Reaction diffusion equations in heterogeneous media Propagation in unbounded domains

Henri Berestycki

CAMS (Centre d'analyse et mathématique sociales) EHESS – Paris and University of Chicago

BANFF Banff July 5, 2011

Reaction-diffusion equ. in heterogeneous media

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Equation

$$u_t = \Delta u + f(u)$$
 in \mathbb{R}^N ,

with *f* of Fisher-KPP type.

Travelling waves, spreading properties... KPP, Aronson-Weinberger, Fife - McLeod Planar travelling fronts:

$$u(t,x) = \phi(x \cdot \vec{e} - ct)$$
 where $\phi : \mathbb{R} \to \mathbb{R}, \ |\vec{e}| = 1$

$$\begin{cases} -\phi'' - c\phi' &= f(\phi) \\ \phi(-\infty) = 1, \quad \phi(+\infty) &= 0 \end{cases}$$

< ロ > < 同 > < 三 > < 三 >

Equation

$$u_t = \Delta u + f(u)$$
 in \mathbb{R}^N ,

with *f* of Fisher-KPP type.

Travelling waves, spreading properties... KPP, Aronson-Weinberger, Fife - McLeod Planar travelling fronts:

$$u(t,x) = \phi(x \cdot ec{e} - ct)$$
 where $\phi : \mathbb{R} o \mathbb{R}, \ |ec{e}| = 1$

$$\begin{cases} -\phi'' - c\phi' &= f(\phi) \\ \phi(-\infty) = 1, \quad \phi(+\infty) &= 0 \end{cases}$$

< ロ > < 同 > < 三 > < 三 >

Equation

$$u_t = \Delta u + f(u)$$
 in \mathbb{R}^N ,

with *f* of Fisher-KPP type. Travelling waves, spreading properties... KPP, Aronson-Weinberger, Fife - McLeod Planar travelling fronts:

$$u(t,x) = \phi(x \cdot ec{e} - ct)$$
 where $\phi : \mathbb{R} o \mathbb{R}, \ |ec{e}| = 1$

$$\begin{cases} -\phi'' - c\phi' &= f(\phi) \\ \phi(-\infty) = 1, \quad \phi(+\infty) &= 0 \end{cases}$$

- 4 同 1 4 三 1 4 三 1

Equation

$$u_t = \Delta u + f(u)$$
 in \mathbb{R}^N ,

with *f* of Fisher-KPP type. Travelling waves, spreading properties... KPP, Aronson-Weinberger, Fife - McLeod Planar travelling fronts:

$$u(t,x) = \phi(x \cdot \vec{e} - ct)$$
 where $\phi : \mathbb{R} \to \mathbb{R}, \ |\vec{e}| = 1$

$$\begin{cases} -\phi'' - c\phi' &= f(\phi) \\ \phi(-\infty) = 1, \quad \phi(+\infty) &= 0 \end{cases}$$

< ロ > < 同 > < 三 > < 三 >

Equation

$$u_t = \Delta u + f(u)$$
 in \mathbb{R}^N ,

with *f* of Fisher-KPP type. Travelling waves, spreading properties... KPP, Aronson-Weinberger, Fife - McLeod Planar travelling fronts:

$$u(t,x) = \phi(x \cdot \vec{e} - ct)$$
 where $\phi : \mathbb{R} \to \mathbb{R}, \ |\vec{e}| = 1$

$$\left\{ egin{array}{ccc} -\phi^{\prime\prime} & -c\phi^{\prime} & = & f(\phi) \ \phi(-\infty) = 1, \quad \phi(+\infty) & = & 0 \end{array}
ight.$$

| 4 周 ト 4 ヨ ト 4 ヨ ト

Spreading properties refer to Cauchy problem

$$\begin{cases} u_t = \Delta u + f(u) \text{ in } \mathbb{R}^n \\ u(0,x) = u_0(x) \end{cases}$$

with $u_0 \ge 0, u_0 \not\equiv 0$ having compact support.

• Propagation: $u(t,x) \rightarrow 1$ as $t \rightarrow \infty$ (say f(1) = 0),

• Asymptotic speed of spreading: c^* such that for all $c < c^*$

$$\sup_{|x|\leq ct} |u(t,x)-1| o 0$$
 as $t o \infty$

and for all c > c*

$$\sup_{|x|\geq ct} u(t,x) o 0$$
 as $t o \infty$

Spreading properties refer to Cauchy problem

4

$$\begin{cases} u_t = \Delta u + f(u) \text{ in } \mathbb{R}^n \\ u(0,x) = u_0(x) \end{cases}$$

with $u_0 \ge 0, u_0 \not\equiv 0$ having compact support.

- Propagation: $u(t,x) \rightarrow 1$ as $t \rightarrow \infty$ (say f(1) = 0),
- Asymptotic speed of spreading: c^* such that for all $c < c^*$

$$\sup_{|x|\leq ct} |u(t,x)-1| o 0$$
 as $t o\infty$

and for all c > c*

$$\sup_{|x|\geq ct} u(t,x) o 0$$
 as $t o \infty$

In the Fisher - KPP case, the asympt. speed of spreading is $c^* = 2\sqrt{f'(0)}$ (Aronson-Weinberger).

Reaction-diffusion equ. in heterogeneous media

Spreading properties refer to Cauchy problem

$$\begin{cases} u_t = \Delta u + f(u) \text{ in } \mathbb{R}^n \\ u(0,x) = u_0(x) \end{cases}$$

with $u_0 \ge 0, u_0 \not\equiv 0$ having compact support.

- Propagation: $u(t,x) \rightarrow 1$ as $t \rightarrow \infty$ (say f(1) = 0),
- Asymptotic speed of spreading: c^* such that for all $c < c^*$

$$\sup_{|x|\leq ct} |u(t,x)-1| o 0$$
 as $t o\infty$

and for all c > c*

$$\sup_{|x|\geq ct} u(t,x) o 0$$
 as $t o \infty$

Spreading properties refer to Cauchy problem

$$\begin{cases} u_t = \Delta u + f(u) \text{ in } \mathbb{R}^{\Lambda} \\ u(0, x) = u_0(x) \end{cases}$$

with $u_0 \ge 0, u_0 \not\equiv 0$ having compact support.

- Propagation: $u(t,x) \rightarrow 1$ as $t \rightarrow \infty$ (say f(1) = 0),
- Asymptotic speed of spreading: c^* such that for all $c < c^*$

$$\sup_{|x|\leq ct} |u(t,x)-1| o 0$$
 as $t o \infty$

and for all c > c*

$$\sup_{|x| \ge ct} u(t,x) o 0$$
 as $t o \infty$

Spreading properties refer to Cauchy problem

$$\begin{cases} u_t = \Delta u + f(u) \text{ in } \mathbb{R}^{\Lambda} \\ u(0, x) = u_0(x) \end{cases}$$

with $u_0 \ge 0, u_0 \not\equiv 0$ having compact support.

- Propagation: $u(t,x) \rightarrow 1$ as $t \rightarrow \infty$ (say f(1) = 0),
- Asymptotic speed of spreading: c^* such that for all $c < c^*$

$$\sup_{|x|\leq ct} |u(t,x)-1| o 0$$
 as $t o \infty$

and for all c > c*

$$\sup_{|x| \ge ct} u(t,x) o 0$$
 as $t o \infty$

Homogeneous equation in "non homogeneous geometry"

$$\begin{cases} u_t = \Delta u + f(u) & \text{in } \Omega, \\ \nu \cdot \nabla u = 0 & \text{on } \partial \Omega \end{cases}$$

General (non homogeneous) equation with coefficients depending on t, x:

$$\begin{cases} u_t = \nabla(A(t,x)\nabla u) + q(t,x) \cdot \nabla u + f(t,x,u) & \text{in } \Omega, \\ A(t,x)\nabla u \cdot \nu = 0 & \text{on } \partial\Omega \end{cases}$$

< ロ > < 同 > < 三 > < 三 >

Homogeneous equation in "non homogeneous geometry"

$$\begin{cases} u_t = \Delta u + f(u) & \text{in } \Omega, \\ \nu \cdot \nabla u = 0 & \text{on } \partial \Omega \end{cases}$$

General (non homogeneous) equation with coefficients depending on t, x:

$$\begin{cases} u_t = \nabla(A(t,x)\nabla u) + q(t,x) \cdot \nabla u + f(t,x,u) & \text{in } \Omega, \\ A(t,x)\nabla u \cdot \nu = 0 & \text{on } \partial\Omega \end{cases}$$

Homogeneous equation in "non homogeneous geometry"

$$\begin{cases} u_t = \Delta u + f(u) & \text{in } \Omega, \\ \nu \cdot \nabla u = 0 & \text{on } \partial \Omega \end{cases}$$

General (non homogeneous) equation with coefficients depending on t, x:

$$\begin{cases} u_t = \nabla(A(t,x)\nabla u) + q(t,x) \cdot \nabla u + f(t,x,u) & \text{in } \Omega, \\ A(t,x)\nabla u \cdot \nu = 0 & \text{on } \partial\Omega \end{cases}$$

イロト 不得 トイヨト イヨト 二日

Homogeneous equation in "non homogeneous geometry"

$$\begin{cases} u_t = \Delta u + f(u) & \text{in } \Omega, \\ \nu \cdot \nabla u = 0 & \text{on } \partial \Omega \end{cases}$$

General (non homogeneous) equation with coefficients depending on t, x:

$$\begin{cases} u_t = \nabla(A(t,x)\nabla u) + q(t,x) \cdot \nabla u + f(t,x,u) & \text{in } \Omega, \\ A(t,x)\nabla u \cdot \nu = 0 & \text{on } \partial\Omega \end{cases}$$

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Goals for equations in heterogeneous media

- What notions extend those of travelling fronts ?
- Describe and estimate the asymptotic speed of spreading

・ 同 ト ・ ヨ ト ・ ヨ ト

Goals for equations in heterogeneous media

• What notions extend those of travelling fronts ?

Describe and estimate the asymptotic speed of spreading

・ 同 ト ・ ヨ ト ・ ヨ ト

Goals for equations in heterogeneous media

- What notions extend those of travelling fronts ?
- Describe and estimate the asymptotic speed of spreading

< A > <

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

Generalised transition waves (HB – François Hamel)

Observation

There is a family of hypersurfaces $(\Gamma_t)_{t \in \mathbb{R}}$ such that :

 $\forall \lambda \in (0,1), \exists C_{\lambda}, \forall t \in \mathbb{R}, \{x, u(t,x) = \lambda\} \subset \{x, d(x, \Gamma_t) \leq C_{\lambda}\}$

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

Generalised transition waves (HB – François Hamel)

Observation

There is a family of hypersurfaces $(\Gamma_t)_{t \in \mathbb{R}}$ such that :

 $\forall \lambda \in (0,1), \exists C_{\lambda}, \forall t \in \mathbb{R}, \{x, u(t,x) = \lambda\} \subset \{x, d(x, \Gamma_t) \leq C_{\lambda}\}$

Goal :

To deal with more general situations

spirals,... or

$$u_t = u_{xx} + b(x)f(u)$$

イロト イヨト イヨト

Goal :

To deal with more general situations

spirals,... or

$$u_t = u_{xx} + b(x)f(u)$$

< ロ > < 回 > < 回 > < 回 > < 回 >

Goal :

To deal with more general situations

spirals,... or

$$u_t = u_{xx} + b(x)f(u)$$

Goal :

To deal with more general situations

spirals,... or

$$u_t = u_{xx} + b(x)f(u)$$

イロト イヨト イヨト

Goal :

To deal with more general situations

spirals,... or

$$u_t = u_{xx} + b(x)f(u)$$

イロト イヨト イヨト

Goal :

To deal with more general situations

spirals,... or

$$u_t = u_{xx} + b(x)f(u)$$

イロト イヨト イヨト

[Eq] + [BC]

$$\begin{cases} u_t = \nabla_x \cdot (A(t,x)\nabla_x u) + q(t,x) \cdot \nabla_x u + f(t,x,u) \text{ in } \Omega, \\ B(t,x)[u] = 0 \text{ on } \partial\Omega. \end{cases}$$

or

$$u_t = \Phi(t, x, u, Du, D^2u, \cdots), \quad x \in \Omega$$

 d_{Ω} : geodesic distance in Ω

- Two *time- global* solutions of [Eq] & [BC]: $p^-(t,x)$ and $p^+(t,x)$ defined on $\mathbb{R} \times \Omega$
- Two families of open disjoint sets in Ω : $(\Omega_t^-)_{t\in\mathbb{R}}$ and $(\Omega_t^+)_{t\in\mathbb{R}}$
- 0

 $\begin{array}{l} \partial \Omega_t^- \cap \Omega = \partial \Omega_t^+ \cap \Omega =: \Gamma_t, \quad \Omega_t^- \cup \Gamma_t \cup \Omega_t^+ = \Omega \\ \sup \left\{ d_\Omega(x, \Gamma_t); \ t \in \mathbb{R}, \ x \in \Omega_t^\pm \right\} = +\infty. \end{array}$

[Eq] + [BC]

$$\begin{cases} u_t = \nabla_x \cdot (A(t, x) \nabla_x u) + q(t, x) \cdot \nabla_x u + f(t, x, u) & \text{in } \Omega, \\ B(t, x)[u] = 0 & \text{on } \partial\Omega. \end{cases}$$

or

$$u_t = \Phi(t, x, u, Du, D^2u, \cdots), \quad x \in \Omega$$

 d_{Ω} : geodesic distance in Ω

- Two *time- global* solutions of [Eq] & [BC]: $p^-(t,x)$ and $p^+(t,x)$ defined on $\mathbb{R} \times \Omega$
- Two families of open disjoint sets in Ω : $(\Omega_t^-)_{t\in\mathbb{R}}$ and $(\Omega_t^+)_{t\in\mathbb{R}}$
 - $\left\{ \begin{array}{l} \partial\Omega_t^- \cap \Omega = \partial\Omega_t^+ \cap \Omega =: \mathsf{\Gamma}_t, \ \ \Omega_t^- \cup \mathsf{\Gamma}_t \cup \Omega_t^+ = \Omega \\ \text{sup} \ \{d_\Omega(\mathsf{x},\mathsf{\Gamma}_t); \ t \in \mathbb{R}, \ \mathsf{x} \in \Omega_t^\pm \} = +\infty. \end{array} \right.$

A (1) < A (1) </p>

[Eq] + [BC]

$$\begin{pmatrix} u_t = \nabla_x \cdot (A(t, x) \nabla_x u) + q(t, x) \cdot \nabla_x u + f(t, x, u) & \text{in } \Omega, \\ B(t, x)[u] = 0 & \text{on } \partial\Omega. \end{cases}$$

or

$$u_t = \Phi(t, x, u, Du, D^2u, \cdots), \quad x \in \Omega$$

d_{Ω} : geodesic distance in Ω

- Two *time- global* solutions of [Eq] & [BC]: $p^{-}(t, x)$ and $p^{+}(t, x)$ defined on $\mathbb{R} \times \Omega$
- Two families of open disjoint sets in Ω : $(\Omega_t^-)_{t\in\mathbb{R}}$ and $(\Omega_t^+)_{t\in\mathbb{R}}$
 - $\left\{ \begin{array}{l} \partial \Omega_t^- \cap \Omega = \partial \Omega_t^+ \cap \Omega =: \Gamma_t, \quad \Omega_t^- \cup \Gamma_t \cup \Omega_t^+ = \Omega \\ \sup \left\{ d_\Omega(x, \Gamma_t); \ t \in \mathbb{R}, \ x \in \Omega_t^\pm \right\} = +\infty. \end{array} \right.$

A (1) < A (1) </p>

[Eq] + [BC]

$$\begin{pmatrix} u_t = \nabla_x \cdot (A(t, x) \nabla_x u) + q(t, x) \cdot \nabla_x u + f(t, x, u) & \text{in } \Omega, \\ B(t, x)[u] = 0 & \text{on } \partial\Omega. \end{cases}$$

or

$$u_t = \Phi(t, x, u, Du, D^2u, \cdots), \quad x \in \Omega$$

 d_{Ω} : geodesic distance in Ω

- Two *time- global* solutions of [Eq] & [BC]: $p^{-}(t,x)$ and $p^{+}(t,x)$ defined on $\mathbb{R} \times \Omega$
- Two families of open disjoint sets in Ω : $(\Omega_t^-)_{t\in\mathbb{R}}$ and $(\Omega_t^+)_{t\in\mathbb{R}}$
 - $\left\{ \begin{array}{l} \partial \Omega_t^- \cap \Omega = \partial \Omega_t^+ \cap \Omega =: \mathsf{\Gamma}_t, \quad \Omega_t^- \cup \mathsf{\Gamma}_t \cup \Omega_t^+ = \Omega \\ \text{sup } \{ d_\Omega(\mathsf{x},\mathsf{\Gamma}_t); \ t \in \mathbb{R}, \ \mathsf{x} \in \Omega_t^\pm \} = +\infty. \end{array} \right.$

[Eq] + [BC]

$$\begin{pmatrix} u_t = \nabla_x \cdot (A(t, x) \nabla_x u) + q(t, x) \cdot \nabla_x u + f(t, x, u) & \text{in } \Omega, \\ B(t, x)[u] = 0 & \text{on } \partial\Omega. \end{cases}$$

or

$$u_t = \Phi(t, x, u, Du, D^2u, \cdots), \quad x \in \Omega$$

 d_{Ω} : geodesic distance in Ω

- Two *time- global* solutions of [Eq] & [BC]: $p^{-}(t,x)$ and $p^{+}(t,x)$ defined on $\mathbb{R} \times \Omega$
- Two families of open disjoint sets in Ω : $(\Omega_t^-)_{t\in\mathbb{R}}$ and $(\Omega_t^+)_{t\in\mathbb{R}}$
 - $\left\{ \begin{array}{l} \partial \Omega_t^- \cap \Omega = \partial \Omega_t^+ \cap \Omega =: \Gamma_t, \quad \Omega_t^- \cup \Gamma_t \cup \Omega_t^+ = \Omega \\ \text{sup} \left\{ d_\Omega(x, \Gamma_t); \ t \in \mathbb{R}, \ x \in \Omega_t^\pm \right\} = +\infty. \end{array} \right.$

[Eq] + [BC]

$$\begin{cases} u_t = \nabla_x \cdot (A(t, x) \nabla_x u) + q(t, x) \cdot \nabla_x u + f(t, x, u) & \text{in } \Omega, \\ B(t, x)[u] = 0 & \text{on } \partial\Omega. \end{cases}$$

or

$$u_t = \Phi(t, x, u, Du, D^2u, \cdots), \quad x \in \Omega$$

 d_{Ω} : geodesic distance in Ω

- Two *time- global* solutions of [Eq] & [BC]: $p^{-}(t,x)$ and $p^{+}(t,x)$ defined on $\mathbb{R} \times \Omega$
- Two families of open disjoint sets in Ω : $(\Omega_t^-)_{t\in\mathbb{R}}$ and $(\Omega_t^+)_{t\in\mathbb{R}}$

$$\begin{cases} \partial \Omega_t^- \cap \Omega = \partial \Omega_t^+ \cap \Omega =: \Gamma_t, \quad \Omega_t^- \cup \Gamma_t \cup \Omega_t^+ = \Omega \\ \sup \{ d_\Omega(x, \Gamma_t); \ t \in \mathbb{R}, \ x \in \Omega_t^\pm \} = +\infty. \end{cases}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Assume $\Gamma_t \subset \bigcup_{finite} \{ graphs \}$

イロト イボト イヨト イヨト

Definition of (generalised) transition waves

Two given time-global solutions : $p^{\pm}(t,x)$

Definition

A Generalised (transition) wave u between p^- and p^+ is a time-global solution such that $u \not\equiv p^{\pm}$ and

 $u(t,x) - p^{\pm}(t,x)
ightarrow 0$ uniformly as $d_{\Omega}(x, \Gamma_t)
ightarrow +\infty$ and $x \in \Omega_t^{\pm}$

< ロ > < 同 > < 回 > < 回 >

Definition of (generalised) transition waves

Two given time-global solutions : $p^{\pm}(t,x)$

Definition

A Generalised (transition) wave u between p^- and p^+ is a time-global solution such that $u \not\equiv p^{\pm}$ and

 $u(t,x) - p^{\pm}(t,x)
ightarrow 0$ uniformly as $d_{\Omega}(x, \Gamma_t)
ightarrow +\infty$ and $x \in \Omega_t^{\pm}$

< ロ > < 同 > < 回 > < 回 >

Related notions

- Periodic media: pulsating traveling waves

- Almost periodic media and extensions: H. Matano's definition
- Time periodic problems and random media: W. Shen (adapting Matano's definition)

A definition for general heterogeneous media.

< ロ > < 同 > < 三 > < 三 >
Related notions

- Periodic media: pulsating traveling waves
- Almost periodic media and extensions: H. Matano's definition
- Time periodic problems and random media: W. Shen (adapting Matano's definition)

A definition for general heterogeneous media.

Related notions

- Periodic media: pulsating traveling waves
- Almost periodic media and extensions: H. Matano's definition
- Time periodic problems and random media: W. Shen (adapting Matano's definition)

A definition for general heterogeneous media.

イロト イポト イラト イラト

Related notions

- Periodic media: pulsating traveling waves
- Almost periodic media and extensions: H. Matano's definition
- Time periodic problems and random media: W. Shen (adapting Matano's definition)
- A definition for general heterogeneous media.

イロト イポト イラト イラト

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

Speed of propagation

Definition

A transition wave u between p^- and p^+ has global mean speed c if

$$\frac{d_{\Omega}(\Gamma_t,\Gamma_s)}{|t-s|} \to c \text{ as } |t-s| \to +\infty$$

 Intrinsic notion : it only depends on u and not on the sets Ω[±]_t (provided inf |p⁺ − p⁻| > 0 and "flatness" of the Γ_t's)

<ロト < 同ト < ヨト < ヨト -

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

Speed of propagation

Definition

A transition wave u between p^- and p^+ has global mean speed c if

$$\frac{d_{\Omega}(\Gamma_t,\Gamma_s)}{|t-s|} \to c \text{ as } |t-s| \to +\infty$$

 Intrinsic notion : it only depends on u and not on the sets Ω[±]_t (provided inf |p⁺ − p⁻| > 0 and "flatness" of the Γ_t's)

イロト イポト イヨト イヨト

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

2. Further specifications

• Fronts :
$$p_i^-(t,x) < p_i^+(t,x)$$
 for all (t,x,i) , or $p_i^-(t,x) > p_i^+(t,x)$

• Spatially extended pulses : $p^{-}(t,x) \equiv p^{+}(t,x)$

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

2. Further specifications

• Fronts :
$$p_i^-(t,x) < p_i^+(t,x)$$
 for all (t,x,i) , or $p_i^-(t,x) > p_i^+(t,x)$

• Spatially extended pulses : $p^{-}(t,x) \equiv p^{+}(t,x)$

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

2. Further specifications

• Fronts :
$$p_i^-(t,x) < p_i^+(t,x)$$
 for all (t,x,i) , or $p_i^-(t,x) > p_i^+(t,x)$

• Spatially extended pulses : $p^{-}(t,x) \equiv p^{+}(t,x)$

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

2. Further specifications

• Fronts :
$$p_i^-(t,x) < p_i^+(t,x)$$
 for all (t,x,i) , or $p_i^-(t,x) > p_i^+(t,x)$

• Spatially extended pulses : $p^{-}(t,x) \equiv p^{+}(t,x)$

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

• Invasions (of p^- by p^+) :

$$\Omega^+_t \supset \Omega^+_s \text{ for } t > s, \text{ and } d_\Omega(\Gamma_t, \Gamma_s) \mathop{\to}_{|t-s| \to +\infty} + \infty$$

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

• Invasions (of p^- by p^+) :

$$\Omega^+_t \supset \Omega^+_s \text{ for } t > s, \text{ and } d_\Omega(\Gamma_t, \Gamma_s) \mathop{\to}_{|t-s| \to +\infty} + \infty$$

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

• Invasions (of p^- by p^+) :

$$\Omega^+_t \supset \Omega^+_s \text{ for } t > s, \text{ and } d_\Omega(\Gamma_t, \Gamma_s) \mathop{\to}_{|t-s| \to +\infty} +\infty$$

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

• Invasions (of p^- by p^+) :

$$\Omega^+_t \supset \Omega^+_s \text{ for } t > s, \text{ and } d_\Omega(\Gamma_t, \Gamma_s) \mathop{\to}_{|t-s| \to +\infty} +\infty$$

Further extensions

• Multiple transitions between p_1, \ldots, p_k :

- Case k = 1 and $\Gamma_t = \{\xi_t\}$ singleton : localized pulse
- $t \in I$ interval $\subset \mathbb{R}$ Examples, Cauchy problems : $I = [0, T], I = [0, +\infty)$ To describe front formation

Further extensions

• Multiple transitions between p_1, \ldots, p_k :

- Case k = 1 and $\Gamma_t = \{\xi_t\}$ singleton : localized pulse
- $t \in I$ interval $\subset \mathbb{R}$ Examples, Cauchy problems : I = [0, T], $I = [0, +\infty)$ To describe front formation

3. Classical notions

Homogeneous case: $\frac{\partial u}{\partial t} - \Delta u = f(u)$ in \mathbb{R}^N Planar travelling waves:

$$u(t,x) = \phi(x \cdot e + ct)$$

with $\phi(\xi) \to 1$ and $\phi(\xi) \to 0$ when $\xi \to \pm \infty$, Then, u(t, x) is a GTW - a generalised invasion planar front of speed c,

$$p^- \equiv 0, \quad p^+ = 1$$

and

$$\Omega_t^+ = \{x; x \cdot e > -ct\}, \quad \Omega_t^- = \{x; x \cdot e < -ct\}$$
$$\Gamma_t = \{x; x \cdot e = -ct\}$$

3. Classical notions

Homogeneous case: $\frac{\partial u}{\partial t} - \Delta u = f(u)$ in \mathbb{R}^N Planar travelling waves:

$$u(t,x) = \phi(x \cdot e + ct)$$

with $\phi(\xi) \to 1$ and $\phi(\xi) \to 0$ when $\xi \to \pm \infty$, Then, u(t, x) is a GTW - a generalised invasion planar front of speed c,

$$p^- \equiv 0, \quad p^+ = 1$$

and

$$\Omega_t^+ = \{x; x \cdot e > -ct\}, \quad \Omega_t^- = \{x; x \cdot e < -ct\}$$
$$\Gamma_t = \{x; x \cdot e = -ct\}$$

イロト イポト イラト イラト

3. Classical notions

Homogeneous case: $\frac{\partial u}{\partial t} - \Delta u = f(u)$ in \mathbb{R}^N Planar travelling waves:

$$u(t,x) = \phi(x \cdot e + ct)$$

with $\phi(\xi) \to 1$ and $\phi(\xi) \to 0$ when $\xi \to \pm \infty$, Then, u(t, x) is a GTW - a generalised invasion planar front of speed c,

$$p^-\equiv 0, \quad p^+=1$$

and

$$\Omega_t^+ = \{x; x \cdot e > -ct\}, \quad \Omega_t^- = \{x; x \cdot e < -ct\}$$
$$\Gamma_t = \{x; x \cdot e = -ct\}$$

イロト イポト イラト イラト

3. Classical notions

Homogeneous case: $\frac{\partial u}{\partial t} - \Delta u = f(u)$ in \mathbb{R}^N Planar travelling waves:

$$u(t,x) = \phi(x \cdot e + ct)$$

with $\phi(\xi) \to 1$ and $\phi(\xi) \to 0$ when $\xi \to \pm \infty$, Then, u(t, x) is a GTW - a generalised invasion planar front of speed c,

$$p^-\equiv 0, \quad p^+=1$$

and

$$\Omega_t^+ = \{x; x \cdot e > -ct\}, \quad \Omega_t^- = \{x; x \cdot e < -ct\}$$
$$\Gamma_t = \{x; x \cdot e = -ct\}$$

くロ と く 同 と く ヨ と 一

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

Conical fronts

$$u(t,x) = \phi(r,x_N - ct)$$

- $\phi(r,s)
 ightarrow 1$ uniformly when $s-\psi(r)
 ightarrow -\infty$
- $\phi(r,s)
 ightarrow 0$ uniformly when $s \psi(r)
 ightarrow \infty$
- $\psi(r)/r \rightarrow \cot \alpha$ when $r \rightarrow +\infty$

Then, u(t,x) is a GTW, a generalised invasion front of speed cnot almost planar

For f concave and positive on (0, 1), other generalised fronts (not necessarily conical)

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

Conical fronts

$$u(t,x) = \phi(r,x_N - ct)$$

- $\phi(r,s)
 ightarrow 1$ uniformly when $s-\psi(r)
 ightarrow -\infty$
- $\phi(r,s)
 ightarrow 0$ uniformly when $s \psi(r)
 ightarrow \infty$
- $\psi(r)/r \to \cot lpha$ when $r \to +\infty$

Then, u(t, x) is a GTW, a generalised invasion front of speed cnot almost planar

For f concave and positive on (0, 1), other generalised fronts (not necessarily conical)

くロト く得ト くほト くほとう

Conical fronts

$$u(t,x) = \phi(r,x_N - ct)$$

- $\phi(r,s)
 ightarrow 1$ uniformly when $s-\psi(r)
 ightarrow -\infty$
- $\phi(r,s)
 ightarrow 0$ uniformly when $s \psi(r)
 ightarrow \infty$
- $\psi(r)/r
 ightarrow \cot lpha$ when $r
 ightarrow +\infty$

Then, u(t, x) is a GTW, a generalised invasion front of speed cnot almost planar

For f concave and positive on (0, 1), other generalised fronts (not necessarily conical)

Conical fronts

$$u(t,x) = \phi(r,x_N - ct)$$

- $\phi(r,s)
 ightarrow 1$ uniformly when $s-\psi(r)
 ightarrow -\infty$
- $\phi(r,s)
 ightarrow 0$ uniformly when $s \psi(r)
 ightarrow \infty$
- $\psi(r)/r
 ightarrow \cot lpha$ when $r
 ightarrow +\infty$

Then, u(t, x) is a GTW, a generalised invasion front of speed cnot almost planar

For f concave and positive on (0, 1), other generalised fronts (not necessarily conical)

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

Solutions of Hamel - Nadirashvili type

Homogeneous case

 $\partial_t u - \partial_{xx} u = f(u)$ in \mathbb{R} KPP case (example f > 0 concave, f(0) = f(1) = 0).

For $c_2 > c_1 \ge 2\sqrt{f'(0)}$, front, with speed c_1 when $t \to -\infty$ and with speed c_2 when $t \to \infty$

イロト イポト イラト イラト

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

Solutions of Hamel - Nadirashvili type

Homogeneous case

 $\partial_t u - \partial_{xx} u = f(u)$ in \mathbb{R} KPP case (example f > 0 concave, f(0) = f(1) = 0). For $c_2 > c_1 \ge 2\sqrt{f'(0)}$, front, with speed c_1 when $t \to -\infty$ and with speed c_2 when $t \to \infty$

イロト イポト イラト イラト

These are waves without speed:

New objects These solutions are GTW without speed

イロト イボト イヨト イヨト

These are waves without speed:

New objects These solutions are GTW without speed

イロト イボト イヨト イヨト

These are waves without speed:

New objects These solutions are GTW without speed

< ロ > < 同 > < 三 > < 三 >

Homogeneous case

$$\frac{\partial u}{\partial t} - \Delta u = f(u) \quad \text{in} \quad \mathbb{R}^N$$

• KPP case. Large manifold of solution (infinite dimension) of solutions which are GTW. • Case of non constant states p^{\pm} .

Homogeneous case

$$rac{\partial u}{\partial t} - \Delta u = f(u)$$
 in \mathbb{R}^N

• KPP case. Large manifold of solution (infinite dimension) of solutions which are GTW. • Case of non constant states p^{\pm} .

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

Examples of non-constant limiting states p^{\pm}

(periodic framework,...)

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

Examples of non-constant limiting states p^{\pm}

(periodic framework,...)

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

Examples of non-constant limiting states p^{\pm}

4. Properties

Example of a classification result

Transition wave u between 0 and 1, f'(0) < 0, f'(1) < 0, almost-planar ($\Gamma_t = \{x \cdot e = \xi_t\}$) and

$$-M \leq |\xi_t - \xi_s| - c|t - s| \leq M$$

Conclusion : u is planar

4. Properties

Example of a classification result

Transition wave u between 0 and 1, f'(0) < 0, f'(1) < 0, almost-planar ($\Gamma_t = \{x \cdot e = \xi_t\}$) and

$$-M \leq |\xi_t - \xi_s| - c|t - s| \leq M$$

Conclusion : u is planar

4. Properties

Example of a classification result

Transition wave u between 0 and 1, f'(0) < 0, f'(1) < 0, almost-planar ($\Gamma_t = \{x \cdot e = \xi_t\}$) and

$$-M \leq |\xi_t - \xi_s| - c|t - s| \leq M$$

Conclusion : u is planar
4. Properties

Example of a classification result

Transition wave *u* between 0 and 1, f'(0) < 0, f'(1) < 0, almost-planar ($\Gamma_t = \{x \cdot e = \xi_t\}$) and

$$-M \leq |\xi_t - \xi_s| - c|t - s| \leq M$$

Conclusion : *u* is planar

Robustness of the definitions

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

3

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

Periodic bistable-type medium

$$u_t = \operatorname{div}(A(x)\nabla u) + q(x) \cdot \nabla u + f(x, u)$$

Assumptions :

•
$$p^{-}(x) < p^{+}(x)$$

• *u* is an almost-planar invasion in the direction *e*, with mean speed *c*,

$$-M \leq d_{\Omega}(\Gamma_t,\Gamma_s) - c|t-s| \leq M$$

• $s \mapsto f(x, s)$ is nonincreasing in $[p^-(x), p^-(x) + \delta]$ and $[p^+(x) - \delta, p^+(x)]$

Conclusion : *u* is a pulsating front

200

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

Invariance in a moving frame

$$u_t = \operatorname{div}(A(x')\nabla u) + q(x') \cdot \nabla u + f(x', u)$$

Assumptions : Straight cylinder in the direction *e*, variables $(x \cdot e, x')$, $p^{-}(x') < p^{+}(x')$, almost-planar $\Gamma_t = \{x \cdot e = \xi_t\}$, bistable-type profile around p^{\pm} , and

$$-M \leq |\xi_t - \xi_s| - c|t-s| \leq M$$

Conclusion : *u* is invariant in the moving frame

Further monotonicity and qualitative properties for bistable-type fronts...

Monostable waves which are trapped between two planar fronts

$$u_t = \Delta u + f(u)$$
 in \mathbb{R}^N

Positive function f in (0, 1) with f(0) = f(1) = 0 and f'(0) > 0. Planar front $\varphi_c(s)$

$$arphi_c''-carphi_c'+f(arphi_c)=0, \ arphi_c(-\infty)=0, \ arphi_c(+\infty)=1, \ c\geq c^*$$

Assumption :

$$\varphi_c(x \cdot e + ct) \le u(t, x) \le \varphi_c(x \cdot e + ct + a)$$

Conclusion : *u* is a planar front

Properties

- The sets Γ_t reflect the positions of level sets.
- Intrinsic character of the speed
- Monotonicity in time

(日)

The bistable case: B.-Hamel-Matano

Ignition temperature case: $u_t - u_{xx} = f(x, u)$ where, for all x, f(x, .) has an ignition temperature $\theta(x)$. Simplest case: f(x, u) = a(x)g(u), g ignition-like.

Theorem (Nolen-Ryzhik, Mellet-Roquejoffre-Sire)

There is (up to time shift) a unique generalised travelling wave connecting 0 to 1.

Result extended by Zlatos for more general f. Main requirement: for all x, $f_u(x, u) < 0$ in a uniform neigbourhood of 1.

The bistable case: B.-Hamel-Matano Ignition temperature case: $u_t - u_{xx} = f(x, u)$ where, for all x, f(x, .) has an ignition temperature $\theta(x)$. Simplest case: f(x, u) = a(x)g(u), g ignition-like.

Theorem (Nolen-Ryzhik, Mellet-Roquejoffre-Sire)

There is (up to time shift) a unique generalised travelling wave connecting 0 to 1.

Result extended by Zlatos for more general f. Main requirement: for all x, $f_u(x, u) < 0$ in a uniform neigbourhood of 1.

The bistable case: B.-Hamel-Matano Ignition temperature case: $u_t - u_{xx} = f(x, u)$ where, for all x, f(x, .) has an ignition temperature $\theta(x)$. Simplest case: f(x, u) = a(x)g(u), g ignition-like.

Theorem (Nolen-Ryzhik, Mellet-Roquejoffre-Sire)

There is (up to time shift) a unique generalised travelling wave connecting 0 to 1.

Result extended by Zlatos for more general f. Main requirement: for all x, $f_u(x, u) < 0$ in a uniform neigbourhood of 1.

The bistable case: B.-Hamel-Matano Ignition temperature case: $u_t - u_{xx} = f(x, u)$ where, for all x, f(x, .) has an ignition temperature $\theta(x)$. Simplest case: f(x, u) = a(x)g(u), g ignition-like.

Theorem (Nolen-Ryzhik, Mellet-Roquejoffre-Sire)

There is (up to time shift) a unique generalised travelling wave connecting 0 to 1.

Result extended by Zlatos for more general f. Main requirement: for all x, $f_u(x, u) < 0$ in a uniform neigbourhood of 1.

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

KPP case

Simplest case: f(x, u) = a(x)u(1 - u)

Assume $a \equiv 1$ outside a compact subset, a > 1 inside.

What matters here is the value of $\lambda,$ the bottom of the spectrum of the operator

$$A=-\frac{d^2}{dx^2}-a(x).$$

in $L^2(\mathbb{R})$.

Theorem (Nolen-Ryzhik-Roquejoffre-Zlatos)

If $\lambda > 2$, there is no generalised transition front.

In fact, the only time global solution is a bump-like solution, i.e. a solution such that

$$u(t,x) \sim e^{\lambda t} \phi_{\lambda}(x)$$

for t << 0, ϕ_{λ} : bottom eigenfuntion Result generalised by Zlatos.

< ロ > < 同 > < 三 > < 三 >

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

KPP case

Simplest case: f(x, u) = a(x)u(1 - u)

Assume $a \equiv 1$ outside a compact subset, a > 1 inside.

What matters here is the value of $\lambda,$ the bottom of the spectrum of the operator

$$A=-\frac{d^2}{dx^2}-a(x).$$

in $L^2(\mathbb{R})$.

Theorem (Nolen-Ryzhik-Roquejoffre-Zlatos)

If $\lambda > 2$, there is no generalised transition front.

In fact, the only time global solution is a bump-like solution, i.e. a solution such that

$$u(t,x) \sim e^{\lambda t} \phi_{\lambda}(x)$$

for $t \ll 0$, ϕ_{λ} : bottom eigenfuntion Result generalised by Zlatos.

Reaction-diffusion equ. in heterogeneous media

< ロ > < 同 > < 三 > < 三 >

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

KPP case

Simplest case: f(x, u) = a(x)u(1 - u)

Assume $a \equiv 1$ outside a compact subset, a > 1 inside.

What matters here is the value of $\lambda,$ the bottom of the spectrum of the operator

$$A=-\frac{d^2}{dx^2}-a(x).$$

in $L^2(\mathbb{R})$.

Theorem (Nolen-Ryzhik-Roquejoffre-Zlatos)

If $\lambda > 2$, there is no generalised transition front.

In fact, the only time global solution is a bump-like solution, i.e. a solution such that

$$u(t,x) \sim e^{\lambda t} \phi_{\lambda}(x)$$

for t << 0, ϕ_{λ} : bottom eigenfuntion. Result generalised by Zlatos.

< ロ > < 同 > < 三 > < 三 >

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

KPP case continued

Theorem (Nolen-Ryzhik-Roquejoffre-Zlatos)

Assume $\lambda < 2$. Then, (i) There are generalised transition fronts. (ii) Under some (possibly non-optimal) assumptions on the spectrum of A, a travelling front with speed c satisfies $c \le \lambda/\sqrt{\lambda - 1}$.

Reaction-diffusion equ. in heterogeneous media

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

Time dependent equations

Results of

- W. Shen
- Nadin Rossi
- B Hamel

イロト イボト イヨト イヨト

Random environment

Random ergodic stationary case

- Ignition reaction term
 - Existence: J. Nolen, L. Ryzhik
 - Uniqueness: J. Nolen, J-M. Roquejoffre, L. Ryzhik, A. Zlatos
- KPP reaction term : Additional assumptions, A. Zlatos

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

Fronts passing an obstacle K - bistable case

Joint work with François Hamel and Hiroshi Matano Comm. Pure Applied Math (2009)

Goal: Travelling front approaching an obstacle and passing it in bistable framework

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

Fronts passing an obstacle K - bistable case

Joint work with François Hamel and Hiroshi Matano Comm. Pure Applied Math (2009)

Goal: Travelling front approaching an obstacle and passing it in bistable framework

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

Fronts passing an obstacle K - bistable case

Equation

$$\begin{cases} u_t = \Delta u + f(u) & \text{in } \Omega = \mathbb{R}^N \setminus K, \\ \nu \cdot \nabla u = 0 & \text{on } \partial \Omega = \partial K \end{cases}$$

Reaction-diffusion equ. in heterogeneous media

Bistable nonlinearity f:

• f of class $C^{1,1}([0,1])$ • $f(0) = f(1) = 0, \qquad f'(0) < 0, \ f'(1) < 0,$

• There exists a solution ϕ of

$$egin{aligned} \phi''(z) - c \phi'(z) + f(\phi(z)) &= 0 \ (z \in \mathbb{R}), \ \phi(-\infty) &= 0, & \phi(+\infty) = 1, \ 0 < \phi(z) < 1 & (z \in \mathbb{R}), \end{aligned}$$

with c > 0.

 ϕ unique up to shifts, and $\phi' > 0$ in \mathbb{R} . Existence of (c, ϕ) with c > 0 implies

$$\int_s^1 f(au) d au > 0$$
 for all $0 \le s < 1,$

Reaction-diffusion equ. in heterogeneous media

Bistable nonlinearity *f* :

- f of class $C^{1,1}([0,1])$
 - $f(0) = f(1) = 0, \qquad f'(0) < 0, \ f'(1) < 0,$

• There exists a solution ϕ of

$$egin{array}{lll} \phi''(z)-c\phi'(z)+f(\phi(z))&=0\ (z\in\mathbb{R}),\ \phi(-\infty)&=0,\ \phi(+\infty)&=1,\ 0<\phi(z)<1\ (z\in\mathbb{R}), \end{array}$$

with c > 0.

 ϕ unique up to shifts, and $\phi' > 0$ in \mathbb{R} . Existence of (c, ϕ) with c > 0 implies

Bistable nonlinearity f:

• f of class $C^{1,1}([0,1])$

۲

 $f(0) = f(1) = 0, \qquad f'(0) < 0, \ f'(1) < 0,$

• There exists a solution ϕ of

 $egin{aligned} \phi''(z) - c \phi'(z) + f(\phi(z)) &= 0 \ (z \in \mathbb{R}), \ \phi(-\infty) &= 0, & \phi(+\infty) = 1, \ 0 < \phi(z) < 1 & (z \in \mathbb{R}), \end{aligned}$

with c > 0.

 ϕ unique up to shifts, and $\phi' > 0$ in \mathbb{R} . Existence of (c, ϕ) with c > 0 implies

$$\int_{s}^{1} f(\tau) d\tau > 0 \quad \text{for all } 0 \le s < 1,$$

Reaction-diffusion equ. in heterogeneous media

Bistable nonlinearity f:

• f of class $C^{1,1}([0,1])$

٩

$$f(0) = f(1) = 0, \qquad f'(0) < 0, \ f'(1) < 0,$$

• There exists a solution ϕ of

$$\left\{egin{array}{ll} \phi^{\prime\prime}(z)-c\phi^{\prime}(z)+f(\phi(z))&=0\ (z\in\mathbb{R}),\ \phi(-\infty)=0,&\phi(+\infty)=1,\ 0<\phi(z)<1&(z\in\mathbb{R}), \end{array}
ight.$$

with c > 0.

 ϕ unique up to shifts, and $\phi' > 0$ in \mathbb{R} . Existence of (c, ϕ) with c > 0 implies

Reaction-diffusion equ. in heterogeneous media

< 🗗 🕨

Bistable nonlinearity f:

• f of class $C^{1,1}([0,1])$

٩

$$f(0) = f(1) = 0, \qquad f'(0) < 0, \ f'(1) < 0,$$

• There exists a solution ϕ of

$$\left\{egin{array}{ll} \phi^{\prime\prime}(z)-c\phi^{\prime}(z)+f(\phi(z))&=0\ (z\in\mathbb{R}),\ \phi(-\infty)=0,&\phi(+\infty)=1,\ 0<\phi(z)<1&(z\in\mathbb{R}), \end{array}
ight.$$

with c > 0.

 ϕ unique up to shifts, and $\phi' > 0$ in \mathbb{R} . Existence of (c, ϕ) with c > 0 implies

Bistable nonlinearity f:

• f of class $C^{1,1}([0,1])$

٩

$$f(0) = f(1) = 0, \qquad f'(0) < 0, \ f'(1) < 0,$$

• There exists a solution ϕ of

$$\left\{egin{array}{ll} \phi^{\prime\prime}(z)-c\phi^{\prime}(z)+f(\phi(z))&=0\ (z\in\mathbb{R}),\ \phi(-\infty)=0,&\phi(+\infty)=1,\ 0<\phi(z)<1&(z\in\mathbb{R}), \end{array}
ight.$$

with c > 0.

 ϕ unique up to shifts, and $\phi' > 0$ in \mathbb{R} . Existence of (c, ϕ) with c > 0 implies

$$\int_{s}^{1} f(\tau) d\tau > 0 \quad \text{for all } 0 \leq s < 1,$$

Reaction-diffusion equ. in heterogeneous media

(E)

Example of bistable f

Example

イロト イボト イヨト イヨト

э

Planar traveling front

 (c, ϕ) is a *travelling front* for Reaction – diffusion equation in the whole space (homogeneous case):

$$rac{\partial u}{\partial t} - \Delta u = f(u)$$
 in \mathbb{R}^N

Planar front:

$$u(t,x) = \phi(x \cdot e + ct)$$

with $\phi(\xi) \to 1$ and $\phi(\xi) \to 0$ when $\xi \to \pm \infty$, e, |e| = 1, direction of propagation

・ 同 ト ・ ヨ ト ・ ヨ ト

$$u_t = \Delta u + f(u)$$

$$u(t,x) = \phi(x \cdot e + ct)$$

 $\phi: \mathbb{R} \to \mathbb{R}$

< ロ > < 部 > < き > < き > <</p>

Ξ.

Star-shaped obstacle

Definition

A star-shaped obstacle is such that either $K = \emptyset$ or $\exists x \in \overset{\circ}{K}$ such that, for all $y \in \partial K$ and $t \in [0, 1)$, $x + t(y - x) \in \overset{\circ}{K}$ and $\nu_{K}(y) \cdot (y - x) \ge 0$, where $\nu_{K}(y) =$ outward unit normal to K at y.

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

Directionally convex" obstacle

Definition

The obstacle K is said to be *directionally convex* if there exists a hyperplane $P = \{x \in \mathbb{R}^N, x \cdot e = a\}$ where |e| = 1 and $a \in \mathbb{R}$, such that

- K ∩ P = π(K), where π(K) is the orthogonal projection of K onto P,
- for every line Σ parallel to e, the set $K \cap \Sigma$ either is a single line segment or is empty.

Reaction-diffusion equ. in heterogeneous media

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

Equation

$$\begin{cases} u_t = \Delta u + f(u) & \text{in } \Omega = \mathbb{R}^N \backslash K, \\ \nu \cdot \nabla u = 0 & \text{on } \partial \Omega = \partial K \end{cases}$$

 $\nu :$ the outward unit normal on $\partial \Omega$

Take (wlog) propagation direction $\vec{e} = \vec{e_1}$

イロト イボト イヨト イヨト

э

Generalised fronts

Star-shaped or directionnally convex obstacles

Theorem

Assume

- f is of "bistable" type,
- *K* bounded and smooth, either star-shaped or directionally convex.

Then, there exists an entire solution u(t,x) of the equation in $\Omega = \mathbb{R}^N \setminus K$, such that 0 < u(t,x) < 1 and $u_t(t,x) > 0$, $\forall (t,x) \in \mathbb{R} \times \overline{\Omega}$ and

 $u(t,x) - \phi(x_1 + ct) \rightarrow 0$

Generalised fronts

Star-shaped or directionnally convex obstacles

Theorem

Assume

- f is of "bistable" type,
- *K* bounded and smooth, either star-shaped or directionally convex.

Then, there exists an entire solution u(t,x) of the equation in $\Omega = \mathbb{R}^N \setminus K$, such that

0 < u(t,x) < 1 and $u_t(t,x) > 0$, $orall (t,x) \in \mathbb{R} imes \overline{\Omega}$ and

 $u(t,x) - \phi(x_1 + ct) \rightarrow 0$

Generalised fronts

Star-shaped or directionnally convex obstacles

Theorem

Assume

- f is of "bistable" type,
- *K* bounded and smooth, either star-shaped or directionally convex.

Then, there exists an entire solution u(t,x) of the equation in $\Omega = \mathbb{R}^N \setminus K$, such that 0 < u(t,x) < 1 and $u_t(t,x) > 0$, $\forall (t,x) \in \mathbb{R} \times \overline{\Omega}$ and

 $u(t,x) - \phi(x_1 + ct) \rightarrow 0$

Generalised fronts

Star-shaped or directionnally convex obstacles

Theorem

Assume

- f is of "bistable" type,
- *K* bounded and smooth, either star-shaped or directionally convex.

Then, there exists an entire solution u(t,x) of the equation in $\Omega = \mathbb{R}^N \setminus K$, such that 0 < u(t,x) < 1 and $u_t(t,x) > 0$, $\forall (t,x) \in \mathbb{R} \times \overline{\Omega}$ and

$$u(t,x) - \phi(x_1 + ct) \to 0$$

Generalised fronts

Star-shaped or directionnally convex obstacles

Theorem

Assume

- f is of "bistable" type,
- *K* bounded and smooth, either star-shaped or directionally convex.

Then, there exists an entire solution u(t,x) of the equation in $\Omega = \mathbb{R}^N \setminus K$, such that 0 < u(t,x) < 1 and $u_t(t,x) > 0$, $\forall (t,x) \in \mathbb{R} \times \overline{\Omega}$ and

$$u(t,x) - \phi(x_1 + ct) \to 0$$
Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

Generalised fronts

Star-shaped or directionnally convex obstacles

Theorem

Assume

- f is of "bistable" type,
- *K* bounded and smooth, either star-shaped or directionally convex.

Then, there exists an entire solution u(t,x) of the equation in $\Omega = \mathbb{R}^N \setminus K$, such that 0 < u(t,x) < 1 and $u_t(t,x) > 0$, $\forall (t,x) \in \mathbb{R} \times \overline{\Omega}$ and

$$u(t,x) - \phi(x_1 + ct) \to 0$$

as $t \to \pm \infty$ uniformly in $x \in \overline{\Omega}$, and as $|x| \to +\infty$ uniformly in $t \in \mathbb{R}$. Furthermore, this solution is unique.

Generalised fronts General case

Theorem

Assume f is of "bistable" type. For a general compact obstacle K, there exists an entire solution u(t,x) in $\Omega = \mathbb{R}^N \setminus K$, such that: 0 < u(t,x) < 1 and $u_t(t,x) > 0$, $\forall (t,x) \in \mathbb{R} \times \overline{\Omega}$ and

 $u(t,x) - \phi(x_1 + ct) \rightarrow 0$ as $t \rightarrow -\infty$ uniformly in $x \in \overline{\Omega}$,

and as $|x| \to +\infty$ uniformly in $t \in \mathbb{R}.$ There exists a solution u_∞ of

$$\left\{egin{array}{ll} \Delta u_\infty+f(u_\infty)&=&0& \mbox{in }\Omega,\
u\cdot
abla u_\infty&=&0& \mbox{on }\partial\Omega,\ 0&< u_\infty(x)&\leq&1& \mbox{for all }x\in\overline\Omega,\
u_{\infty}|_{x|
ightarrow+\infty}u_\infty(x)&=&1 \end{array}
ight.$$

such that $u(t,x) \to u_{\infty}(x)$ as $t \to +\infty$ locally uniformly in $x \in \overline{\Omega}$.

Generalised fronts

General case

Theorem

Assume f is of "bistable" type. For a general compact obstacle K, there exists an entire solution u(t,x) in $\Omega = \mathbb{R}^N \setminus K$, such that: 0 < u(t,x) < 1 and $u_t(t,x) > 0$, $\forall (t,x) \in \mathbb{R} \times \overline{\Omega}$ and

 $u(t,x) - \phi(x_1 + ct) \rightarrow 0$ as $t \rightarrow -\infty$ uniformly in $x \in \overline{\Omega}$,

and as $|x| \to +\infty$ uniformly in $t \in \mathbb{R}.$ There exists a solution u_∞ of

$$egin{array}{rcl} \Delta u_\infty + f(u_\infty) &=& 0 & \mbox{in }\Omega, \
u
u_\infty
abla u_\infty &=& 0 & \mbox{on }\partial\Omega, \ 0 &<& u_\infty(x) &\leq& 1 & \mbox{for all } x \in \overline{\Omega}, \
\lim_{|x|
ightarrow +\infty} u_\infty(x) &=& 1 \end{array}$$

such that $u(t,x) \to u_{\infty}(x)$ as $t \to +\infty$ locally uniformly in $x \in \overline{\Omega}$.

Generalised fronts

General case

Theorem

Assume f is of "bistable" type. For a general compact obstacle K, there exists an entire solution u(t,x) in $\Omega = \mathbb{R}^N \setminus K$, such that: 0 < u(t,x) < 1 and $u_t(t,x) > 0$, $\forall (t,x) \in \mathbb{R} \times \overline{\Omega}$ and

 $u(t,x) - \phi(x_1 + ct) \rightarrow 0$ as $t \rightarrow -\infty$ uniformly in $x \in \overline{\Omega}$,

and as $|x| \to +\infty$ uniformly in $t \in \mathbb{R}.$ There exists a solution u_∞ of

such that $u(t,x) \to u_{\infty}(x)$ as $t \to +\infty$ locally uniformly in $x \in \overline{\Omega}$.

Generalised fronts

General case

Theorem

Assume f is of "bistable" type. For a general compact obstacle K, there exists an entire solution u(t,x) in $\Omega = \mathbb{R}^N \setminus K$, such that: 0 < u(t,x) < 1 and $u_t(t,x) > 0$, $\forall (t,x) \in \mathbb{R} \times \overline{\Omega}$ and

 $u(t,x) - \phi(x_1 + ct) \rightarrow 0$ as $t \rightarrow -\infty$ uniformly in $x \in \overline{\Omega}$,

and as $|x| \to +\infty$ uniformly in $t \in \mathbb{R}.$ There exists a solution u_∞ of

such that $u(t,x) \to u_{\infty}(x)$ as $t \to +\infty$ locally uniformly in $x \in \overline{\Omega}$.

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

A Nonlinear Liouville type theorem

Stationary problem in exterior domain

Theorem

Suppose v = v(x) is a bounded solution of the exterior problem

If K is either star-shaped or directionally convex w.r.t. some hyerplane, then $v \equiv 1$.

Thus,
$$u_{\infty} = v \equiv 1$$
.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

A Nonlinear Liouville type theorem

Stationary problem in exterior domain

Theorem

Suppose v = v(x) is a bounded solution of the exterior problem

$$\begin{bmatrix} -\Delta v = f(v) & in \quad \mathbb{R}^N \setminus K \\ \frac{\partial v}{\partial \nu} = 0 & on \quad \partial K, \\ \lim_{|x| \to \infty} v(x) = 1. \end{bmatrix}$$

If K is either star-shaped or directionally convex w.r.t. some hyerplane, then $v \equiv 1$.

Thus, $u_{\infty} = v \equiv 1$.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Counter example

Theorem

Theorem: There are examples with K not star-shaped, where there are solutions v with 0 < v < 1.

< ロ > < 同 > < 三 > < 三 > <

Counter example

Theorem

Theorem: There are examples with K not star-shaped, where there are solutions v with 0 < v < 1.

< ロ > < 同 > < 三 > < 三 > <

$$\begin{cases} u_t = \Delta u + f(u) & \text{in } \Omega = \mathbb{R}^N \setminus K, \\ \nu \cdot \nabla u = 0 & \text{on } \partial \Omega = \partial K \end{cases}$$

Theorem

Assume

- f is of "bistable" type,
- *K* bounded and smooth, either star-shaped or directionally convex.

Then, there exists an entire solution u(t,x) of the equation in $\Omega = \mathbb{R}^N \setminus K$, such that 0 < u(t,x) < 1 and $u_t(t,x) > 0$, $\forall (t,x) \in \mathbb{R} \times \overline{\Omega}$ and

$$u(t,x) - \phi(x_1 + ct) \rightarrow 0$$

$$\begin{cases} u_t = \Delta u + f(u) & \text{in } \Omega = \mathbb{R}^N \setminus K, \\ \nu \cdot \nabla u = 0 & \text{on } \partial \Omega = \partial K \end{cases}$$

Theorem

Assume

- f is of "bistable" type,
- *K* bounded and smooth, either star-shaped or directionally convex.

Then, there exists an entire solution u(t,x) of the equation in $\Omega = \mathbb{R}^N \setminus K$, such that $0 \le u(t,x) \le 1$ and $u(t,x) \ge 0$, $\forall (t,x) \in \mathbb{R} \times \overline{\Omega}$ and

$$u(t,x) - \phi(x_1 + ct) \to 0$$

$$\begin{cases} u_t = \Delta u + f(u) & \text{in } \Omega = \mathbb{R}^N \setminus K, \\ \nu \cdot \nabla u = 0 & \text{on } \partial \Omega = \partial K \end{cases}$$

Theorem

Assume

- f is of "bistable" type,
- *K* bounded and smooth, either star-shaped or directionally convex.

Then, there exists an entire solution u(t,x) of the equation in $\Omega = \mathbb{R}^N \setminus K$, such that 0 < u(t,x) < 1 and $u_t(t,x) > 0$, $\forall (t,x) \in \mathbb{R} \times \overline{\Omega}$ and

 $u(t,x) - \phi(x_1 + ct) \rightarrow 0$

$$\begin{cases} u_t = \Delta u + f(u) & \text{in } \Omega = \mathbb{R}^N \setminus K, \\ \nu \cdot \nabla u = 0 & \text{on } \partial \Omega = \partial K \end{cases}$$

Theorem

Assume

- f is of "bistable" type,
- *K* bounded and smooth, either star-shaped or directionally convex.

Then, there exists an entire solution u(t,x) of the equation in $\Omega = \mathbb{R}^N \setminus K$, such that 0 < u(t,x) < 1 and $u_t(t,x) > 0$, $\forall (t,x) \in \mathbb{R} \times \overline{\Omega}$ and

$$u(t,x) - \phi(x_1 + ct) \rightarrow 0$$

$$\begin{cases} u_t = \Delta u + f(u) & \text{in } \Omega = \mathbb{R}^N \setminus K, \\ \nu \cdot \nabla u = 0 & \text{on } \partial \Omega = \partial K \end{cases}$$

Theorem

Assume

- f is of "bistable" type,
- *K* bounded and smooth, either star-shaped or directionally convex.

Then, there exists an entire solution u(t,x) of the equation in $\Omega = \mathbb{R}^N \setminus K$, such that 0 < u(t,x) < 1 and $u_t(t,x) > 0$, $\forall (t,x) \in \mathbb{R} \times \overline{\Omega}$ and

$$u(t,x) - \phi(x_1 + ct) \to 0$$

Sketch of the proof of the existence result : 5 main steps **Step 1 :** Before reaching the obstacle (t << -1)

- Ideas of Guo Morita, Fife McLeod
- Two sub- and super-solutions

 $\simeq \phi(x_1 + ct) + \text{ exponentially small terms}$

• Solutions $u_n(t,x)$, $t \ge -n$, increasing in n, increasing in t

•
$$u_n(t,x)
ightarrow u(t,x)$$
 as $n
ightarrow +\infty$

• 0 < u(t,x) < 1 and $u_t > 0$ for all $(t,x) \in \mathbb{R} imes \overline{\Omega}$

 $u(t,x) - \phi(x_1 + ct)
ightarrow 0$ as $t
ightarrow -\infty$, uniformly in $x \in \overline{\Omega}$

イロト イポト イラト イラト

$$u(t,x) - \phi(x_1 + ct)
ightarrow 0$$
 as $t
ightarrow -\infty$, uniformly in $x \in \overline{\Omega}$

Theorem

The time global solution satisfying this property is unique

э

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

Step 2 : Intermediate time, behavior near the horizon

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

Step 3 : Large time, the state 1 **surrounds the obstacle**

$$u(t,x)
ightarrow u_\infty(x)$$
 as $t
ightarrow +\infty$ locally in $x \in \overline{\Omega}_{2}$

$$\left\{ \begin{array}{rrrr} \Delta u_\infty + f(u_\infty) &=& 0 & \text{ in } \overline{\Omega}, \\ 0 \,<\, u_\infty(x) &\leq& 1 & \text{ in } \overline{\Omega}, \\ \nu \cdot \nabla u_\infty &=& 0 & \text{ on } \partial \Omega \end{array} \right.$$

$$u_\infty(x) o 1$$
 as $|x| o +\infty$

Reaction-diffusion equ. in heterogeneous media

Step 4 : Large time, the state 1 invades the domain

Liouville type theorem

$$K$$
 star-shaped $\Longrightarrow u_{\infty} \equiv 1$ in $\overline{\Omega}$

where

$$\left\{ \begin{array}{rrrr} U''+f(U) &=& 0 & \text{ in } [0,+\infty), \\ U(0) &=& 0, \ U(+\infty) &=& 1 & \\ & U' &>& 0 & \text{ in } [0,+\infty) \end{array} \right.$$

(possible because of the profile of f)

Definition Existence of generalised fronts Fronts passing an obstacle - bistable case

Step 5 : Large time, the front recovers its flat shape behind the obstacle as $t \to +\infty$

$$u(t,x) - \phi(x_1 + ct) \mathop{
ightarrow}_{t
ightarrow + \infty} 0$$
 uniformly in $x \in \overline{\Omega}$

Sub-solution of the type

$$u(t,x) = \phi\left(x_1 + ct - \beta t^{-\alpha} e^{-\frac{|x'|^2}{\gamma t}} + \varphi(t) - \varphi(t_0)\right) - \psi(t)\zeta(x)$$

with $\gamma>0$ large, $\alpha>0$ small : strong diffusion in the variables x' with weak relaxation in time

Similar super-solution

Asymptotic speed of spreading

- Ê Spreading properties in heterogeneous media:
- 1. Homogeneous equations in general geometries
- HB, F. Hamel and N. Nadirashvili:
 - The speed of propagation for KPP type problems. I Periodic domains, JEMS (2005)
 - - The speed of propagation for KPP type problems. II General domains, JAMS (2009, to appear)
- 2. Non homogeneous equations
 - Freidlin , Freidlin Gärtner (probabilistic approach)
 - Majda Souganidis ; Lions Souganidis (Homogenization)
 - Nolen Xin (probabilistic)
 - W. Shen (dynamical systems)
 - HB G. Nadin: general framework, using generalized principal eigenvalues in unbounded domains.

Asymptotic speed of spreading

- Ê Spreading properties in heterogeneous media:
- 1. Homogeneous equations in general geometries
- HB, F. Hamel and N. Nadirashvili:
 - The speed of propagation for KPP type problems. I Periodic domains, JEMS (2005)
 - - The speed of propagation for KPP type problems. II General domains, JAMS (2009, to appear)

2. Non homogeneous equations

- Freidlin , Freidlin Gärtner (probabilistic approach)
- Majda Souganidis ; Lions Souganidis (Homogenization)
- Nolen Xin (probabilistic)
- W. Shen (dynamical systems)
- HB G. Nadin: general framework, using generalized principal eigenvalues in unbounded domains.

Asymptotic speed of spreading

- Ê Spreading properties in heterogeneous media:
- 1. Homogeneous equations in general geometries
- HB, F. Hamel and N. Nadirashvili:
 - The speed of propagation for KPP type problems. I Periodic domains, JEMS (2005)
 - - The speed of propagation for KPP type problems. II General domains, JAMS (2009, to appear)

2. Non homogeneous equations

- Freidlin , Freidlin Gärtner (probabilistic approach)
- Majda Souganidis ; Lions Souganidis (Homogenization)
- Nolen Xin (probabilistic)
- W. Shen (dynamical systems)
- HB G. Nadin: general framework, using generalized principal eigenvalues in unbounded domains.