- No extra conditions on w is imposed except $w \in W_{l o c}^{1,2}\left(\mathbb{R}^{N}\right)$
- In general, some kind of asymptotic behavior is needed for this kind of result to hold; e.g. it is proved in [Berestycki, Caffarelli and Nirenberg (1997)] that weak solution of (4) is a constant if $\int_{B_{R}} \sigma^{2} w^{2} \leq O\left(R^{2}\right)$.

Concluding Remarks

In fact, the following more general equation is considered

$$
\begin{cases}U_{t}=\nabla \cdot\left[d_{1} \nabla U-\alpha U \nabla p\right]+U(m-U-V) & \text { in } \Omega \times(0, T) \\ V_{t}=d_{2} \Delta V+V(m-U-V) & \text { in } \Omega \times(0, T) \\ \partial_{\nu} U-\alpha U \partial_{\nu} p=\partial_{\nu} V=0 & \text { on } \partial \Omega \times(0, T)\end{cases}
$$

where $p(x)=\chi(m(x))$ for some increasing function χ.

Concluding Remarks

In fact, the following more general equation is considered

$$
\begin{cases}U_{t}=\nabla \cdot\left[d_{1} \nabla U-\alpha U \nabla p\right]+U(m-U-V) & \text { in } \Omega \times(0, T) \\ V_{t}=d_{2} \Delta V+V(m-U-V) & \text { in } \Omega \times(0, T) \\ \partial_{\nu} U-\alpha U \partial_{\nu} p=\partial_{\nu} V=0 & \text { on } \partial \Omega \times(0, T)\end{cases}
$$

where $p(x)=\chi(m(x))$ for some increasing function χ.

- In particular, the different roles played by p and m are understood more clearly.

Concluding Remarks

In fact, the following more general equation is considered

$$
\begin{cases}U_{t}=\nabla \cdot\left[d_{1} \nabla U-\alpha U \nabla p\right]+U(m-U-V) & \text { in } \Omega \times(0, T) \\ V_{t}=d_{2} \Delta V+V(m-U-V) & \text { in } \Omega \times(0, T) \\ \partial_{\nu} U-\alpha U \partial_{\nu} p=\partial_{\nu} V=0 & \text { on } \partial \Omega \times(0, T)\end{cases}
$$

where $p(x)=\chi(m(x))$ for some increasing function χ.

- In particular, the different roles played by p and m are understood more clearly.
- Roughly speaking, p is responsible for the shape of the concentrated peaks, while the values of m on Σ determines the height of those peaks.

Concluding Remarks

In fact, the following more general equation is considered

$$
\begin{cases}U_{t}=\nabla \cdot\left[d_{1} \nabla U-\alpha U \nabla p\right]+U(m-U-V) & \text { in } \Omega \times(0, T) \\ V_{t}=d_{2} \Delta V+V(m-U-V) & \text { in } \Omega \times(0, T) \\ \partial_{\nu} U-\alpha U \partial_{\nu} p=\partial_{\nu} V=0 & \text { on } \partial \Omega \times(0, T)\end{cases}
$$

where $p(x)=\chi(m(x))$ for some increasing function χ.

- In particular, the different roles played by p and m are understood more clearly.
- Roughly speaking, p is responsible for the shape of the concentrated peaks, while the values of m on Σ determines the height of those peaks.
- General m ?

Dropping the Hypothesis on m

Question: What if we drop the assumption that the set of critical points of m is of measure 0 ?

Dropping the Hypothesis on m

Question: What if we drop the assumption that the set of critical points of m is of measure 0 ?

Dropping the Hypothesis on m

Question: What if we drop the assumption that the set of critical points of m is of measure 0 ?

Example [Lam and Ni]: For α large, (3) has at least one stable positive s.s. $\left(U_{\alpha}, V_{\alpha}\right)$. By passing to a subsequence if necessary, any $\left(U_{\alpha}, V_{\alpha}\right)$ must converge to $\left(U_{0}, V_{0}\right)$ which satisfies

$$
\begin{cases}d_{1} U^{\prime \prime}+U(1-U-V)=0 & \text { in }\left(-\frac{1}{2}, \frac{1}{2}\right), \\ d_{2} V^{\prime \prime}+V(m(x)-U-V)=0 & \text { in }(-1,1), \\ U^{\prime}\left(\pm \frac{1}{2}\right)=0, V^{\prime}(\pm 1)=0 . & \end{cases}
$$

Related results

- The dynamics of the following system has been studied in [Chen, Hambrock and Lou (2009)](m has single interior peak) and [Bezuglyy and Lou (2009)](m has multi-peaks case).

$$
\begin{cases}U_{t}=\nabla \cdot\left(d_{1} \nabla U-\alpha U \nabla m\right)+(m-U-V) U & \text { in } \Omega \times(0, \infty), \\ V & =\nabla \cdot\left(d_{2} \nabla V-\beta V \nabla m\right)+(m-U-V) V \\ \text { in } \Omega \times(0, \infty), \\ d_{1} \partial_{\nu} U-\alpha U \partial_{\nu} m=d_{2} \partial_{\nu} V-\beta V \partial_{\nu} m=0 & \text { on } \partial \Omega \times(0, \infty)\end{cases}
$$

- In particular, it is proved in some cases that U actually goes extinct when V has a fixed large biased movement.
- Biologically: Selection is against excessive directed-movement.

Related results

- In [Cantrell, Cosner and Lou (2009)], a single equation of u incorporating biased movement and population pressure (or self-diffusion) is considered.

$$
\begin{cases}u_{t}=\nabla \cdot[d \nabla u-\alpha u \nabla(m-u)]+u(m-u) & \text { in } \Omega \times(0, T) \\ d_{1} \partial_{\nu} u-\alpha u \partial_{\nu}(m-u)=0 & \text { on } \partial \Omega \times(0, T)\end{cases}
$$

Related results

- In [Cantrell, Cosner and Lou (2009)], a single equation of u incorporating biased movement and population pressure (or self-diffusion) is considered.

$$
\begin{cases}u_{t}=\nabla \cdot[d \nabla u-\alpha u \nabla(m-u)]+u(m-u) & \text { in } \Omega \times(0, T) \\ d_{1} \partial_{\nu} u-\alpha u \partial_{\nu}(m-u)=0 & \text { on } \partial \Omega \times(0, T)\end{cases}
$$

- Apart from random diffusion, u moves up the gradient of "fitness" ($m-u$), and tends to match the carrying capacity $m(x)$ perfectly.

Related results

- In [Cantrell, Cosner and Lou (2009)], a single equation of u incorporating biased movement and population pressure (or self-diffusion) is considered.

$$
\begin{cases}u_{t}=\nabla \cdot[d \nabla u-\alpha u \nabla(m-u)]+u(m-u) & \text { in } \Omega \times(0, T) \\ d_{1} \partial_{\nu} u-\alpha u \partial_{\nu}(m-u)=0 & \text { on } \partial \Omega \times(0, T)\end{cases}
$$

- Apart from random diffusion, u moves up the gradient of "fitness" ($m-u$), and tends to match the carrying capacity $m(x)$ perfectly.
- The dispersal term can also be written as $\Delta\left(d_{1} u+\alpha u^{2} / 2\right)-\alpha u \nabla m$, representing a nonlinear form of diffusion which avoids crowding.

Related results

- In [Cantrell, Cosner and Lou (2009)], a single equation of u incorporating biased movement and population pressure (or self-diffusion) is considered.

$$
\begin{cases}u_{t}=\nabla \cdot[d \nabla u-\alpha u \nabla(m-u)]+u(m-u) & \text { in } \Omega \times(0, T) \\ d_{1} \partial_{\nu} u-\alpha u \partial_{\nu}(m-u)=0 & \text { on } \partial \Omega \times(0, T)\end{cases}
$$

- Apart from random diffusion, u moves up the gradient of "fitness" ($m-u$), and tends to match the carrying capacity $m(x)$ perfectly.
- The dispersal term can also be written as $\Delta\left(d_{1} u+\alpha u^{2} / 2\right)-\alpha u \nabla m$, representing a nonlinear form of diffusion which avoids crowding.
- It is proved that the unique s.s. approaches m^{+}as $\alpha \rightarrow \infty$.

Future directions

What is the best strategy for survival/competition?

Future directions

What is the best strategy for survival/competition?

$$
\begin{cases}U_{t}=\nabla \cdot\left[d_{1} \nabla U-\alpha U \nabla F(x, U, V)\right]+U F(x, U, V) & \text { in } \Omega \times(0, T), \\ V_{t}=\nabla \cdot\left[d_{2} \nabla V-\beta V \nabla \tilde{F}(x, U, V)\right]+V F(x, U, V) & \text { in } \Omega \times(0, T), \\ \text { with no-flux boundary conditions. }\end{cases}
$$

Future directions

What is the best strategy for survival/competition?
$\begin{cases}U_{t}=\nabla \cdot\left[d_{1} \nabla U-\alpha U \nabla F(x, U, V)\right]+U F(x, U, V) & \text { in } \Omega \times(0, T), \\ V_{t}=\nabla \cdot\left[d_{2} \nabla V-\beta V \nabla \tilde{F}(x, U, V)\right]+V F(x, U, V) & \text { in } \Omega \times(0, T), \\ \text { with no-flux boundary conditions. } & \end{cases}$

- U tends to optimize the fitness/available resources.

Future directions

What is the best strategy for survival/competition?
$\begin{cases}U_{t}=\nabla \cdot\left[d_{1} \nabla U-\alpha U \nabla F(x, U, V)\right]+U F(x, U, V) & \text { in } \Omega \times(0, T), \\ V_{t}=\nabla \cdot\left[d_{2} \nabla V-\beta V \nabla \tilde{F}(x, U, V)\right]+V F(x, U, V) & \text { in } \Omega \times(0, T), \\ \text { with no-flux boundary conditions. } & \end{cases}$

- U tends to optimize the fitness/available resources.
- Question: Will U wipe V out if α is large?

Future directions

What is the best strategy for survival/competition?
$\begin{cases}U_{t}=\nabla \cdot\left[d_{1} \nabla U-\alpha U \nabla F(x, U, V)\right]+U F(x, U, V) & \text { in } \Omega \times(0, T), \\ V_{t}=\nabla \cdot\left[d_{2} \nabla V-\beta V \nabla \tilde{F}(x, U, V)\right]+V F(x, U, V) & \text { in } \Omega \times(0, T), \\ \text { with no-flux boundary conditions. } & \end{cases}$

- U tends to optimize the fitness/available resources.
- Question: Will U wipe V out if α is large?
- Cross-diffusion?

Future directions

What is the best strategy for survival/competition?
$\begin{cases}U_{t}=\nabla \cdot\left[d_{1} \nabla U-\alpha U \nabla F(x, U, V)\right]+U F(x, U, V) & \text { in } \Omega \times(0, T), \\ V_{t}=\nabla \cdot\left[d_{2} \nabla V-\beta V \nabla \tilde{F}(x, U, V)\right]+V F(x, U, V) & \text { in } \Omega \times(0, T), \\ \text { with no-flux boundary conditions. } & \end{cases}$

- U tends to optimize the fitness/available resources.
- Question: Will U wipe V out if α is large?
- Cross-diffusion?- Yaping Wu and her group, Yotsutani and his group

