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Model

Generalized FitzHugh-Nagumo Equation:

where 0 < ! << 1; D>1; 0<",#; $,%,& are constants.

• U: fast component
! bistable: U = ±1
! nonlinear: U3

! coupling to the slow components is small

•  V,W: slow components
! linear
! only coupled to the fast component 
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Gas-discharge experiments

III

III IV

Observed patterns:Set up [Purwins et al.]:

black: U=-1, white: U=+1U: current density 
V: voltage drop 
W: surface charge
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Inspiration
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Courtesy of  Y. Nishiura
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Stationary spot

U-component >> FF: 10x
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Theorem

Theorem [vH, Sandstede ‘11]:
Assume that R1>0 solves: 

where v0, w0 are given by

Then there exists a stationary radially symmetric spot with radius R1.

This spot is stable “if and only if” '(l)<0 for all l = 0,2,3,..., where



Text

Theorem

Theorem [vH, Sandstede ‘11]:
Assume that R1>0 solves: 

where v0, w0 are given by

Then there exists a stationary radially symmetric spot with radius R1.

This spot is stable “if and only if” '(l)<0 for all l = 0,2,3,..., where

• Spot corresponding to the smallest zero of existence condition is 

unstable with respect to    = 0 (radial perturbations)

• $,%(0: Spot is unstable with respect to    = 0 (radial perturbations)



Bifurcations
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Bifurcations
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Result: The drift line is given by

Drift: asymptotics

Goal: Determine for arbitrary small ! the points (",#) at which the stationary 
spot bifurcates to a traveling spot 

Method: Weakly nonlinear analysis

Cartoon:

"

|speed|
• Speed is small (second small parameter):  

•Traveling spot retains to leading order the 
shape of the stationary spot:  

• Determine eqns for (u,v,w) and use singular 
perturbation techniques to derive the drift 
line
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Other bifurcations

The other bifurcations (!=0,2,3,...), if present, will be Hopf bifurcations. 
These Hopf lines are implicitly given by: 

!=0: !=2:



Specific parameters

Choose the following set of parameters (for the remainder of presentation):

            $ = 0.5 , % = 2, & = 1, D = 2

Then, there exists a stationary stable spot solution with (leading order) width 

                           R1 = 1.86

 The bifurcation diagram of this stationary spot looks like:
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Note:  We found bifurcations of 
stable stationary spots to 
traveling spots only when both 
$ and % are positive. In all the 

other cases the l=0-line is 

always below the l=1-line.  
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$ = 0.5, % = 2, & = 1, D = 2, ! = 0.1, " = 6, # = 0.01 

• Code written by K.-I. Ueda: 

! 5-point discretization of the Laplacian on a 20 by 20 square with 200 
equidistance mesh points 

! Semi-implicit time scheme: conjugate gradients with incomplete Cholesky

• Parameter values: 

Direct PDE solver

U-component
    

blue: -1        yellow: +1
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V-component
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 Want: better numerical evidence for the drift bifurcation line and 
more flexibility.
Tool:  AUTO

Why AUTO?
• Direct simulations with the PDE solver are slow and costly since the speed 
of a traveling spot is slow, especially for small !.

• For example, simulation shown was done far away from the drift bifurcation 
line, with relatively large !:
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AUTO
Rescale and co-moving frame:

ˆ

,

Stationary solution in moving frame: 

Polar coordinates:



AUTO (cont.)
Write as a first order system (in the radial variable)

Fourier in φ: 

recall:



AUTO (cont.)
So, we get: 

• Solutions need to be even: restrict ourself to l ! 0

• & only appears in the l = 0-term!

• nonl-term contains infinitely many coupled terms 

AUTO: We have to truncate to a finite number of Fourier modes



AUTO: Difficulties

2 Major difficulties:

• AUTO does not switch onto the traveling branch for increasing "
! Add a small symmetry breaking term:

! Continue in " beyond bifurcation point (speed becomes non-zero)
! Continue ) down to 0 (check that speed stays nonzero) 

ˆ

ˆ

system system + )-term 

speed

"̂

1

3
2

Implement model in AUTO for a finite number of Fourier modes and on a 
finite domain [0, L] with appropriate boundary conditions.



Difficulties (cont.)
Second major difficulty:

• AUTO detects many branch points, so it is not possible to detect the 
correct drift point and continue the drift line in the (",#)-plane. 
! Detect drift bifurcation as points where the linearization L1 has a 
generalized eigenfunction *: 

! M is a diagonal matrix with 1,1/",D2/# on its diagonal and       is the 
radial derivative of stationary spot and thus lies in the null space of L1

! Add small term )      to the eqn (makes the system onto)

! Add integral condition to ensure that the kernel is 0 (solvability 
condition):

! Unique solution (*,)) 
! We are at a drift bifurcation iff ) = 0, so we continue ) down to 0
! Remove the )-term, and continue in " or #  

ˆ ˆ

ˆ ˆ

ˆ ˆ



$ = 0.5, % = 2, & = 1, D = 2, # = 0.5 
Results:

• standard parameter values:  

• 15 fourier modes, domain size = 12

AUTO: Results 
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Results (cont.)
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Results:

• standard parameter values:  

• 15 fourier modes, domain size = 12



• Parameter values: 

$ = 0.5, % = 2, & = 1, D = 2, ! = 0.1, " = 6, # = 0.01 

Compare: profile

pde solver t=8500
AUTO PDE solver at t=8500

ˆ ˆ



Compare: speed

Snapshots of U-component at t=7500 and t=9500
    

• AUTO: predicted speed = 0.38

t=7500

t=9500
speed + 0.35

• PDE solver:   



• Different set of parameter values!

Hopf

           U-component
     blue: -1        yellow: +1

"=0.31: below the Hopf line

!

"

Hopf

drift

ˆ "=0.32: above the Hopf lineˆ
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• Super vs subcritical? [Ei, Mimura, Nagayama 2006]

•Compare AUTO with PDE solver  

Work in progress I
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Work in progress II

• Interaction of traveling spots (cartoon) 



Questions??




